Last time:
- co-classes (definition)
 - poly-time reductions
 - NP completeness → Readings: Sipser 7.4, 7.5; AB 2.2-2.4;
 Papad. Ch. 8, 9
 - Cook-Levin theorem, other NPC problems
 - 3CNF, CLIQUE, IND-SET, VC, SUBSET-SUM
 - state Ladner’s Theorem AB 3.3

Today:
- Proof of Ladner’s theorem
- start unit on oracles & poly-time hierarchy

Readings: Cs: 2.3-2.6, Papad. 17.2

Note: PS 0 due today, PS 1 out today
(40H/week)

Questions?

**Thm: (Ladner) If $P \neq \text{NP}$ then there’s an $L \in \text{NP}$ s.t. (i) $L \not\in P$, but also $L \not\in \text{NPC}$.

- a priori possible for P, NP, NPC assuming $P \neq \text{NP}:
 - $L \not\in \text{NPC}$

Two proofs
1st: diag. over both \(\text{poly-time TMs} \) + poly-time TMs.

\[\text{2nd proof (Impagliazzo): } \text{Given any lang in NP/P} \]

"water it down" to get \(L' \):

- strictly easier than \(L \) (not NPC), but
- hard enough s.t. \(\notin \text{P} \).

To cook up \(L' \): diagonalization "padding".

\[\text{Setup:} \]

- Thm assumes \(\text{P} \neq \text{NP} \), so have SAT \(\notin \text{P} \).
- Recall TMs can be enumerated.\[\text{Let } M_i = i^{th} \text{ TM in enum. (} M_i = \text{TM whose descript. is binary rep. of } i). \]
- Prelim. def. ("padding"): Given \(H: \mathbb{N} \rightarrow \mathbb{N} \), define \(SAT_H \) to be all length-\(n \) satisfiable forms padded with \(n^{H(n)} \) many \(\text{Z}'s \) at end. Formally,

\[SAT_H = \bigcup_{n=1}^{n^{H(n)}} \{ \psi \in \text{SAT, } \psi(1^n) = 1 \} \]

This is "watered-down SAT".

Ex: Let \(|\psi| = k \), consider \(\psi(01) \)

\[2^{14k-(14k+2)} \]

\[2^k - k - 1 = 2^e \]
\(\text{input/extension } n = 2^L \leq \)
\(\text{poly}(n) \text{ time } = \Omega(1) \text{ time} \)

Consider \(\psi_0 \).
\[
\begin{array}{c@{}c@{}c@{}c}
L^2 & (\text{MMH}) \\
L^1 & L^{2-1} & L^2 = n
\end{array}
\]

\(n^3 \text{ time alg.} \equiv L^6 \text{ time alg.} \)

(Note: write "\(SAT_T(x) = 1 \)" means \(x \in SAT_T \).
"\(SAT_T(x) = 0 \)" means \(x \not\in SAT_T \).)

\(^\star\) We use the following fn \(H \):

\(H: \mathbb{N} \to \mathbb{N} \) is:
- \(H(n) \) is the smallest \(i < \log \log n \)
 s.t. \(\forall i \leq \log n, x \in \{0,1\}^i, \) TM \(M_i \) outputs \(SAT_H(x) \)
 within \(i \cdot |x| \) steps.
- If there's no such \(i \) then \(H(n) = \log \log n \).

Two prelim. claims:
(We're assuming \(P \neq NP \))

C1: The fn \(H \) is well defined, \(\forall H(n) \) can be computed,
given \(n \), in \(\text{poly}(n) \) time. \(\square \)

C2: \(SAT_H \in P \iff H(n) \in O(1) \) \((\exists C \text{ s.t. } \forall n, \ \text{have } H(n) \in C) \).
In fact, if \(SAT_H \notin P \) then \(\lim_{n \to \infty} H(n) = \infty \).
Proof of Ladner's thm:

1st part: show SATₜₜ ∈ P.

We'll argue that SATₜₜ ∈ P ⇒ P = NP.

Sps SATₜₜ ∈ P. By C₂, H(n) ≤ C, so SATₜₜ is SAT padded w ≤ nᶜ out of garbage; so a poly-time alg for SATₜₜ ⇒ poly-time alg for SAT, so P = NP. **1st part**

2nd part: show SATₜₜ is not NPC.

We'll argue that if SATₜₜ is NPC ⇒ P = NP.

Sps SATₜₜ is NPC. So ∃ nⁱ-time red. P from
SAT to SAT_H, \(i = \text{some const.} \)

By 1st part, SAT_H \(\in \mathcal{P} \). So by C2, \(H(n) \to \infty \).

Since \(P \)'s runtime is \(\leq n^i \), it maps

\[n \text{-bit} \rightarrow (\leq n^i) \text{-bit} \]

inst. of SAT \(\rightarrow \) inst. of SAT_H.

If fixed, \(H(n) \to \infty \); so \(n^i < \eta H(n) \) for large enough \(n \).

So these \(n^i \)-length inst. are of length \(5x \) \(< (\eta^{\frac{1}{3}}) H(\eta^{\frac{1}{3}}) \).

This means (for large enough \(n \)) \(\psi \) maps

\[n \text{-bit form}(\emptyset \in \text{SAT}) \rightarrow \text{a string} \]

where \[|\psi| < \eta^{\frac{1}{3}} \]

\(\psi \in \text{SAT} \) iff \(\emptyset \in \text{SAT} \).

But this gives a \(\text{poly}(n) \)-time \(\psi \) for SAT.

(repeatedly applying \(\psi \)) So \(\mathcal{P} = \mathcal{NP} \).

Q: Are there natural NP-intermediate lang's?

A: we think so...

- Factoring
- Graph isomorphism = \(\{ (G_1, G_2) : G_1 \text{ isom. to } G_2 \} \)

New Topic: Poly-Time Hierarchy,
Oracles, + a little bit of
Circuits

Let's recall \(\text{NP} \):

new name: \(\Sigma_1^p = \text{NP} \)

A lang \(L \) is in \(\text{NP} \) if there's a TM \(D \) (det) and a poly \(p(n) \) st

\[
\forall \sum \exists \prod \left[\exists y \in \Sigma^{p(n)} \left[O(w, y) = \text{I} \right] \right]
\]

where \(n = |w| \).

Handy: "\(\exists \prod \)" mean "\(\exists y \in \Sigma^{p(n)} \)"

\(\forall p(n) y \) sim.

new name: \(\Pi_1^p = \text{co NP} \)

A lang \(L \) is in \(\text{coNP} \) if there's a TM \(D \) (det) and a poly \(p(n) \) st

\[
\forall \sum \exists \prod \left[\forall y \in \prod^{p(n)} \left[O(w, y) = \text{I} \right] \right]
\]

where \(n = |w| \).

Equiv. \(\exists \text{DTM} D', \) poly p st.

\[
\forall \sum \exists \prod \left[O'(w, y) = \text{I} \right]
\]

(\(D' \) outputs opp. of \(D \).)

Reminder: we think

\[
\forall D = D' \Rightarrow \forall D
\]
Let's Generalize:

Def: Let L is in Σ_2^p if there's a poly-time det $TMD + a poly p$ s.t.

$$w \in L \iff \exists^{p(n)} y \forall^{p(n)} z \left[O(w, y, z) = 1 \right]$$

Let L is in Π_2^p if there's a poly-time det $TMD + a poly p$ s.t.

$$w \in L \iff \forall^{p(n)} y \exists^{p(n)} z \left[O(w, y, z) = 1 \right]$$

Ex: $MEF = \text{Minimum Equiv. Formula}$

$MEF = \{ \phi : \phi \text{ is a Bool Formula } \text{ s.t. there is no shorter form } \psi \text{ s.t. } \phi \equiv \psi \}$

$\overline{MEF} = \{ \phi : \phi \text{ is a Bool Formula st. there does exist a shorter form } \psi \text{ s.t. } \phi \equiv \psi \}$

$\phi \in \overline{MEF} \text{ means } \exists \psi \forall x \left[\psi(x) = \phi(x) \text{ and } |\psi| < |\phi| \right]$. Checkable in det poly time given $\phi \& \psi$.
So \(MEF \in \Sigma_2^p \).

Claim: \(L \in \Sigma_2^p \iff L \in \Pi_2^p \).

Pf: \(x \in L \) means \(\exists \in^{p(n)} \forall \in^{p(n)} \exists D(x,y,z) = 1 \).
- \(x \notin L \) means \(\exists \in^{p(n)} \forall \in^{p(n)} \exists D(x,y,z) = 1 \).

 i.e.,
 \[
 \forall \in^{p(n)} \exists \in^{p(n)} \exists D'(x,y,z) = 1
 \]
 \((D' = \text{machine that outputs opp. of } D) \). ☐

Generalize to any \(k \):

\(\Sigma_k^p \): def. analogous to \(\Sigma_2^p \), now \(k \) alt. quant.,
 first one \(\exists \).

\(\Pi_k^p \): def. analogous to \(\Pi_2^p \), now \(k \) alt. quant.,
 first one \(\forall \).

Def: \(PH = \bigcup_{k \geq 2} \Sigma_k^p \cup \Pi_k^p \)
Next time: PH, "collapse them" oracles
basics of Boolean circuits