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Chapter 6

Integer Operators

6.1 Euclidean Algorithm

6.2 Chinese Remainder Theorem
6.3 Polynomial Divisibility

6.4 Prime and Composite Moduli
6.5 Euler Phi-Function

6.6 The Mobius Function

This chapter presents several computational problems
for which integer algorithms based on number-theoretic
principles are markedly faster than primitive algorithms
tied more closely to the definitions.
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6.1 EUCLIDEAN ALGORITHM

The Euclidean algorithm is a method for calculating
the greatest common divisor of two integers. It is faster by
far than the primitive method of successive trial divisors
and methods based on factoring.

REVIEW FROM §3.1 AND APPENDIX A2:

e Let n and d be integers. If dg € Z such that n = dgq,
then we say that d divides n, and we write d \ n.

e A prime number is a positive integer p > 1 such
that p has no divisors except 1 and itself.

e Let m and n be integers whose greatest common di-
visor is 1. Then we say that m and n are relatively
prime. Notation m L n.

¢ The Fundamental Theorem of Arithmetic: ev-
ery positive integer n has a unique representation as
a product of powers of ascending primes.

€1,..€2

n — pl p2 pi’"
(The number 1 is the empty product.)

Successive Trial-Divisors Algorithm

A primitive algorithm for calculating ged (m,n) con-
siders trial divisors in ascending order. Algorithm 6.1.1
considers trial divisors in decreasing order, thereby ter-
minating the first time it finds a common divisor, so it
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runs relatively faster than the ascending version whenever
ged (m,n) > 1. Worst-case time remains O(m).

Algorithm 6.1.1: Near-Primitive GCD Method

Input: non-negative integers m, n, not both 0
Output: ged (m, n)
Function GCD1 (m, n)
if min {m, n} = 0 then return max{m, n};
for d := min{m, n} to 1 step —1
if d \ m and d \ n then return d;
continue

The following minor modification of Algo 6.1.1 considers
only the possible divisors d = |[m/k| for k =1,...,|/m].
This decreases the worst-case time to |/m].

Algorithm 6.1.2: Elementary GCD Method

Input: integers m, n, with 0 < m <n and 0 #n
Output: ged (m, n)
Function GCD2 (m, n)
if m = 0 then return n;
for k:=1 to |\/m]|
d:=|m/k];
if d \ m and d \ n then return d;
continue
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Prime-Decomposition Method

A different method for calculating the greatest com-
mon divisor of the numbers m and n, and their least com-
mon multiple as well, is commonly taught in an early
school grade. It starts with a factorization of m and n
into primes.

m = 9292 .3ds gds |

2¢z . 363 . FE5 . ..

S
I

It then applies the rule

ng (m, n) 2min{d2,62} ) Smin{dg,eg} ) 5min{d5,e5} (611)

lem (m, n) _ 2max{d2,62} ) Smax{dg,eg} ) 5max{d5,e5k6.1:2)

Example 6.1.1: Here are two prime-power factoriza-
tions.

720 = 2*.3%.5
168 = 2°-3.7
We now apply the elementary school method.
ged (720, 168) = omin{4,3}  gmin{2,1}  gmin{1,0}  ~min{0,1}
= 2°.3 = 24
lem (720, 168) = 2max{43}  gmax{2.1}  gmax{1,0}  pmax{0.1}
= 2*.3%.5.7 = 5040



Section 6.1  Euclidean Algorithm )

When this method is taught at lower school levels, the
presumption is that the user already knows the prime fac-
torizations of the two numbers. If neither is known, it
may take some effort to calculate the prime factors. The
following example illustrates what happens when this is
not the case.

Example 6.1.2: Hand-calculator evaluation of
ged (6469901, 11503649)

by prime power factorizations is daunting, because those
factorizations are not immediately at hand, and they must
be calculated to proceed with the easier step. This great-
est common divisor is evaluated quickly by the Euclidean
algorithm, as will be shown presently.

Quotient and Mod Functions

Some basic concepts from integer division are used in
the Euclidean algorithm.

DEF: The integer quotient of dividing an integer n > 0
by an integer d > 0 is defined recursively (in effect, by
repeated subtraction)

o P 0 ifn<d
quotient (n, d) = 1 + quotient (n — d, d) otherwise

Remark: Equivalently, for n > 0 and d > 0,

quotient (n, d) = {%J



6 Chapter 6 Integer Operators

DEF: The remainder (or residue) of dividing an integer
n > 0 by an integer d > 0 is the number

n mod d = n — quotient (n, d)-d

The associated binary operation is called the mod func-
tion, as previously noted in §1.1.

Example 6.1.1, cont.: For 720 as dividend and 168 as
divisor, we have

: 720
quotient (720, 168) = 63

and
720 mod 168 = 720 — 4 - 168

= 720 — 672
= 48

Prop 6.1.1. The integer pairs {m, n} and {m, n+ km}
have the same set of common divisors, for every integer k.

Proof: Let d be any common divisor of m and n, say
m = rd and n = sd. Then

m+kn = rd + ksd = (r+ks)d

Thus, the number d divides m + kn. In the opposite di-
rection, if m = rd and n + km = td, then

n =td — krd = (t—kr)d O
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Corollary 6.1.2. For every pair of integers m and n such
that 0 < m < n,

ged (n, m) = ged (m, n mod m)

Proof: Suppose that ¢ = quotient (n, m). Then

ged (n, m) = ged(m, n—gm) (by Prop 6.1.1)
= gecd (m, n mod m) &

The strategy of the Euclidean algorithm is to apply
Corollary 6.1.2 recursively. The following version captures
this idea.

Algorithm 6.1.3: Recursive Euclidean Algorithm

Input: integers n,m > 0, not both 0
Output: ged (n, m)

Recursive Function ged (n, m)
If n =0 then return m;
If m =0 then return n;

else return ged (m, n mod m)

Example 6.1.1, cont.: This easy calculation illustrates
the method.

gcd (720, 168) = ged (168, 48)
= ged (48, 24)
= gcd (24, 0)
= 24
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Here the calculations are mildly

tedious, yet easier than trying to factor the two numbers.

ged (11503649, 6469901)

ged (6469901, 5033748)
ged (5033748, 1436153)
ged (1436153, 725289)

= ged (725289, 710864)
= ged (710864, 14425)

gcd (4039, 2308)
gcd (2308, 1731)
ecd (1731, 577)
ged (577, 0)

577

(
(
(
(
ged (14425, 4039)
(
(
(
(

Prop 6.1.3. Given two numbers n and m, with n > m,
let f,. be the smallest Fibonacci number that exceeds n.
Then the number of recursive calls in the Fuclidean algo-

rithm is at most r.

Proof: Suppose that there are s calls. Then let

nog, Ny, ...

y T

be the sequence of values of the first argument in the suc-

cessive calls. Thus,

ng = n and ng = ged(n,m)
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We observe that ny > 1 > fy and that n,_1 > 2 > fi. It
follows by induction, in general, that

Ns—k—2 > frros = fror1 + [

because

Ng—k—2 > Ng—f—1+ Ns—t > [r+1+ J

In particular, ng > fs. Therefore, s < r. &

Remark: Intuitively, the number of recursive calls is at
its largest, relative to the size of the numbers supplied
as input, when the input supplied is two consecutive F'i-
bonacci numbers, since then all the quotients are 1, each
remainder is the next lower Fibonacci number, and the
numbers passed in the recursion are reduced as little as
possible at each step. Since the growth of the Fibonacci
sequence is exponential, as we proved in §2.5, we conclude
that in this computationally “worst case”, the number of
recursive calls is proportional to the logarithm of the size
of the input.

Extended Euclidean Algorithm

Keeping track of the quotients and remainders at each
division step of the Euclidean algorithm is useful in ex-
tending its capability. In the Euclidean computation of
ged (n,m), define

myg = m and ng = n (6.1.3)
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and then, if after § —1 steps the recursion continues, define

{ j_lJ
q;—1
m;_1q

ng = MmMmj;—1

m; = Nj—1 —¢j—1M;j—1
Numerous applications involve the following result.

Thm 6.1.4. For every pair of non-negative integers m
and n, not both 0, there are numbers N and M such that

ged(n, m) = Nn+ Mm

Proof: Suppose that the recursion of the Euclidean algo
stops at the k' call, so that m;, = 0 and ny, = ged (n, m).
Then, if we define N =1 and M = 0, we have

Ning + Mimy, = 1ng +0my, = ged (n,m)
It follows from (6.1.4) and (6.1.5) that

ged (na m) = Nk(mk—l) + Mk(nk—l — Qk—lmk—l)
= Ming—1 + (N — Mrqr—1)mr—1

Whenever k > j > 0, we inductively define (with decreas-
ing j)

Nj1 = M;

Mj—1 = Ny — M;qj
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and, thus,

ged(n, m) = Nj_inj_1+M;_ym;j_; fork>j5>0

In particular,

ged (n, m) = Nong + Momyg
Non 4+ Mym by (6.1.3) &

DEF: The extended Euclidean algorithm includes the
computation of N and M s.t. Nn+ Mm = gcd(n,m),
as in Theorem 6.1.4.

Example 6.1.1, cont.: When preparing to apply the
extension of the Euclidean algorithm, the steps of the cal-
culation of the greatest common divisor are arranged in
tabular form.

J mny o omy q;
0 720 168 4
1 168 48 3
2 48 24 2
3 24 0 STOP

To continue with the extension, start by regarding the
next-to-bottom row as the current row. Let 7 be its row
number, in this case row 2. In that next-to-bottom row,
write

L-nj 4+ 0-m; = 1-(nj_1—gj—1m;_1)
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with appropriate values substituted for every subscripted
variable. In this case, the substitution yields the equation

1-244+0-0 = 1-(168—3-48)

which expresses the greatest common divisor as a linear
combination of n; and m; on the left and in terms of n;_;
and m;_; on the right, which is then simplified into a
standard form of linear combination, in this case

1-168 — 3-48

In general, working upwards, for each row of a by-hand
calculation, the substitution of n;_; — g;_1m;_; for m;
uses values from the preceding row. There is an implicit
substitution of the value of m;_; for the value of n;, but
since m;_; = n;, this does not require work. Continue
upward until row 0 is reached, at which point the greatest
common divisor is expressed as a linear combination of ng
and mg, thereby completing the objective of the extended
algorithm.

ngo My gj

W N~ O .

720 168 4 (—3) - 720 + 13 - 168

168 48 3 1-168—3-48=1-168—3- (720 —4-168)
48 24 2 1-2440-0 = 1-(168—3-48)

24 0 e

In this case, we see that
(—3)- 720+ 13- 168 = gcd (720, 168) = 24
Thus, N = -3 and M = 13.
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Corollary 6.1.5. For every pair of non-negative integers
m and n, not both 0, if N and M are numbers such that

ged(n, m) = Nn+ Mm

then Nn+ Mm is the smallest positively valued combina-
tion Nn + Mm with integer multipliers N and M.

Proof: By Theorem 6.1.4, ged (1, m) equals some com-
bination Nn+ Mm. Since Nn+ Mm is the smallest com-
bination of n and m, it follows that

Nn+ Mm < ged (n,m)

Since ged (m,n) \ n and ged (m,n) \ m, it follows that for
every choice of integers N and M, we have

ged (m, n) \ Nn+ Mm
In particular,
ged (m, n) \ Nn + Mm

It follows that ged (m,n) < Nn + Mm. O
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The GCD of Two Fibonacci Numbers

We conclude this section by combining what we know
about Fibonacci numbers with what we know about great-
est common divisors to produce the fascinating result that
ged (fn, fin) = facd(n,m). Some review and preliminary
propositions are helpful.

REVIEW FROM §2.6:
e Thm 2.6.1 [Forward-Shift Identity]. The Fibonacci

numbers satisfy the equation
fn—l—k — fkfn—|—1‘|‘fk—1fn for all £ > 1

e Cor 2.6.2. For all £ > 0, the Fibonacci number f,, is
a multiple of the Fibonacci number f,,.

Prop 6.1.6. Let m,n, and r be integers such that r 1. m.
Then
ged (rn,m) = ged (n,m)

Proof: Since any divisor of both m and n is also a divisor
of m and rn, it follows that gcd (n,m) < gcd (rn,m).
Now suppose that Nn+ Mm = gecd (n,m) and that Cr+
Dm = 1. It follows that NCr + NDm = N and, thus,
that

ged(n,m) = (NCr+ NDm)n + Mm
= NCrn + NDmn + Mm
= (NC)rn + (NDn+ M)m
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Since ged (rn, m) is the smallest combination of rn and m,
it follows that

ged (rn,m) < ged (n,m) &

Proposition 6.1.7. Forn > 1, gcd (f,, frn-1) = 1.
Proof: Calculation of ged (f,, fn—1) by the Euclidean

algorithm terminates with a value of 1. &

Cor 6.1.8. Forn >1 and k L n, gcd (frnt1, fn) = 1.
Proof: By Corollary 2.6.2, f,, divides f,,. Therefore,

ng(fnafkn—l—l) — ng (fknafkn—l—l) (Prop 616)
=1 (Prop 6.1.7) <

And now for the punch line.

Thm 6.1.9. Forn >0 and m > 1,

ged (fTL? fm) — fgcd (n,m)

Proof: Suppose that n = ¢gm + r, where 0 < r < m.
Then

ng (fTw fm) — ng (fqm—l—m fm)
= ged (fqm—I—lf?“ + fgm fr—1, fm) (Thm 2°6°1)
= ged (fomt1frs fin) (Cor 2.6.2 and Prop 6.1.1)

= ged (fr, fin) (Cor 6.1.8 and Prop 6.1.6) &
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6.2 CHINESE REMAINDER THM

The extended Euclidean algorithm has many appli-
cations, including the solution of a system of linear con-
gruences. The existence of solutions to certain systems is
ensured by the Chinese remainder theorem.

Congruence Modulo m

DEF: A congruence modulo m is a relational statement
of the form
a = b (modulo m)

[t means that m \ b — a. (We sometimes omit parens.)

Example 6.2.1:
17 = 2 (modulo 5) and — 8 = 2 (modulo 5)

The relation called congruence modulo m and the op-
erator called mod have a similarity in their names. Their
mathematical connection is as follows.

Proposition 6.2.1. Let a and b be any integers and m a
positive integer. Then

a = b (modulo m)
if and only if

a mod m = bmodm
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Proof: Supposethat a = ¢gm+r and b = ¢'m+r" with
0<r r<m,sothat a mod m = r and b mod m = r’.
We observe that the assertion a = b (modulo m) simply
means m \ b — a, which is equivalent to the relation

m\ (¢m+7r") — (gm +7)
which is equivalent, in turn, to the relation
m\r' —r

Since |r’ — r| < m, this holds if and only if ' = r, and,
accordingly, if and only if a mod m = b mod m. &

Linear Congruence Modulo m

Like a system of linear equations, a system of linear
congruences may possibly have a solution.

DEF: For integers a, b, and m > 0, a linear congruence
is a relation of the form

ax = b (modulo m)
DEF: For positive moduli mi, ms, ..., my, a system of
linear congruences is a list
ajx = by (modulo mq)
asx = by (modulo my)
arz = by, (modulo my)

A solution to the system of congruences is an integer
x that satisfies all of them.
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Example 6.2.2: Consider the system of congruences

z = 2 (modulo 3)
z = 3 (modulo 5)
z = 1 (modulo 7)

We observe that £ = 8 is a solution.

A Lemma on Relatively Prime Numbers

The Chinese remainder theorem yields a sufficient
condition for a system of linear congruences to have an es-
sentially unique solution. Moreover, there is a systematic
way to find solutions. The following proposition serves as
a lemma in the proof of the Chinese remainder theorem.

Prop 6.2.2. Let m and n be relatively prime, and let ()
be an integer such that m \ @ and n \ Q. Then mn \ Q.

Proof: Suppose that () = mr and () = ns. Sincem L n,
there are integers N and M such that Nn+ Mm =1, by
Theorem 6.1.4. Thus,

Q@ = QNn + QMm
= mrNn + nsMm
= mn(rN + sM) O

Remark: An alternative proof of Proposition 6.2.2 re-
quires prior proof of the uniqueness of the factorization
into prime powers, which is a substantially longer proof
than the proof above.
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Encoding by Residues

Some aspects of number theory are quite ancient.
What is now described dates back to the Chinese mathe-

matician Sun Tsi in the 4™ century C.E.

DEF: A set of positive integers {m1, ..., my} is a system
of independent moduli if m; 1 m; whenever 1 # j.

DEF: The tuple of residues of an integer n with respect
to a system {mq, ..., my} of independent moduli is the
k-tuple

(n mod myq, ..., n mod my,)

The following table shows the tuple of residues of the num-
bers 0 to 20 with respect to the mutually independent
moduli 3, 4, and 5.
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Table 6.2.1 Residues modulo 3, 4, and 5.

n nmod3 nmod4 nmodb5
0 0 0 0
1 1 1 1
2 2 2 2
3 0 3 3
4 1 0 4
5 2 1 0
6 0 2 1
7 1 3 2
8 2 0 3
9 0 1 4
10 1 2 0
11 2 3 1
12 0 0 2
13 1 1 3
14 2 2 4
15 0 3 0
16 1 0 1
17 2 1 2
18 0 2 3
19 1 3 4
20 2 0 0

No two of the rows have the same list of residues, and
there would be no repetition of rows until after the 60"
row. This observation was generalized by Sun T'st, as now
indicated.
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Theorem 6.2.3 [Chinese Remainder Theorem]. Let
{mq, ..., my} be a system of independent moduli, with
M = mimso ---my. Then the mapping

n +— (n mod my, ..., n mod my)

from the integer interval [0 : M — 1] to the set of possible
tuples of residues with respect to {my, ..., my} is a one-
to-one and onto mapping.

Proof: Since the domain [0 : M — 1] and the codomain
of tuples of residues with respect to {mi, ..., my} have
the same cardinality M, it is sufficient, by the pigeonhole
principle (see §0.3), to prove that no two numbers in [0 :
M — 1] have the same set of residues.

Suppose, to the contrary, that 0 < b < ¢ < M and that
cmod m; = bmodm; foryj=1,...,k

Then
m; \(c—b) forgj=1,...,k

Accordingly, iterative application of Prop 6.2.2 would im-
ply that

mimg---myp \(c—>b) forg=1,...,k

It would follow that M \ (¢ — b), since M = mymy - - - my,.
But then ¢ — b > M, which contradicts the prior supposi-
tion that 0 < b < c¢c < M. &
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Arithmetic on Residue Tuples

Much of the value of encoding numbers by residues is
that arithmetic operations on the residues produce the
residues of the result of the operations directly on the
numbers.

DEF: The sum of two k-tuples of residues with respect to
a list of moduli {my, ... ,m;} is the k-tuple whose j** co-
ordinate is the sum of the two j** coordinates modulo m;.

Example 6.2.3:

n nmod3 nmnmod4 n modbH

2 2 2 2
+ 8 2 0 3
= 10 1 2 0

DEF: The product of two k-tuples of residues with re-
spect to a list of moduli {m, ..., my} is the k-tuple whose
5™ coordinate is the product of the two ;™ coordinates

modulo m;.

Example 6.2.4:

n nmod3 nmnmod4 n modbH

2 2 2 2
X 8 2 0 3
= 16 1 0 1

Encoding by residues is that it respects arithmetic.
That is, the sum of the tuples for numbers r» and s is the
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tuple of the sum r 4+ s, and the product of the tuples for
numbers r and s is the tuple of the product rs.

Remark: The arithmetic-preservation property enables
us to add and multiply small residues instead of large
numbers. If there is a large amount of arithmetic, then
the cost of encoding and subsequently decoding the result
of the computations may be amortized.

Residue Decoding

The following theorem provides a method by which,
knowing only the residues of a number, one could recover
the number itself.

Theorem 6.2.4 [Chinese Remainder Decoding|. Let
mq and mo be positive integers and let ()1 and ()5 be
integers such that

Qimy + Qamae = 1

Let n be an integer such that 0 < n < mims, and such
that
(n mod my, n mod ms) = (71, 72)

Then
riQamo + ra@QQ1m; = n

Proof: Since Q1m; + QQoamsy = 1, it follows that

mo \lel —1 and mq \szz —1

and, in turn, that
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@1mi mod mg = 1 and @Qsmo mod mp = 1
Accordingly,
r1Qame mod m; = r; and
r1Qamso + r2@Q1mi mod my; = (6.2.1)
Similarly,
ro(Q1m1 mod my = ry and
r1Qams + raimy mod my = 719 (6.2.2)

By the Chinese Remainder Theorem, there is only one
number in the integer interval [0 : m1my] whose residues
modulo m; and modulo my are r; and 79, respectively.

Thus,
r1Qams + 12QQ1m; = n &

In combination with the extended Euclidean algorithm,
Theorem 6.2.4 is used to decode any tuple of moduli. It
is simplest for a 2-tuple, as now illustrated.

Example 6.2.5: Clearly, 8 — (2 mod 3, 3 mod 5). FEi-
ther by simple observation or by an application of the
extended Euclidean algorithm, we have

(=3)-3+2-5 =1 = Qimy + Qamy

Chinese Remainder Decoding now recovers the encoded
number 8.

T1Q2m2 —|— rngml = 2.2-5 —|— 3(—3)3
= 20-27 = —7
= 8 (modulo 15)
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Example 6.2.6: Decoding of the 2-tuple

(4 mod 8, 2 mod 9)

begins with determination of )7 and (), easily in this
case,

(—1)8—|—19 =1 = lel —|—Q2m2

and finishes with the calculation

T1Q2m2 —|—7“2Q1m1 = 419+2(—1)8
= 36 — 16 = 20

Checking that 20 — (4 mod 8, 2 mod 9) confirms this
decoding.

Decoding 3-Tuples and Larger Tuples

Decoding a k-tuple of residues with k£ > 3 involves
iterative application of the following principle.

Proposition 6.2.5. Suppose that mi, ms, and ms are
mutually relatively prime. Then mimsy L ms.

Proof: If neither of the numbers m; nor mo has a prime
divisor that occurs in the prime factorization of ms, then
mims has no prime divisor that occurs in the prime fac-
torization of ms, since the set of prime divisors of mjims
is the union of the set of prime divisors of m; and my. $
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Example 6.2.7: Decoding of the 3-tuple
(4 mod 8, 2 mod 9, 3 mod 5)

begins with the calculation of Example 6.2.6 that

20 — (4 mod 8, 2 mod 9)

Any number n such that n = 20 mod 72 satisfies both of
the conditions n = 4 mod 8 and n = 3 mod 5. Subsequent
decoding of the 2-tuple

(20 mod 72, 3 mod 5)

begins with finding multipliers ()1 and ()2 such that
Q-T2+ Q-5 = 1

Either by “guessing” or by the extended Euclidean algo-
rithm, we have

(—2)-72 + 29-5 = 1

The calculation concludes with

r1Qams + r2Qumy = 20-29-5 + 3 (—2)- 72
2900 — 432 = 2468
308 (modulo 360)

Checking that

308 — (4 mod 8, 2 mod 9, 3 mod 5)

confirms this decoding.
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6.3 POLYNOMIAL DIVISIBILITY

This section demonstrates how some of the integer
operations of present interest are extendible to operations
on polynomials. In particular, a pair of polynomials may
have a greatest common divisor, there is a Euclidean algo-
rithm for polynomials, and there are prime polynomials.

NOTATION: The degree of a polynomial g(z) is denoted
Jdg(x).

DEF: A monic polynomial is a polynomial whose coeffi-
cient on the term of largest degree is 1.

Example 6.3.1: z* + 52° — 422 + Tz + 14 is a monic
polynomial.

The Polynomial Ring over the Integers

NOTATION: The set of polynomials of finite degree in one
indeterminate x, with integer coefficients, is denoted Z [z].

TERMINOLOCGY: In view of its algebraic properties, Z [z] is
called a polynomial ring (see Appendix A2).
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Divisibility and Mod for Polynomials

Division of polynomials is a generalization of long di-
viston, with a quotient and a remainder. In effect, we
subtract multiples of the divisor from the dividend, until
what is left is of lower degree than the divisor.

DEF: The quotient of dividing a polynomial

g(z) = gea” + graz"h 4 - 4 g
of degree r by a polynomial of degree s
h(z) = heax® + he_12°71 4+ -+ + hyg

is defined recursively (using repeated subtraction):

If » < s then quotient (¢g(z), h(z)) = 0, and, otherwise,
quotient (g(z), h(z)) =

L o+ quotient gla) — £ a"*h(a), h(s)

DEF: The remainder of division of a polynomial

g(z) = gra" + graz"Th 4 - + go
by a non-zero polynomial

h(z) = hgx® 4+ ho_12°7t + - + hy
is the polynomial

g(z) mod h(z) = g(z) — quotient (g(x), h(x)) h(z)



Section 6.3 Polynomial Divisibility 29

DEF: The non-zero polynomial h(x) divides the polyno-
mial g(x) if there is a polynomial f(z) such that

g(z) = h(z)f(z)
This relation is denoted h(z) \ g(z).

Clearly, the polynomial h(z) divides the polynomial g(z)
if and only if
g(z) mod h(z) = 0

Example 6.3.2: The polynomials 2% —2?+1 and =3 —2
both divide the polynomial % — z° — 2% + 222 — 2, since

(:133—:132—|—1)(:133—2) = 2% — 2% — 31922 -9

Common Divisors of Polynomials

DEF: A common divisor of two or more polynomials is
a polynomial that divides both or all of them.

The following proposition is analogous to Prop 6.1.1.

Prop 6.3.1. Let a(z), b(x), and c(z) be polynomials in
the polynomial ring Z[x|. Then the polynomial pairs
{a(z),b(x)} and {a(x), b(x) + a(z)c(z)} have the exact

same set of common divisors.

Proof: Let h(z) be any common divisor of a(x) and b(x),

say a(z) = u(z)h(z) and b(x) = v(x)h(z). Then
a(z) + c(z)b(z) = u(z)h(z) + c(z)v(z)h(z)
= (u(z) + c(z)v(z))h(z)
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Conversely, if a(x) = u(x)h(z) and b(z) + a(z)c(z) =
v(z)h(x), then

b(zx) = v

DEF: A greatest common divisor of two polynomials

a(z) = az” +a,_12" P+ +ag and

b(z) = ba® +be_12° 1+ .-+ b

is a common divisor polynomial g(x) of highest degree.

NOTATION: The notation gecd (g(z), h(x)) often refers to
the monic greatest common divisor of g(z) and h(z).

Example 6.3.3: The polynomial ° —2?+1 is a greatest
common divisor of the polynomials 2% — 2® — 23 4 222 — 2
and z* — 22 +z + 1. The polynomial 2 — 22 + 1 is monic,
and we write

ged (2% —2® — 2%+ 22 -2, 2* =2+ +1)

= :133—:132—|—1
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Euclidean Algorithm for Polynomials

Thm 6.3.2 [Euclidean Reduction for Polyns|. Let
g(z) and h(xz) be polyns such that 0 < Oh(z) < Jg(z).
Then

ged (h(z), g(z)) = ged(h(z), g(z) mod h(zx))
Proof: Suppose that ¢(z) = quotient (g(x),h(z)). Then

ged (h(z), g(x)) = ged (h(z), g(x) — q(x)h(z)) (Prop 6.3.1)
= ged (h(z), g(z) mod h(z)) Y%

DEF: The FEuclidean algorithm for polynomials is
to iterate Euclidean reduction until a residue of zero is
achieved.

Example 6.3.4: The process is directly analogous to
the integer version.
ged (z° — 1, 2° — 32% + 3z — 1)
= ged (2° — 32° + 3z — 1, 102 — 15z + 5)
1

1
= ged (102 — 152+ 5, —x — =
gc ( x :c—l—,4:13 4)

Remark: There is also an extended Euclidean algorithm
for polynomials.
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Prime Polynomials

DEF: A monic polynomial g(z) # 1 is a prime polyno-
mial if it has no monic divisors of positive degree except
for itself.

Example 6.3.5: Any linear polynomial x 4 k is prime.

Example 6.3.6: A quadratic polynomial z? + bz + ¢ is
prime over the integers, unless it has two integers (perhaps
both the same) as its roots. For instance, > — 2 is prime.
More generally, by the quadratic equation, it follows that
for the roots to be integers, it is a necessary condition that
b?> — 4c must be the square of an integer.
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6.4 PRIME & COMPOSITE MODULI

When evaluating a congruence, first expanding the
moduland and then dividing by the modulus is slow. Num-
ber theory and algebra can make it faster.

FROM APPENDIX A2:

e The domain of the ring of integers modulo n, de-
noted Z,,, is the set of numbers

{o, 1, ..., n—1}

e The binary operations of addition modulo n (+)
and multiplication modulo n () in the ring Z,
are given by the rules

b (modulo n) 4 ¢ (modulo n) = b+ ¢ (modulo n)
b (modulo n) - ¢ (modulo n) = b- ¢ (modulo n)

In other words, if adding or multiplying two numbers
as usual for integers happens to exceed n — 1, then
divide by n and use the remainder as the result.

e The number 0 is the additive identity of Z,,.
e The number 1 is the multiplicative identity of Z,,.
e The number k£ has n — k as its additive inverse in Z,,.

e Some numbers have multiplicative inverses in Z,,. For
instance, 13 is the inverse of 7 in Zg, since

13-7 = 91 = 1 (modulo 90)
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Existence of Inverses Modulo m

The general objective here to find solutions to con-
gruences of the form

ma = 1 (modulo n)

for arbitrary positive integers m and n.

Proposition 6.4.1. Let m and n be positive integers.
Then m (modulo n) has a multiplicative inverse if and
only if m 1L n.

Proof: First, suppose that m L n. By the extended
Euclidean algorithm, there are integers N and M such
that

Nn + Mm = 1

Thus,
Mm = 1 (modulo n)

which implies that M mod n is a multiplicative inverse of
m mod n in Z,,.

Conversely, if M'm = 1 (modulo n), then
n\(Mm—1)

Thus, there is an integer N such that Nn = Mm — 1
which implies that

Mm—Nn =1

from which it follows that m L n. &
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Corollary 6.4.2. Let p be a prime number. Then all the

numbers 1, ..., p — 1 have inverses in Z,,.
Proof: Since p is prime, all the numbers 1, ..., p—1 are
relatively prime to p. &

Remark: When p is prime, Z, is a field. See App A2.

The following three examples all illustrate the conclu-
sion of Proposition 6.4.1.

Example 6.4.1: In the ring Zg, the numbers 1 and 5
(both relatively prime to 6) are their own inverses, but
the numbers 2, 3, and 4 have no multiplicative inverses.

Example 6.4.2: In the ring Z;, the numbers 1, ..., 6
(all relatively prime to 7) all have multiplicative inverses,
in accord with Corollary 6.4.2, respectively, 1, 4, 5, 2, 3, 6.

Example 6.4.3: In the ring Zg, the numbers 1, 3, 5, 7
(all relatively prime to 8) are their own inverses, but 2, 4, 6
(not relatively prime to 8) have no multiplicative inverses.

Calculating Inverses Modulo n

The proof of Prop 6.4.1 provides a method for cal-
culating the inverse modulo n of a number m such that
m 1L n.

Step 1. Find integers N and M such that Nn+Mm = 1,

for instance, by the extended Euclidean algo.

Step 2. Then take M mod n as the multiplicative inverse
of m (modulo n).
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Example 6.4.4: Since 16 1L 21, the number 16 must
have a mult inverse modulo 21. Either by inspection or
by the extended Euclidean algo, it can be determined that

4.16 — 3-21 =1

Thus, the multiplicative inverse of 16 (modulo 21) is 4.

Uniqueness of Inverse Modulo m

TERMINOLOGY: In Example 6.4.4, the number 4 is de-
scribed as the inverse of 16 modulo 21, rather than an
inverse. In fact, the number 25 is another multiplicative
inverse of 16 modulo 21, since

25-16 —19-21 = 1

However, it is proved below that a number n has at most
one inverse modulo m in the range

1, ..., m—1
The definite article the is often applied to such an inverse.

Lemma 6.4.3. Let n be an integer and m an integer that
is relatively prime to n. Then the numbers

m, 2m, ..., (n—1)m

are mutually non-congruent modulo n, i.e., a permutation
of the numbers

1, 2, ..., n—1
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Proof: Proposition 6.4.1 implies that m has a multi-
plicative inverse modulo n, that is, a number M such that

Mm =1 4+ Nn

for some number N. Consider two numbers r and s such
that 1 < r, s <n — 1. Suppose that

rm = sm (modulo n)
Then rmM = smM (modulo n). It follows that
r(1+ Nn) = s(1+ Nn) (modulo n)
and, in turn, that
r = s (modulo n) &

Cor 6.4.4. Let m and n be relatively prime positive inte-
gers. Then there is exactly one inverse M of m (modulo n)

such that 1 < M < n. &

Example 6.4.5: Consider the prime p = 7 and the num-
ber m = 4. Then the sequence

<kmmodp‘ kzl,...,p—1>

is exactly the sequence
1-4 =4, 2-4=8, 3-4=12,
4.4 =16, 5-4 =20, 6-4 =24
which reduces, modulo 7, to the sequence
4 (modulo n), 2-4
2 (modulo n), 5-4

Thus, the number 2 is the unique inverse of 4 (modulo 7)
in the range 1, ..., 6.

1 (modulo n), 3-4 = 5 (modulo n),
6 (modulon), 6-4 = 3 (modulo n)
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Fermat’s Theorem

We now turn to the problem of modular exponenti-
ation, that is, of evaluating an expression involving an
exponential modulo a number, such as

3124*'* (modulo 20)

This is less tedious than it at first appears, since there is
no need to evaluate 31242, A first reduction is based on
the following proposition.

Proposition 6.4.5. For any integers m and n > 1,

m" (modulo n) = (m mod n)" (modulo n)

Proof: Suppose that m = ¢gn 4+ (m mod n). Then
m"” = (gn + (m mod n))"

In the expansion of the exponentiated binomial on the
right, the only term that does not have n as a factor is
(m mod n)". Hence,

m” (modulo n) = (m mod n)" (modulo n) &

In particular,

3124214 (modulo 20) = 4214 (modulo 20)

A further kind of simplification begins with the choice of
a convenient power of the base number 4. For instance,
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choosing the exponent 3 produces the following reduction
of the exponent and easy evaluation.

4° = 64 = 4 (modulo 20)
4210 = (4514 = 4™ 4 = 4™ (modulo 20)
4°)%* = 4** = (4°)® = 4° (modulo 20)
4°)? . 4% = 4*.4* = 4* (modulo 20)
4.4 = 4-4 = 16 (modulo 20)

N TN TN

Alternatively, if we choose the exponent 5,

4° = 1024 = 4 (modulo 20)
471% = (4% 4% = 4*2 .4 = 4*° = (4°)? - 4 (modulo 20)
47 .4 = 4" = (4%)?% = 4* = 16 (modulo 20)

A theorem of Fermat permits such a calculation to go even
more rapidly, when the modulus is prime. Its traditional
name is Fermat’s Little Theorem.

Theorem 6.4.6 [Fermat’s Little Theorem)]. Let p be
a prime number and let b be any integer that is not divis-

ible by p. Then
bP~1 = 1 (modulo p)

Proof: Lemma 6.4.3 implies that

ﬁ(jb) = ﬁj = (p—1)! (modulo p) (6.4.1)
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Since multiplication modulo p retains commutativity,

ﬁ(jb) = 1:[ b 1:[ J (modulo p) (6.4.2)

Combining (6.4.1) and (6.4.2) yields

bP~1(p—1)! = (p—1)! (modulo p) (6.4.3)

Applying Corollary 6.4.2 to all the factors of (p — 1)! in
the congruence (6.4.3) implies the result

bP~! = 1 (modulo p) &

Example 6.4.6: All the numbers
1+ =1, 2* =16, 3* =81, 4* =256
are congruent to 1 modulo 5.

Example 6.4.7: Fermat’s congruence cannot be used
when the modulus is not prime. For instance,

211 = 2048 = 8 (modulo 12)
311 = 177147 = 3 (modulo 12)

Remark: In §6.5, there is a generalization by Euler of
Fermat’s Little Theorem.



Section 6.4 Prime & Composite Moduli 41

Wilson’s Theorem

There is still more to be harvested from Corollary
6.4.2, the principle that the numbers 1, ..., p— 1 all have
multiplicative inverses modulo a prime p.

Prop 6.4.7. Let p be a prime number and let n be an

integer that is not divisible by p. Thenn® = 1 (modulo p)
if and only if n = 41 (modulo p).

Proof: Suppose first that n = +1 (modulo p). That is,
there is an integer k£ such that n = kp £ 1. Then either

n* = (kp+1)* = k*p® +2kp+1 = 1 (modulo p)

or

n? = (kp—1)* = k*p* —2kp+1 1 (modulo p)

Conversely, suppose that n? = 1 (modulo p). Then

p \n? — 1. Tt follows that

p\(n—1)(n+1)

Thus, since p is prime, either p \n — 1 or p \n 4+ 1. If
p \n—1, then n = 1 (modulo p). If p \n + 1, then
n = —1 (modulo p). &

Cor 6.4.8. Let p be prime. Then (p—2)! = 1 (modulo p).

Proof: Letr € {2, ..., p—2}. By Prop 6.4.7, the num-
ber r cannot be its own multiplicative inverse modulo p,
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and that inverse must lie in that same range {2, ..., p—2}.
It follows that the numbers 2, ... ,p— 2 can be paired into
inverses modulo p. Accordingly,

p—2
H J = 1 (modulo p)
71=2
Thus, (p — 2)! = 1 (modulo p). &

Theorem 6.4.9 [Wilson’s Theorem]|. The congruence
(m—1)! = —1 (modulo m)

holds if and only if m is prime.

Proof: If m is prime, then the congruence
(m—1)! = —1 (modulo m)

follows immediately from Corollary 6.4.8.

Conversely, if m is not prime, then m has a factor r such
that r < [y/m], say rs = m. If r < s, then

r—1 s—1 m—1

(m—1)t =rs- ([ TI5 | I] 4| II

71=1 j=r+1 j=s+1

0 # —1 (modulo m)

o
<
<.
<

If
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If > = m = 4, then
(m—-1)! = 31 = 6 # —1 (modulo 4)

Otherwise, i.e., for m > 6, we have v/m > 2, which implies
that 2r < m. Thus,

(m—-1)! =

IR IT J

r.2r. (
r—1 2r—1 m—1
2.72.
r

71=1 j=r+1 1=2r+1

—1 2r—1 m—1
=20\ s | IT 5| 11

71=1 j=r+1 1=2r+1

(since P =m=0 (modulo m))

= 0 (modulo m) &

Remark: We have proved a sharpened version of Wilson’s
theorem, with values for (m — 1)! (modulo m) in all cases.

Quadratic Residues

DEF: The integer a is a quadratic residue of the integer
m if a L m and if the congruence

22 = a (modulo m)

has a solution. If the congruence z> = @ mod m has no

solution, then a is called a quadratic non-residue of m.
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Remark: If ¢ and d are congruent, then

A = d&° (modulo m)

Thus, the set of numbers ¢? such that 1 < ¢ <m — 1 and
¢ L m is a complete set of quadratic residues of m.

Example 6.4.8: According to the remark above, the set
{1=1%, 4=2% 2=3% 2=4% 4=5% 1=6>}
= {1, 2, 4}

is the set of quadratic residues of 7. The numbers 3, 5,
and 6 are quadratic non-residues of 7.

Example 6.4.9: The quadratic residues of 11 are
1=12=10% 4=2°=9% 9=32=8% 5=4>="7°
and 3 =5%=6

The numbers 2, 6, 7, 8, and 10 are quadratic non-residues
of 11.

Example 6.4.10: The quadratic residues of 15 are

1=12=4>=112=14% and 4=22=7> =82 =132
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Finding Solutions to a Quadratic

We now generalize some of the properties that may
have been observed in these examples.

POWER OF ODD PRIME AS MODULUS

Theorem 6.4.10. Let p be an odd prime, let n be a
positive integer, and let a be an integer not divisible by p.
Then the congruence

z* = a (modulo p") (6.4.4)

has either two distinct solutions in the range 1, ..., p" —1
or no solutions at all.

Proof: Suppose that b lies in the range 1,..., p" —1 and
that
b*> = a mod p" (6.4.5)

Observe that p"™ — b lies in the range 1, ..., p™ — 1, and
that it is not equal to b, since p” is odd. The calculation
(pn . b)2 — p2n . 2bpn un b2

= b* (modulo p")
establishes that p™ — b is a second solution to the congru-
ence (6.4.4).

To see that there are no more than these two solutions,
consider another putative solution, i.e., a number ¢ such
that

¢* = a (modulo p") (6.4.6)
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Congruences (6.4.5) and (6.4.6) together imply that
b> —c¢* = 0 (modulo p™)

from which it follows that p™ \ b* — ¢?, and, equivalently,
that

p" \(b—c)(b+c)
Thus, either
p\b—c or p\b+c

If p were to divide both b—c and b+c¢, then p would divide
their sum 2b. Yet, since p is an odd prime, it cannot divide
2, so it would necessarily divide b, implying that it divides
a, which would contradict the choice of the number a.
Accordingly, the number p does not divide both b — ¢ and
b + c. It follows that either

p"\b—c or p"\b+c
If p \ b — ¢, then
¢ = b (modulo p")
On the other hand, if p™ \ b + ¢, then
c = p" — b (modulo p")

We conclude that ¢ is not an additional solution, and that
either there are two solutions in the range 1,...,p" — 1 or
there are none. &
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Cor 6.4.11. Let p be an odd prime. Then the number of

quadratic residues among the numbers 1, ..., p— 1 is
p—1
2
Proof: Since none of the numbers 1, ..., p—1 is divisible

by p, it follows from Theorem 6.4.10 that the mapping

z — z2 mod p

from 1, ..., p — 1 to itself is two-to-one. Thus, the image
of this mapping, i.e., the set of quadratic residues, has
cardinality %. &

POWER OF 2 AS MODULUS

For modulus 2, the number 1 is the only quadratic
residue, and the congruence z? = 1 mod 2 has the unique
solution x = 1. For modulus 4, the numbers 1 and 3 are
relatively prime. The number 1 is a quadratic residue, and
the number 3 is a quadratic non-residue. The congruence
2> = 1 mod 4 has the two solutions z = 1 and = 3. For

higher powers of 2, there is the following theorem.

Theorem 6.4.12. Letn be an integer greater than 2, and
let a be a quadratic residue of 2", whose smallest positive
solution is the number b. Then in the range 1, ..., 2" —1,
the congruence

22 = a (modulo 2") (6.4.7)
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has exactly these four solutions and no others:
b, 2" —b, 2"l —p, 2771} (6.4.8)

Proof: Squaring any of the three other proposed solu-
tions implies immediately that it is a solution to the con-
gruence (6.4.7). It is also clear that the four asserted so-
lutions are mutually non-congruent modulo 2.

To see that there are no other possible solutions, consider
a number ¢ such that ¢ = a (modulo 2™). Then, since
both b and c satisfy the congruence (6.4.7), it follows that

2™\ b — ¢
Equivalently,
2"\ (b—c)(b+ ¢

It may be asserted that 4 cannot divide both b—c and b+c,
since otherwise, the number 4 would divide their sum 2b,
from which it would follow that b is even, implying that a
is even, contrary to the choice of a. Accordingly, either

2" M\b—c or 2" '\b+c (6.4.9)

One alternative under (6.4.9) is that 2"~! \ b — ¢. Then,
for some integer k, we have

b—c = k2"
= c = b—k2"1

If k is odd then c is one of the four solutions (6.4.8), since
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c = 2""14+0b
and, similarly, if k£ is even, then

c = 2" +b

The other alternative under (6.4.9) is that 2"~1 \ b + c.
Then ¢ = —b+ k2", for some integer k. If k is odd then
c = 2"1 — b, and if k is even, then ¢ = 2" — b, so it is
not a fifth solution.

We conclude that either there are four solutions in the
range 1, ..., p" — 1, as indicated, or there are none. <
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6.5 EULER PHI-FUNCTION

DEF: The number of positive integers not exceeding n
that are relatively prime to n is given by the Euler phi-
function ¢(n).

Here are the first few values of the Euler phi-function:

n| 1 2 3 4 5 6 7 8 9
on| 1 1 2 2 4 2 6 4 6

It is particularly easy to evaluate ¢(n) when n is
prime.

Proposition 6.5.1. If the number p is prime, then

o(p) = p—1
Conversely, if ¢(p) = p — 1, then p is prime.

Proof: Suppose that p is a prime number. Then each of
the numbers

1, 2, ..., p—1
is relatively prime to p, which implies that ¢(p) = p — 1.
Conversely, if p is not a prime number, then at least one

of those p — 1 numbers is not relatively prime to p, which
implies that ¢(p) < p — 1. &

In this section, we develop some properties of ¢(n) and
give a method of calculating that is much simpler than
inclusion-exclusion (see Exercises to §3.6).
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Euler’s Generalization of Fermat’s Thm

Euler generalized Fermat’s Theorem:

Theorem 6.5.2 [Euler’s Theorem]. Let b and n be
integers with b 1. n and n > 1. Then

po(n) = 1 (modulo n)

Proof: We observe that if modulus n is prime, then the
conclusion reduces to Fermat’s Thm. More generally, let

", To, ..., T¢(n)
be the set of numbers < n and relatively prime to n.

Assertion 1: Each of the numbers
le, ng, cee br¢(n)

is relatively prime to the number n.

Proof of Assertion 1: Suppose that p is a prime number
that divides n and also divides the product br;. Then p
would divide either b or r;. Whichever it divides would
not be relatively prime to n, a contradiction in either case.
> Assertion 1

Assertion 2: If ¢ # j, then br; # br; (modulo n).

Proof of Assertion 2: Suppose that n \ b(r; —r;). Since
n L b, none of the prime divisors of n divides b. It follows
that n \ r; —r;. Since |r; — ;| < n, it follows that r; = r;,
and thus, that ¢ = 7, a contradiction. ¢ Assertion 2
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Asrt 3: bry-bry- -+ -bry,) = rire- - Ty, (modulo n).

Proof of Assertion 3: It follows from Assertions 1 and
2 and the pigeonhole principle that the values

bry mod n, ..., bryy) modn
are a perm of the values r1,...,74(,). > Assertion 3
Completion of Proof: Assertion 3 implies that
b iy - Ton) = T1T2 *** Tg(n) (modulo n)
and, in turn, that
n\ (0% = 1) riry o )

Since each of the numbers r; is relatively prime to n, it
follows that
n (B0 1)

Thus, b*™) = 1 (modulo n). &

Example 6.5.1: The numbers relatively prime to 15 are
1,2,4,7,8, 11, 13, 14

Thus, ¢(15) = 8. The numbers 4 and 7 are relatively
prime to 15. We observe that

4% = 16* = 1* = 1 mod 15
78 = 49* = 4* =162 = 12 = 1 mod 15
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Evaluating the Phi-Function

Prop 6.5.1 was a first step toward a general formula
for ¢(n). We now continue the pursuit of a formula.

Thm 6.5.3. Let p be a prime number and e a positive
integer. Then

qb(pe) — pe _pe—l

Proof: A number is not relatively prime to p® if and
only if it is divisible by p. In the integer interval [1 : p¢],
the numbers divisible by p are

p, 2p, ..., PP

The cardinality of the complementary set is p¢ — p¢~1.

Example 6.5.2: If p = 2, then the numbers relatively
prime to 2° are the odd numbers less than 2¢. Clearly,

there are

26 e e—1
— = 2°—-2
2

such odd numbers.

DEF: A function f : ZT — Z* is a multiplicative func-
tion if whenever m L n

f(mn) = f(m)f(n)

Thm 6.5.4. The Euler phi-function is multiplicative.

Proof: Let m and n be integers such that m 1 n. Then
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mn—1
Z (b L mn) (definition of ¢)
b=0

mn—1
Z (b Lm)(bLn) (Theorem A2.2)
b=0

mn—1
Z (b mod m L m)(b mod n L n) (Prop 6.1.1)
b=0

m—1n—

—

(s mod m L m)(k modn L n) (Thm 6.2.3)
0

J

m—

0 k=

1 n—1

(7 mode_m)Z(k mod n L n)
k=0

(m) é(n) o

D .

Example 6.5.3: By sequential testing, we determine
that the numbers relatively prime to 36 are

1 5 7 11 13 17 19 23 25 29 31 35

Thus, ¢(36) = 12. FEither by sequential testing of the
smaller positive integers or by Theorem 6.5.3, we see that

#(4) =2 and ¢(9) = 6, Thus

B(36) = 12 = 2.6 = $(4)6(9)
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Theorem 6.5.5. Let b be a positive integer with the
prime power factorization

b = pite-pit
Then

- I

Proof: This follows immediately from Theorems 6.5.3
and 6.5.4. ¢

Corollary 6.5.6. Let b be a positive integer with the
prime power factorization

b = pSt .. pch

R EH

Proof: Starting from Theorem 6.5.5,

Then

B(b) = Hpez—l pi—1) = Hp (p"_.l)
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Example 6.5.4: 60 = 2?-3-5. By Corollary 6.5.6,

o0 = o0-(1-3) (1-3) (1- 1)
1

The sixteen numbers relatively prime to 60 are

17 11 13 17 19 23 29
31 37 41 43 47 49 53 59

By combining Corollary 6.5.6 with Euler’s theorem,
we can quickly evaluate some otherwise hard-looking con-
gruences.

Example 6.5.5: In reducing each of these congruences
of an exponentiated expression, first the base is reduced

by dividing by the modulus m, and then the exponent is
reduced by dividing by ¢(m).

289%° mod 15 = 4* mod 15 = 4° mod 15 = 4
172813 mod 35 = 13°¥ mod 35 = 13 mod 35 = 13
1205°196 mod 21 = 8°190 mod 21 = 8 mod 21 = 8

Summing Phi over Divisors of n

We are now concerned with proving the following clas-

sical result:
> é(d) = n

d\n
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The proof is most easily understood as a generalization of

an example.

Example 6.5.6: The divisors of 12 are

d=1 2 3 4 6

The sum of the values of ¢(d) is

12

dopd) = 1+1+2+42+244 = 12

d\ 12

This phenomenon can be explained by considering the

unreduced fractions of the form 1J—2 :

il 2 3 4 S5 6 7 8
12 12 12 12 12 12 12 12

First reduce them to

L L 115 1 7
12 6 4 3 12 2 12

UL\

forg=1,...,12

—

0 11

1

9
12

—
,_.|,_.
D[N

3 5 1L 1
4 6 12 1

and then regroup them according to their denominators

11 1 2 1 3 1 5

r 2 3 3 4 4 6 6

1=¢(1) 1=¢(2) 2=$(3) 2=¢(4) 2=¢(6)

1 5 7 11
12 12 12 12
4=¢(12)

The set of numerators in each reduced subgrouping is

precisely the set of numbers that are relatively prime to
the common denominator of that subgrouping. Thus, the
number of fractions in the subgrouping corresponding to
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the divisor d of 12 equals ¢(d). Since the subgroupings ef-
fectively partition the original set of unreduced fractions,

it follows that
> 8(d) = 12
d\ 12

Theorem 6.5.7. Let n be any positive integer. Then

> o(d) = n

d\n

Proof: For each divisor d of n, the value ¢(d) equals the
number of unreduced fractions in the set

1 2 n
n n n

whose denominator is d after reduction. Since every one
of the n unreduced fractions reduces to a unique reduced
fraction, the conclusion follows. &

Example 6.5.7: The divisors of 15 are

d=1 3 5 15

The sum of the values of ¢(d) is

d ¢d) =1+2+4+8 =15
d\ 15
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6.6 THE MOBIUS FUNCTION

August F. Mébius (1790-1868), a student of Gauss,
was later a professor of mathematics at Leipzig, whose

most celebrated mathematical association is quite likely
with the surface called a Mobius strip, which is one-sided
when imbedded in 3-dimensional space. He was also an
astronomer. This section concerns one of his contributions
to classical number theory, the Mobius function, and its
use in a summation principle called Mobius inversion.

DEF: The Mébius function u(n) is defined recursively
on the positive integers as follows:

p(l) =1
un) = =Y (d\n)u(d) ifn>1

Example 6.6.1: We consider the smallest cases.

p(2) = —p(l) = -1

p3) = —p(l) = -1

p(4) = —p(l) —p(2) = -1-(-1) =0

u(5) = —p(l) = —

p(6) = —p(l) —p(2) —p3) = -1-(-1)—(-1) =1
w(7) = —p(l) = —1
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u(8) = —p(l) = p(2) —p(4) = -1-(-1)-0 =0
u(9) = —p(l)—p@3) = -1-(-1) =0

u(10) = —p(l) —p(2) —p(5) = -1-(-1) - (-1) =1
p(1l) = —p(1) = -1

p(12) = —p(l) — p(2) — u(3) — p(4) — w(6)

We observe that on each of the primes 2, 3, 5, 7, and 11,
the value of the Mobius function is —1. It is easy enough
to prove that this is true of all primes.

Lemma 6.6.1. Let p be a prime number. Then

up) = —1

Proof: Since 1 is the only proper divisor of a prime num-
ber p, it follows that

p—1

p(p) = = (d\p)p(d)

— 1 o
We observe also in Example 6.6.1 that

u(4) = p(8) = pu(9) =0

and, suspecting that p is 0-valued on every prime power,
we might check a few more and then confirm our hunch.
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Example 6.6.1, cont.: We check the next few small
cases of prime powers.

p(16) = —p(l) —pu(2) —p(4) —p(8) = -1-(-1)-0-0
u(25) = —p(l) —p(B) = -1-(=1) =0
p(27) = —p(l) —p3) —p(9) = -1-(-1)-0 =0

Lemma 6.6.2. Let p* be a prime power with k > 2.
Then

Proof: Since all the divisors of p* are of the form p/, it
follows that

f—1
pP*) = = u@)
§=0
Basis: k=2
p(p®) = —p(1) — p(p)
-1 - (-1)
=0
IND STEP: Assume true for j =2,...,k— 1. Then
p(p®) = —p(1) = uwp) — p@*) — ... — pP")
— 1 —-(-1)=0—...—0

— 0 &
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About Multiplicative Functions

It is proved in §6.5 that the Euler function ¢(n) is
multiplicative. That is, whenever m 1L n

¢(mn) = ¢(m)¢(n)

In anticipation of calculating the values of the Mobius
function, we prove two general theorems about multiplica-
tive functions, after a preparatory lemma.

Lemma 6.6.3. Let m and n be relatively prime numbers.
Then each divisor d of the product mn has a unique rep-
resentation as the product d = dydy of a pair of integers

dy and dy such that d; \ ' m and ds \ n.

Proof: By the Fundamental Theorem of Arithmetic, the
integer d has a factorization into prime powers, each of
which divides either m or n, but not both, since m L n.
The unique representation is

dy = ged(d, m) and dy = ged(d, n) &

Theorem 6.6.4. Let f(n) be a function on the positive
integers, and let F'(n) be the function

F(n) = ) f(d)

d\n

If f(n) is multiplicative, then so is F(n).
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Proof: Let m and n be relatively prime numbers. Then

F(m)F(n) = Y  f(d) Y f(d2)  (definition of F)

dl \ m d2 \ 1

= Z Z f(dy) f(dy) (distribution of mult)
dl \ m d2 \ n

— Z Z f(dids) (f is multiplicative)
dl \ m d2 \ 1

= Z f(did2)

(dl,dg):dl \’I’I’L/\dg \’I’L

= Z f(d) (Lemma 6.6.3)>

d\ mn

Example 6.6.2: To illustrate Theorem 6.6.4, let f be a
multiplicative function, m = 10 and n = 9. Then

F(90) = f(1) + f(2) + f(3) + f(5) + f(6) + f(9)
+ f(10) + f(15) + f(18) + f(30) + f(45) + f(90)
= f(1-1) + f(2-1) + f(1-3) + f(5-1) + f(2-3)

+ f(1-9) + f(10-1) + f(5-3) + f(2-9) + f(10-3)
+ f(5-9) + f(10-9)
= fOFA) + ) + F)FB) + F(5)f(1)
+ F2)fF3) + F(1)F(9) + f(10)f(1) + F(5)F(3)
+ f(2)£(9) + F(10)£(3) + f(5)F(9) + F(10)£(9)
= [f(1) + f(2) + F(5) + f(10)]- [f (1) + f(3) + f(9)]
= F(10) F(9)
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The following theorem inverts the relationship of The-
orem 6.6.4. It enables us to prove that the Mobius function
@ 1s multiplicative, which is the key property in establish-
ing a formula for the values of u.

Theorem 6.6.5. Let f be any function on the positive
integers such that the sum

F(m) = ) f(d)

d\m

is a multiplicative function. Then f itself is a multiplica-
tive function.

Proof: By induction.
BAsIS: Since F' is multiplicative, it follows that F'(1) = 1.

Thus
1) = SO f(d) = P(1) = 1

d\1
IND Hyp: Assume that f(mn) = f(m)f(n) for m L n

whenever mn < s.

IND STEP: Suppose that m 1 n and that mn = s. Then

F(mn) = >  f(d) = > Y f(be)

d\ mn b\m c\n

We infer that b L ¢ within the double sum, since b \ m and
¢ \ n, with m | n. Thus, by the induction hypothesis, we
have
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Fimn) = | > > f(0)f(e)]| = f(m)f(n) + f(mn)

b\m c\n

= | S ) @] — fm)f(n) + flmn)

b\m c\n
= F(m)F(n) — f(m)f(n) + f(mn) (def of F')

It is given that F' is multiplicative, which means that

F(mn) = F(m)F(n). It follows that

f(mn) = f(m)f(n)

Thus, f is multiplicative. &

Evaluating Mu

Thm 6.6.6. The Mobius function u is multiplicative.

Proof: Immediately from the definition of u, the func-

tion
F(m) = > p(d)
d\m
has the value )
{ 1 ifm=1
0 otherwise

Thus, the function F'(m) is multiplicative. It follows from
Theorem 6.6.5 that the function u is multiplicative. <
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Thm 6.6.7. Let pq, ..., p, be different primes. Then

(=1)" ife; = - =¢.=1

€1 € —
pu(plt ... pi) {0 if e; > 2, for any j

Proof: This follows from Lemma 6.6.1, Lemma 6.6.2,
and the fact that p is multiplicative. &

Example 6.6.3: We use Theorem 6.6.7 to determine
some values of u(n).

p(l) =1

u2) = -1

p(4) = pu(2*) = 0

u6) = p(2-3) = (-1)? =1
u(12) = u(22-3) = 0

u(30) = w(2-3-5) = (-1)° = —1
1(210) = w(2-3-5-7) = (-1)* =1

Mobius Inversion

The following identity facilitates the manipulation of
a summation indexed over a lattice of divisors.

Lemma 6.6.8. Let m and k be positive integers. Then

(7 maim) = {78
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d
Proof: First suppose that k \ d \ m. Take ¢ = - Then

m m m/k m
A ith i
d ke A

Conversely, suppose that ¢\ % Take d = ck. Then

m(fk :%:%With k\d\m &

Theorem 6.6.9 [Mobius Inversion Principle]. The
integer function F' is related to the integer function f by
the summation

F(m) = ) f(d)

d\m

if and only if the function f is related to the function F
by the summation

d\m

Proof: First suppose that

F(m) = ) f(d)

d\m
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S u (%) Fd) = Y u (%) S F(k)  (subst for F(d))

d\m d\m E\d

= > Zu(%) f(k)

d\m k\d

— Z Z L (%) f(k) (swap sum order)

E\m kE\d\m

= > fw Y u(7)

E\m E\Nd\m

= Z f(k) v (mT/k> (Lemma 6.6.8)
k\ d e\ m

— Z f(k) (% = 1) (definition of )
k\d

= ) f(k)(k=m)
k\d

= f(m)

This completes the “forward” direction.

Conversely, suppose that
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=y Y u (%) F(k)  (swap sum order)

k\d k\d\m

- >rw Y ()

K\ d k\d\m
— Z F(k) Z v (%) (rearrange summands)
K\ d k\d\m
— Z F(k) v (mc/k> (Lemma 6.6.8)
k\d c\ %
— Z F(k) (% = 1) (definition of )
K\ d
— Z F(k) (k=m)
K\ d
= F(m) ¢

Example 6.6.4: We recall from Theorem 6.5.7 that

> é(d) = n

d\n
For n = 6, the sum on the left is
A1) +0(2)+0(3)+¢(6) = 1+14+2+2 =6 = n

According to the Mobius inversion principle, one expects
that
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The value of this sum is

u(6) -1 + pu(3)-2 4+ pu(2)-3 4+ pu(1)-6
=114+ (-1)-2+(-1)-3+1-6
= 1-2-3+46
= ¢(6)

which serves as empirical confirmation.



