
Instructor: Rocco A. Servedio

Computer Science 4236: Introduction to Computational Complexity
Problem Set #2 Spring 2023

Due 11:59pm Wednesday, April 5, 2023

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Problem 1 Let BIPARTITE be the language BIPARTITE := {G : G is an undirected bipartite
graph}. (Recall that a graph is bipartite if its vertex set can be partitioned into two disjoint sets
L and R such that every edge has one L-vertex and one R-vertex.)

Show that BIPARTITE ∈ NL. (Hint: Think about cycles.)

Problem 2 The outdegree of a directed graph is the maximum number of directed edges (i→ j)
coming out of any node i in G.

(a) Show that Generalized Geography is still PSPACE-complete even if restricted to directed graphs
G with outdegree 2. An equivalent but more formal phrasing of this problem would be: “Show that
the language GG2 = {(G, v) : G is a digraph with outdegree 2 such that player 1 has a winning
strategy for Generalized Geography played on G starting at node v} is PSPACE complete.”

(b) Your friend claims that he can prove that that Generalized Geography is PSPACE-complete
even if restricted to directed graphs G with outdegree 1. Why should you be skeptical of his claim?

Problem 3 (The point of this problem is that it’s not important that our model for randomized
computation uses binary randomness; a range of reasonable alternatives would do just as well.)

Show that it is possible to efficiently simulate a fair N -sided die using coin tosses. In more
detail, show that for any positive integer N and any δ > 0, there is a probabilistic Turing machine
M (which “tosses fair coins” as described in our Wed March 8 lecture) running in worst-case
time poly(logN, log 1/δ)) which always produces an output in {1, 2, . . . , N,⊥}, and satisfies the
following: (i) conditioned on not outputting ⊥, the output of M is uniformly distributed over
[N ] = {1, . . . , N}, and (ii) the probability that M outputs ⊥ is at most δ.

Is it possible to achieve a stronger simulation, with δ = 0, that runs in worst-case time
poly(logN)? Explain why or why not.

1



Problem 4 Show that if the language SAT of satisfiable Boolean formulas is in BPP, then SAT
is in RP.

Problem 5 In this problem we’ll see a randomized polynomial-time algorithm for 2-CNF satisfi-
ability which has a similar flavor to the poly(n) · (3/2)n-time randomized algorithm that we did in
class for 3-CNF satisfiability.

Recall that a 2-CNF formula is an AND of clauses each of which has at most two literals; for
example,

φ = (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4)

is a 2-CNF. Consider the following randomized algorithm which attempts to find a satisfying
assignment of an input 2-CNF formula φ:

Input: φ = C1 ∧ · · · ∧ Cm a 2-CNF on n vars

[1] Let z ∈ {0, 1}n be any initial assignment to variables

[2] If φ(z) = 1 stop and output “satisfiable”

[3] If φ(z) = 0 choose any clause C which is not satisfied by z. Pick a random literal of C and
flip that bit of z.

[4] Repeat Steps (2) and (3) r = 2n2 times; if you still haven’t found a satisfying assignment,
stop and output “probably unsatisfiable.”

It’s clear that this algorithm always outputs “probably unsatisfiable” if φ is indeed unsatisfiable.
Below you’ll argue that if φ is satisfiable then the above algorithm succeeds in finding a satisfying
assignment with probability at least 1/2.

Similar to the analysis in class, fix a satisfying assignment z∗ ∈ {0, 1}n. Let t(i) denote the
max, over all n-bit strings z that differ from z∗ in at most i bit positions, of the expected number
of “random flips” (steps like Step (3) in the algorithm) which would be required until a patient
version of the algorithm (which doesn’t “time out” after r trials, but keeps trying forever) would
reach a satisfying assignment for φ, given that the current assignment is z.

(a) Explain why t(·) satisfies the following conditions: t(0) = 0; t(n) ≤ 1 + t(n − 1); for i ∈
{1, . . . , n− 1}, t(i) ≤ 1 + (1/2)[t(i− 1) + t(i+ 1)].

(b) Let t′(·) be obtained by relaxing the above inequalities to equalities, i.e. t′(·) satisfies t′(0) = 0;
t′(n) = 1+t′(n−1); for i ∈ {1, . . . , n−1}, t′(i) = 1+(1/2)[t′(i−1)+t′(i+1)]. Prove that t′(n) ≤ n2.

(c) It can be argued (you don’t need to do this) that t(i) ≤ t′(i). Use this to justify the claim that
the above algorithm finds a satisfying assignment, when one exists, with probability at least 1/2.

2


