Computer Science 4236: Introduction to Computational Complexity Problem Set \#2 Spring 2023

Due 11:59pm Wednesday, April 5, 2023

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Problem 1 Let BIPARTITE be the language BIPARTITE $:=\{G: G$ is an undirected bipartite graph\}. (Recall that a graph is bipartite if its vertex set can be partitioned into two disjoint sets L and R such that every edge has one L-vertex and one R-vertex.)

Show that BIPARTITE \in NL. (Hint: Think about cycles.)

Problem 2 The outdegree of a directed graph is the maximum number of directed edges ($i \rightarrow j$) coming out of any node i in G.
(a) Show that Generalized Geography is still PSPACE-complete even if restricted to directed graphs G with outdegree 2. An equivalent but more formal phrasing of this problem would be: "Show that the language $G G_{2}=\{(G, v): G$ is a digraph with outdegree 2 such that player 1 has a winning strategy for Generalized Geography played on G starting at node $v\}$ is PSPACE complete."
(b) Your friend claims that he can prove that that Generalized Geography is PSPACE-complete even if restricted to directed graphs G with outdegree 1. Why should you be skeptical of his claim?

Problem 3 (The point of this problem is that it's not important that our model for randomized computation uses binary randomness; a range of reasonable alternatives would do just as well.)

Show that it is possible to efficiently simulate a fair N-sided die using coin tosses. In more detail, show that for any positive integer N and any $\delta>0$, there is a probabilistic Turing machine M (which "tosses fair coins" as described in our Wed March 8 lecture) running in worst-case time poly $(\log N, \log 1 / \delta)$) which always produces an output in $\{1,2, \ldots, N, \perp\}$, and satisfies the following: (i) conditioned on not outputting \perp, the output of M is uniformly distributed over $[N]=\{1, \ldots, N\}$, and (ii) the probability that M outputs \perp is at most δ.

Is it possible to achieve a stronger simulation, with $\delta=0$, that runs in worst-case time poly $(\log N)$? Explain why or why not.

Problem 4 Show that if the language SAT of satisfiable Boolean formulas is in BPP, then SAT is in RP.

Problem 5 In this problem we'll see a randomized polynomial-time algorithm for 2-CNF satisfiability which has a similar flavor to the $\operatorname{poly}(n) \cdot(3 / 2)^{n}$-time randomized algorithm that we did in class for 3-CNF satisfiability.

Recall that a 2-CNF formula is an AND of clauses each of which has at most two literals; for example,

$$
\phi=\left(x_{1} \vee \bar{x}_{4}\right) \wedge\left(\overline{x_{2}} \vee \bar{x}_{3}\right) \wedge\left(x_{3} \vee x_{4}\right)
$$

is a 2-CNF. Consider the following randomized algorithm which attempts to find a satisfying assignment of an input 2-CNF formula ϕ :

Input: $\phi=C_{1} \wedge \cdots \wedge C_{m}$ a $2-\mathrm{CNF}$ on n vars
[1] Let $z \in\{0,1\}^{n}$ be any initial assignment to variables
[2] If $\phi(z)=1$ stop and output "satisfiable"
[3] If $\phi(z)=0$ choose any clause C which is not satisfied by z. Pick a random literal of C and flip that bit of z.
[4] Repeat Steps (2) and (3) $r=2 n^{2}$ times; if you still haven't found a satisfying assignment, stop and output "probably unsatisfiable."

It's clear that this algorithm always outputs "probably unsatisfiable" if ϕ is indeed unsatisfiable. Below you'll argue that if ϕ is satisfiable then the above algorithm succeeds in finding a satisfying assignment with probability at least $1 / 2$.

Similar to the analysis in class, fix a satisfying assignment $z^{*} \in\{0,1\}^{n}$. Let $t(i)$ denote the \max, over all n-bit strings z that differ from z^{*} in at most i bit positions, of the expected number of "random flips" (steps like Step (3) in the algorithm) which would be required until a patient version of the algorithm (which doesn't "time out" after r trials, but keeps trying forever) would reach a satisfying assignment for ϕ, given that the current assignment is z.
(a) Explain why $t(\cdot)$ satisfies the following conditions: $t(0)=0 ; t(n) \leq 1+t(n-1)$; for $i \in$ $\{1, \ldots, n-1\}, t(i) \leq 1+(1 / 2)[t(i-1)+t(i+1)]$.
(b) Let $t^{\prime}(\cdot)$ be obtained by relaxing the above inequalities to equalities, i.e. $t^{\prime}(\cdot)$ satisfies $t^{\prime}(0)=0$; $t^{\prime}(n)=1+t^{\prime}(n-1)$; for $i \in\{1, \ldots, n-1\}, t^{\prime}(i)=1+(1 / 2)\left[t^{\prime}(i-1)+t^{\prime}(i+1)\right]$. Prove that $t^{\prime}(n) \leq n^{2}$.
(c) It can be argued (you don't need to do this) that $t(i) \leq t^{\prime}(i)$. Use this to justify the claim that the above algorithm finds a satisfying assignment, when one exists, with probability at least $1 / 2$.

