
Instructor: Rocco A. Servedio

Computer Science 4236: Introduction to Computational Complexity
Problem Set #2 Spring 2023

Due 11:59pm Wednesday, March 1, 2023

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Problem 1 The complexity class DP is defined as follows:

DP = {languages L : there is a language L1 ∈ NP and a language L2 ∈ coNP such that L = L1∩L2.}

(An equivalent definition is that L is in DP if and only if L = A \B for two languages A,B ∈ NP,
i.e. L is the set-theoretic difference of two languages in NP.)

(a) Define the language ALMOST-SAT to be the language of all CNF formulas which (i) are
unsatisfiable, but (ii) would become satisfiable if any clause were removed. Show that ALMOST-
SAT is in DP.

(b) Now define the language ONE-SAT to be the set of all Boolean formulas φ such that φ has
exactly one satisfying assignment. Show that ONE-SAT is in DP.

(c) Give a characterization of DP in terms of deterministic polynomial-time algorithms equipped
with a SAT oracle. Justify your characterization.

As an example of what a characterization of a different complexity class (our friend NP) would
look like in terms of polynomial-time algorithms equipped with a SAT oracle, here is such a charac-
terization for NP: a language is in NP if and only if it is decided by a deterministic polynomial-time
algorithm that makes one SAT oracle call and accepts if and only if the call accepts.

(The notion of “non-adaptivity” may be useful: an oracle algorithm is non-adaptive if it makes
all of its calls to the oracle “in parallel” (i.e. all the strings on which the oracle is every queried are
selected before the oracle is ever called — the choice of the i-th of those strings doesn’t depend on
what the oracle answered on the first i− 1 calls).

Problem 2 Recall the definition of the complexity class DP from Problem 1.

(a) (easy) Let L be the language consisting of all pairs (φ, ψ) such that φ is a satisfiable Boolean
formula and ψ is an unsatisfiable Boolean formula. Show that L is DP-complete.

(b) Here is a fact which can be shown (you don’t need to show this): Fact: There is a polynomial-
time reduction (call the reduction R) from SAT to CLIQUE which has the following property: if
the input formula for SAT is satisfiable then the pair (G, k) constructed by R has largest clique of
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size exactly k, and if the input formula is not satisfiable then the pair (G, k) constructed by R has
largest clique of size exactly k − 1.

Recall that the LARGEST-CLIQUE language is the set of all pairs (G, k) such that G is an
undirected graph and the largest clique in G is of size exactly k.

Show that LARGEST-CLIQUE is DP-complete. (Hint: Use the fact stated above.)

Problem 3 A DNF formula is an OR of “terms”, where a “term” is an AND of literals; for
example,

(x1 ∧ x3 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4 ∧ x5 ∧ x6)

is a 3-term DNF. A CNF is an AND of “clauses” where a “clause” is an OR of literals; for example,

(x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3)

is a 2-clause CNF.

(a) Show that there are DNF formulas with O(n) terms such that any logically equivalent CNF
formula must have 2Ω(n) clauses.

(b) Consider the following decision problem: The input is a pair (φ, 1k) where φ is a DNF formula
and k is an integer. The problem is to determine whether there is a CNF formula that is logically
equivalent to φ that has k or fewer clauses.

Show that this problem (or more precisely, the language corresponding to this problem) is in
Σp

2.

Problem 4 We say that an algorithm A makes non-adaptive queries to an oracle if it selects all
of the strings on which it will query the oracle before querying the oracle on any of those strings
(in other words, the queries to the oracle can be thought of as being carried out “in parallel” —
the choice of later query strings can’t depend on the answers that the oracle provides to earlier
queries). In contrast, an adaptive oracle algorithm makes its queries sequentially (in particular,
the choice of the i-th query string for the oracle can depend on the answers that the oracle gave to
query strings 1, . . . , i− 1).

Show that a language L is decided by a deterministic polynomial-time algorithm that has non-
adaptive access to an NP oracle, if and only if L is decided by a deterministic polynomial-time
algorithm that has adaptive access to an NP oracle but can make only O(log n) queries.

Problem 5
(a) Let’s say that a polynomial-time reduction R from language A to language B is a shrinky-dink
reduction if it has the following property: for every x ∈ Σ?, the output R(x) of reduction R on
input x is a string of length |R(x)| ≤ O(log |x|).

Show that if there is a polynomial-time shrinky-dink reduction from CLIQUE to L where L
is a language in NP, then NP ⊆ ∪k≥1TIME(n(logn)k). (The latter complexity class is sometimes
referred to as “quasipolynomial time.”)
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(b) Let S(n) ≥ log n be a proper complexity function, and let L be a language which is accepted
by some S(n)-space bounded Turing machine M . In other words, M never uses more than S(n)
space on any input of length n, and M halts and accepts on precisely those inputs x which belong
to L; however, for inputs x /∈ L, M may either halt and reject or may run forever.

Show that there is a S(n)-space bounded Turing machine M ′ that decides L. In other words,
M ′ halts on every input string x and accepts precisely those x ∈ L, and never uses more than S(n)
space on any input of length n.

Problem 6 This problem deals with the “inclusion translates upward, separation translates down-
ward” phenomenon we discussed in class.

(a) Let f(n) ≥ 10n be a proper complexity function. Show that if TIME(n) = TIME(n(log n)2/3)
then TIME(f(n)) = TIME(f(n)(log f(n))2/3).

(b) Show that TIME(n) 6= TIME(n(log n)2/3). (Hint: use part (a) and a hierarchy theorem.) Note
that this is a finer separation than could be achieved just by directly applying the time hierarchy
theorem.
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