Computer Science 4236: Introduction to Computational Complexity Problem Set \#1 Spring 2023

Due 11:59pm Wednesday, February 8, 2023

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Problem 1 (a) First, write a clear and precise definition of what each of the following mean for functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$: (i) $f(n)=O(g(n))$; (ii) $f(n)=\Omega(g(n))$; (iii) $f(n)=\Theta(g(n))$.

Then, for each pair of the following functions (i.e. (a) and (b), (a) and (c), etc.), determine whether (i) $f(n)=O(g(n))$; (ii) $f(n)=\Omega(g(n))$; (iii) $f(n)=\Theta(g(n))$; or (iv) none of the above. Give brief justifications of your answers. (Logarithms are base two.)
(a) $\log \left(n^{n / 10}\right)$;
(b) $(1+1 / n)^{10 n^{2}}$;
(c) $n / \log n$ if n is even, $n \cdot \log n$ if n is odd;
(d) $n!$;
(e) $2^{(\log n)+(\log \log n)}$.
(b) You are working on an algorithm for deciding your favorite language $L \in \Sigma^{*}$. After some enjoyable effort, you succeed in designing a multitape Turing machine M to decide language L with the following running time: for length- n inputs when $n \leq 100$, your machine runs in time $3 \cdot 2^{n}$, and for length- n inputs with $n>100$, your machine runs in time $3 \cdot n^{2}$. What is the smallest time complexity class $\operatorname{TIME}(T(n))$ for which you can say that $L \in T I M E(T(n))$? Justify your answer.
(c) Let L be a language that is decided in time $t(n)$ and space $s(n) \geq n$ by a Turing machine M that has an input tape and seven worktapes. Show that L is also accepted in space $s(n)$ by a Turing machine M^{\prime} that has an input tape and a single worktape. What is the running time of M^{\prime} ? (Use big-Oh notation; justify your answer.)

Problem 2 (a) The language SQUARE-ROOT-COLORING is defined as $\{G: G$ is an undirected graph on n nodes which can be properly vertex-colored using at most \sqrt{n} colors\}. (Recall that a proper vertex coloring of a graph is an assignment of a color to each vertex of the graph such that no edge has both of its endpoints being the same color.)

Show that SQUARE-ROOT-COLORING is NP-complete. You may use the fact that GRAPHCOLORING is NP-complete; recall that GRAPH-COLORING is the language of all pairs (G, k) where G is an undirected graph, k is a positive integer, and G can be properly vertex-colored using at most k colors.
(b) The language LOG-CLIQUE is defined as $\{G: G$ is an undirected graph on n nodes which contains a clique of size $\log n$. Do you think that LOG-CLIQUE is NP-complete? Explain why or why not (a few sentences suffice.)
(c) The language QUARTER-CNF-SAT is defined as $\{\phi: \phi$ is a Boolean CNF formula on $4 n$ variables such that ϕ has a satisfying assignment with exactly n variables set to TRUE\}. Show that QUARTER-CNF-SAT is NP-complete. You may use the fact that CNF-SAT (the language of all satisfiable Boolean CNF formulas) is NP-complete.

Problem 3 In this problem you'll establish that the search and decision versions of some problems in NP are in fact equivalent.
(a) Show that if $\mathrm{P}=\mathrm{NP}$ then there is a polynomial-time algorithm which, given a Boolean formula ϕ, outputs a satisfying assignment for ϕ (if one exists) or outputs "unsatisfiable" if there is no satisfying assignment.
(b) Recall that a clique of size k in an undirected n-node graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right|=k$ such that for every $u, v \in V^{\prime}$ the edge (u, v) is present in E. Show that if $\mathrm{P}=\mathrm{NP}$ then there is a polynomial-time algorithm which, given an undirected graph G, outputs a clique of size k, where k is the largest value such that G contains a k-clique.

Problem 4 Recall that a vertex cover in a graph with vertex set V is a set of nodes $V^{\prime} \subseteq V$ such that every edge in the graph touches (at least) one of the nodes in the vertex cover (so it is a set of nodes that "cover" all of the edges). The language VERTEX-COVER is $\{(G, k): G$ has a vertex cover of size at most $k\}$.

Both VERTEX-COVER and CLIQUE are NP-complete, by easy polynomial-time reductions from one to the other (a set V^{\prime} is a vertex cover in G if and only if $V \backslash V^{\prime}$ is an independent set in G, and an independent set in G is the same as a clique in the complement of G). This means that the worst-case time complexity of the two problems is equivalent, but there are several other senses in which VERTEX-COVER appears to be considerably easier than CLIQUE. In this problem you'll explore one such sense, namely the running time as a function of k.

Suppose that n is very large and k is rather small. Despite intensive research effort, the fastest known algorithms for determining whether an n-node graph G has a k-clique run in time $n^{\Theta(k)}$, and there is reason to believe that no faster algorithms can exist.

In contrast, show that there is a $O\left(2^{k}\right) \cdot \operatorname{poly}(n)$-time algorithm for determining whether G has a size- k vertex cover.

Problem 5 Consider the language FACTORING $=\{(N, k): N$ and k are numbers in binary notation which are such that N is divisible by some integer in the range $\{2, \ldots, k\}$. $\}$.
(a) Show that FACTORING is in NP.
(b) (Search is no harder than decision) Show that if $\mathrm{P}=\mathrm{NP}$, then there is a poly (n)-time algorithm which, given as input an n-bit integer N, outputs the prime factorization of N. (Hint: Use part (a).)
(c) Now define UNARY-FACTORING to be the analogue of FACTORING but where N, k are given in unary notation. Show that UNARY-FACTORING is in P. (The moral here is that binary notation is the "right" way to represent numbers as inputs to algorithms.)

Problem 6 This problem asks you to fill in a missing piece from our proof of Ladner's theorem (recall that Ladner's theorem states that if $P \neq N P$, then there are languages in NP that are neither in P nor $N P$-complete). Recall that the proof uses the following definition and claim:
Definition: Let $H:\{2,3, \ldots\} \rightarrow \mathbb{N}$ be defined as follows: $H(n)$ is the smallest number $i \leq \log \log n$ such that for every $x \in\{0,1\}^{*}$ of length $|x| \leq \log n$, machine M_{i} outputs $S A T_{H}(x)$ within $i|x|^{i}$ time steps (and if there is no such number i, then $H(n)=\log \log n$). Here

$$
S A T_{H}:=\bigcup_{n \geq 1}\left\{\psi 01^{n^{H(n)}}: \psi \in S A T,|\psi|=n\right\}
$$

Claim: The function H is well defined and there is an algorithm which, given an input number n, runs in poly (n) time and computes $H(n)$.

Prove the above claim.

