
Instructor: Rocco A. Servedio

Computer Science 4236: Introduction to Computational Complexity
Problem Set #1 Spring 2023

Due 11:59pm Wednesday, February 8, 2023

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Problem 1 (a) First, write a clear and precise definition of what each of the following mean for
functions f, g : N→ N: (i) f(n) = O(g(n)); (ii) f(n) = Ω(g(n)); (iii) f(n) = Θ(g(n)).

Then, for each pair of the following functions (i.e. (a) and (b), (a) and (c), etc.), determine
whether (i) f(n) = O(g(n)); (ii) f(n) = Ω(g(n)); (iii) f(n) = Θ(g(n)); or (iv) none of the above.
Give brief justifications of your answers. (Logarithms are base two.)

(a) log(nn/10); (b) (1 + 1/n)10n2
; (c) n/ log n if n is even, n · log n if n is odd;

(d) n!; (e) 2(logn)+(log logn).

(b) You are working on an algorithm for deciding your favorite language L ∈ Σ∗. After some
enjoyable effort, you succeed in designing a multitape Turing machine M to decide language L
with the following running time: for length-n inputs when n ≤ 100, your machine runs in time
3 · 2n, and for length-n inputs with n > 100, your machine runs in time 3 ·n2. What is the smallest
time complexity class TIME(T (n)) for which you can say that L ∈ TIME(T (n))? Justify your
answer.
(c) Let L be a language that is decided in time t(n) and space s(n) ≥ n by a Turing machine M
that has an input tape and seven worktapes. Show that L is also accepted in space s(n) by a Turing
machine M ′ that has an input tape and a single worktape. What is the running time of M ′? (Use
big-Oh notation; justify your answer.)

Problem 2 (a) The language SQUARE-ROOT-COLORING is defined as {G : G is an undirected
graph on n nodes which can be properly vertex-colored using at most

√
n colors}. (Recall that a

proper vertex coloring of a graph is an assignment of a color to each vertex of the graph such that
no edge has both of its endpoints being the same color.)

Show that SQUARE-ROOT-COLORING is NP-complete. You may use the fact that GRAPH-
COLORING is NP-complete; recall that GRAPH-COLORING is the language of all pairs (G, k)
where G is an undirected graph, k is a positive integer, and G can be properly vertex-colored using
at most k colors.

1

(b) The language LOG-CLIQUE is defined as {G : G is an undirected graph on n nodes which
contains a clique of size log n. Do you think that LOG-CLIQUE is NP-complete? Explain why or
why not (a few sentences suffice.)
(c) The language QUARTER-CNF-SAT is defined as {φ : φ is a Boolean CNF formula on 4n
variables such that φ has a satisfying assignment with exactly n variables set to TRUE}. Show
that QUARTER–CNF-SAT is NP-complete. You may use the fact that CNF-SAT (the language
of all satisfiable Boolean CNF formulas) is NP-complete.

Problem 3 In this problem you’ll establish that the search and decision versions of some problems
in NP are in fact equivalent.

(a) Show that if P=NP then there is a polynomial-time algorithm which, given a Boolean formula
φ, outputs a satisfying assignment for φ (if one exists) or outputs “unsatisfiable” if there is no
satisfying assignment.
(b) Recall that a clique of size k in an undirected n-node graph G = (V,E) is a subset V ′ ⊆ V
with |V ′| = k such that for every u, v ∈ V ′ the edge (u, v) is present in E. Show that if P=NP then
there is a polynomial-time algorithm which, given an undirected graph G, outputs a clique of size
k, where k is the largest value such that G contains a k-clique.

Problem 4 Recall that a vertex cover in a graph with vertex set V is a set of nodes V ′ ⊆ V such
that every edge in the graph touches (at least) one of the nodes in the vertex cover (so it is a set of
nodes that “cover” all of the edges). The language VERTEX-COVER is {(G, k) : G has a vertex
cover of size at most k}.

Both VERTEX-COVER and CLIQUE are NP-complete, by easy polynomial-time reductions
from one to the other (a set V ′ is a vertex cover in G if and only if V \V ′ is an independent set in G,
and an independent set in G is the same as a clique in the complement of G). This means that the
worst-case time complexity of the two problems is equivalent, but there are several other senses in
which VERTEX-COVER appears to be considerably easier than CLIQUE. In this problem you’ll
explore one such sense, namely the running time as a function of k.

Suppose that n is very large and k is rather small. Despite intensive research effort, the fastest
known algorithms for determining whether an n-node graph G has a k-clique run in time nΘ(k),
and there is reason to believe that no faster algorithms can exist.

In contrast, show that there is a O(2k) · poly(n)-time algorithm for determining whether G has
a size-k vertex cover.

Problem 5 Consider the language FACTORING = {(N, k) : N and k are numbers in binary
notation which are such that N is divisible by some integer in the range {2, . . . , k}.}.

(a) Show that FACTORING is in NP.
(b) (Search is no harder than decision) Show that if P=NP, then there is a poly(n)-time algorithm
which, given as input an n-bit integer N , outputs the prime factorization of N. (Hint: Use part
(a).)

2

(c) Now define UNARY-FACTORING to be the analogue of FACTORING but where N, k are
given in unary notation. Show that UNARY-FACTORING is in P. (The moral here is that binary
notation is the “right” way to represent numbers as inputs to algorithms.)

Problem 6 This problem asks you to fill in a missing piece from our proof of Ladner’s theorem
(recall that Ladner’s theorem states that if P 6= NP , then there are languages in NP that are
neither in P nor NP -complete). Recall that the proof uses the following definition and claim:

Definition: Let H : {2, 3, . . . } → N be defined as follows: H(n) is the smallest number i ≤ log log n
such that for every x ∈ {0, 1}∗ of length |x| ≤ log n, machine Mi outputs SATH(x) within i|x|i time
steps (and if there is no such number i, then H(n) = log log n). Here

SATH :=
⋃
n≥1

{ψ01n
H(n)

: ψ ∈ SAT, |ψ| = n}.

Claim: The function H is well defined and there is an algorithm which, given an input number n,
runs in poly(n) time and computes H(n).

Prove the above claim.

3

