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The two Stirling recursions, one used to count parti-
tions and the other to count permutations, are both quite
similar to Pascal’s recursion for combination coeflicients.
A secondary topic of this chapter is partially ordered sets,
known familiarly as posets, some of which have sufficient
structure to be what are called lattices.
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5.1 STIRLING SUBSET NUMBERS

Stirling subset numbers count the number of ways
that a set can be partitioned.

REVIEW FROM §1.6:

e A partition of a set S is a family of mutually disjoint
non-empty subsets whose union is S.

e The Stirling subset number {7 } is the number of
ways to partition a set of n distinct objects into k
non-empty non-distinct cells.

REVIEW FROM §3.6:

e Theorem 3.6.4. Let n and k£ be a pair of non-
negative integers. Then

(ibe = pew (e

Our immediate concern is careful attention to three prop-
erties within the definition of a partition: non-distinctness
of the cells, non-emptiness of the cells, and distinctness of
the objects of the set.

Non-Distinctness of Cells of a Partition

Non-distinctness of the cells means that they are re-
garded as a set, not as a list. If a given partition has k
labeled cells, there are k! ways to list them.
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Example 5.1.1: We consider an ad hoc calculation of

the Stirling number
4
2

We observe that the set {a, b, ¢, d} can be partitioned into
two subsets of two objects each in three ways:

1.{a,b},{c,d} 2.{a,c},{b,d} 3.{a,d},{b,c}

Changing the order in which the subsets are listed in a
representation of a partition does not change the partition.
Thus, the partition

11 {c,d}, {a, b}

is identical to partition (1) above. By way of contrast, if
the objects were to be distributed into compartments dis-
tinguished by pre-assigned names or, equivalently, by their
order in the listing, each of the partitions above would cor-
respond to two such distributions, for a total of six ways
to distribute four objects into two distinct compartments
with a 2-2 distribution.

In addition to partitions (1), (2), and (3), given above,
of four objects into two parts of two objects each, the
Stirling subset number {;L} also counts the partitions of
four objects into subsets of sizes one and three, i.e., these
four partitions:

4.{a},{b,c,d} 5.{b},{a,c,d}
6.{c},{a,b,d} 7.{d},{a,b,c}
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The two compartments within each of these four parti-
tions could be ordered in two ways, if they were distinct.
This would give a total of eight distributions into distinct
compartments with a 1-3 (or 3-1) distribution.

It follows that, altogether, there are

4
= 3+4 =7
o) =5

distributions into non-distinct calls, and

4
{2}2! = 6+8 = 14

distributions into non-distinct calls. These two results are
consistent with an application of Theorem 3.6.4.

(- S (e
= o (P)e-ot + o (3)e-v
+ (—1)? (2> (2 —2)*

= 1-1-2* + (-1)-2-1* + 1-1-0*

The following proposition summarizes this part of the dis-
cussion.
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Prop 5.1.1. The number of ways to distribute n distinct
objects into k distinct boxes with none left empty is

n
{7}
k
Proof: After partitioning the objects into
Ut
k
non-distinct non-empty cells, we can assign k distinct la-
bels to the k cells in k! ways. &

Every Cell of a Partition is Non-Empty

Specifying non-emptiness of the cells of a partition
into k cells is consistent with the everyday notion of di-
viding a set into parts. (For instance, when Julius Caesar
wrote in The Gallic Wars that all Gaul is divided into

three parts, he meant non-empty parts.)

Example 5.1.1, cont.: If one of the two cells of a dis-
tribution of the set {a, b, ¢, d} could be left empty, there
would be a total of 8 ways to separate the four objects
into two parts, which would include the distribution

{a, b, c, d} {}

If the cells were also distinct, there would be twice as
many, for a total of 16 ways. Such a distribution is achiev-
able by assigning one of the two compartment names to
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each of the four objects, for which, of course, there are
24 = 16 ways.

Proposition 5.1.2. The number of ways to distribute n
distinct objects into k distinct boxes with some possibly
left empty is

k" &

Distinctness of Objects

Distinctness of the objects is a critical feature, since
two distributions of a multiset of indistinguishable objects
would differ only in the numbers of objects in the cells.

Example 5.1.1, cont.: The only two possible partitions
of four indistinguishable objects into two non-empty non-
distinct cells have the following forms:

{a}{a, a, a} and {a,a}{a, a}

They are equivalent to the integer partitions
4 =143 and 4 = 2+ 2

In general, partitioning n indistinguishable objects into
k indistinguishable cells is equivalent to partitioning the
integer n into a sum of k parts, a topic that is explored

further in §9.4.

On the other hand, if the two cells are distinct, then the
distribution of four non-distinct objects amounts to choos-
ing four cells from a set of two distinct cells, with repeti-
tions allowed. We developed a counting formula for com-
binations with repetitions in Chapter 0.
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Prop 5.1.3. The number of ways to distribute n non-
distinct objects into k distinct boxes with some possibly

left empty is
k4+n—1
n

Proof: This is equivalent to choosing n objects from a
set of k with repetitions allowed. The formula was derived
in conjunction with Corollary 0.4.5. &

The Type of a Partition

Clearly, the sum of the sizes of the cells of a partition
of a set of n objects must be equal to n.

DEF: An arrangement of the sizes of the cells into non-
increasing order is called the type of a partition.

Example 5.1.1, cont.: The partitions

1.{a,b}, {c,d} 2.{a,c}, {b,d} 3.{a,d}, {b,c}

are of type 22, and the partitions

4.{a}, {b,c,d} 5.{b},{a,c,d} 6.{c},{a,b,d} 7.{d}, {a,b,c}

are of type 31.
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Stirling’s Subset Number Recurrence

A recurrence similar to Pascal’s recurrence provides
a systematic means to calculate a Stirling subset number
{ }, without resorting to separate counts for each parti-
tion type. Since there is no simple closed formula for a
Stirling number, unlike the situation for a binomial coeffi-
cient, there is no simple algebraic proof, and we resort to
a combinatorial proof.

Prop 5.1.4 [Stirling subset-# recurrence]. Stirling
subset numbers satisfy the following recurrence:

0 n
= l{ = = =
{1} = =0 il = =0
n n—1 n—1
— >
{k} {k_l}—l-k{ L } forn>1
Combinatorial Proof: The initial conditions are clear.

The recursion is verified by splitting the partitions of the
integer interval [1 : n] into two kinds, as per the Method
of Distinguished Element, which was used with Pascal’s
recursion in §1.3. The first kind contains every partition
in which the integer n gets a cell to itself. Since the other
n — 1 integers must then be partitioned into & — 1 non-

empty cells, there are
n—1
k—1

cases of the first kind.
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In the second kind, the set [1 : n — 1] is partitioned into &
non-empty cells, and then one of those k cells is selected
as the cell for the integer n. There are

n—1
k
e
cases of the second kind. The sum of the numbers of cases
in these two kinds is the total number of partitions. <

Stirling’s Triangle for Subset Numbers

Stirling subset #s have a A similar to Pascal’s A.

Table 5.1.1 Stirling’s triangle for values of { }.

no{or {3 {5y Gy {4F {5} {s}| Bn
0 | 1 1
1| 0o 1 1
2 | 0 1 1 2
30 1 3 1 5
400 1 7T 6 1 15
500 1 15 25 10 1 52
6 | 0 1 31 9 65 15 1 | 203

The rest of this section is devoted to the development of
formulas for Stirling’s subset triangle that are analogous
to the formulas of §4.1 for Pascal’s triangle.
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Rows Are Log-Concave

REVIEW FROM §1.5:

e A sequence (z,) is a log-concave sequence if

Tp_1Tpy1 < :13%, for alln >1
e A log-concave sequence is unimodal.

Example 5.1.2: Figure 5.1.1 illustrates the unimodality
of row 6. In fact, every row of Stirling’s triangle for subset
numbers (see Table 5.1.1) is unimodal.

100 1

90
80
70
60
>0

40

30 1

20
10 H

0‘ T —— T T
c 1 2 3 4 5 6 7 8 9

Fig 5.1.1 Graph of the values of {2}
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Lemma 5.1.5. Let (z,) be a log-concave sequence. Then
Lp—2 Tn+1 S Lp—1Tn

Proof: The log-concavity inequality is applied twice.
2

Ln .
Lpn—2Lntl S Lp—2° &nuaxn_lxn+1§§xi
Ln—1
Lp—2
Ln—1
Ln—1 .
< azi SINCE Tp_2 Ty < :13%_1
Ln
— Tp—-1Tn Q

Prop 5.1.6. For alln > 0, the sequence of Stirling subset

L D)

is log-concave. That is,

Gl = G

Proof: This is an algebraic proof by induction on n.
BASIS: Rows 0 and 1 are surely log-concave.
IND HYP: Assume that row n — 1 is log-concave.

IND STEP: Under Stirling’s subset recurrence, the product

i
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has the expansion

n—1 n—1 n—1 n—1
St N ey ) R (R S V)

n—1 n—1 n—1 n—1
= k* -1

19 R A R T P T

n—1 n—1 n—1 n—1
k—1 k+1
ST P T R SRS POy S iy
to which log-concavity and Lemma 5.1.5 are applied, un-

der the induction hypothesis
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Bell Numbers

DEF: The Bell number B,, is the number of partitions of
a set of n distinct objects.
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Thus, the n*" Bell number is the sum

5= Y {}}

of row n of Stirling’s triangle for subset numbers.

Theorem 5.1.7. The Bell numbers satisfy the recurrence
By =

—1

—1

B, = (nk )Bk forn>1
k=0

—_

3

Proof: This proof has combinatorial steps and algebraic
steps. The initial condition

m- {3} -

is clearly satisfied.

For n > 1, consider the case in which there are k other
objects in the cell of a partition of [1 : n] that contains the

number n. There are
n—1
k

ways to select these k numbers and then B,,_;_; ways to
partition the remaining n — k — 1 numbers. Thus, the total
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number of partitions of n objects is

n—1 n— 1
B, = Z( L )Bn—k—l

k=0
which is transformable, by symmetry of binomial coeffi-

cients, to

=S, e

Reversing the order of summation yields the conclusion

-1
B, = B
kz:;)( L ) 2 &

Example 5.1.3: Table 5.1.1 provides the Bell numbers

B() Bl B2 B3 B4 B5 B6
1 1 2 5 15 52 203

We observe, for instance, that

3 3 3 3
B B B B
(o) ()2« (o) )
=1-1+3-1+3-2+1-5
= 15 = By
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Column-Sum Formulas

There are two readily accessible summation formulas
for column ¢ of the triangle for Stirling subset numbers.
They both assert that a weighted partial sum of the entries
in column ¢ can be found in column ¢ 4+ 1. In the two
formulas, the weightings differ.

Prop 5.1.8. Let n and ¢ be non-negative integers. Then

P EIWIH

c+1 — k c

Proof: In partitioning the n 4+ 1 numbers of the integer
interval [1 : n + 1] into ¢+ 1 cells, there are

(0

ways to select n — k other numbers to be in the same cell
as the number n + 1 and then

)

ways to partition the remaining k£ numbers into ¢ addi-
tional cells. &

Example 5.1.4: In column ¢ = 1 of the triangle for
Stirling subset numbers, all the non-zero entries are 1’s.
Thus, Proposition 5.1.8 takes the form

SUE-HIHEERES
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Example 5.1.5: In column ¢ = 2 of the Stirling triangle
for subset numbers, there appear the consecutive entries

)= (o) 13-

In row 4 of Pascal’s triangle, there are the consecutive

CRICRICR

Proposition 5.1.8 asserts for this case that
4
5 4 k
BEPHOIH
k=2
(4 2 n 4 3 n 4 4
- \2/ |2 3) 12 4) |2

= 6-14+4-3 4+1-7 =25

The sum in Proposition 5.1.8 can be visualized as a dot
product of a row of Pascal’s triangle with a column of
Stirling’s triangle.

J )

6 4 1

r

6-1+4-3+1-7=25

STt o= W o

25




{
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Prop 5.1.9. Let n and ¢ be non-negative integers. Then
n-4+1 i [k
— 1"
L) = e

Proof: By induction.
BASIS: The equation is clearly true when n = 0.

IND HYP: Assume, for inductive purpose, that

IND STEP: Then

1
n+ } — {Z + (c+1) {c: | } (Stirling recursion)

SRSt
- {Z} + (c+ 1)§(c+ 1)n—ht {IZ} (ind hyp)
- (B Zeer ()
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Example 5.1.6: Proposition 5.1.9 implies that

4
5 i [ K
DEPIH

k=2

2 3 4

_ g4-2 34-3 344
{2} + 2 + 2

= 32.1+3".34+3%.7 = 25

Southeast Diagonal Sum

Along a southeast diagonal from column 0 to column
¢, multiply each entry by its column number and take the
sum. This equals the number immediately below the last
entry in that diagonal.

Proposition 5.1.10. Let n and ¢ be non-negative inte-

gers. Then

Proof: Again by induction.

BASIS: The equation is clearly true for all n > 0 when
c=0.

IND HYP: Assume for all n > 0 that
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IND STEP: Then

1
{n—l—c—l— } — {n—l—c} -+ C{n—l—c} (Stirling’s recursion)
c c—1 c
c—1
k
— Zk{n—'_ } + C{n—l—c} (ind hyp)
k c
- n—+k
= k
UL °

Example 5.1.7: The sum in Proposition 5.1.10 can be
visualized as a dot product of a southeast diagonal of Stir-
ling’s triangle with a vector of column numbers.

n n n
R B
3 |1
4 > 1-1+2.7+3-25 = 90
5 25
6 90

Stirling Numbers of the Second Kind

REVIEW FROM §1.6: The Stirling numbers of the second
kind were defined as the coefficients S,, ;, in the sum

n
" = g Sn,kazk
k=0
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Prop 5.1.11. For all non-negative integers n and k,

Snk = {Z} (5.1.1)

Proof: We use the Stirling subset-number recurrence, as
verified in Proposition 5.1.4.

0 n
= l{ = = =
) =w=0 {1 -w-o
n n—1 n—1
= >
{k} {k_l}—l-k{ L } forn>1
It is sufficient to show that the Stirling numbers of the

second kind satisfy the same recurrence. The initial con-
ditions

Sor = (k=0) and Spno = (n=0)

hold, because
¥ = 12Y

and because the constant term of the expansion

2" =) S,k (5.1.2)
k=0

is 0, unless k£ = 0.

The Stirling numbers S, ;, of the second kind are defined
with the specification

n—1
2" =) S,y gk (5.1.3)
k=0
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Accordingly,

xn :::t°$n_1

n—1
=z ) Seoprt  (by (5.1.2))
k=0

n—1
— E Sn—kaE'x
k=0

n—1 n—1
= Z Sp_1paE (x—k) + Z Sp—1k Tk
k=0 k=0
n—1 n—1
= Z Sp_1p x4 Z kSp_15 2
k=0 k=0

n n—1
k k
= E Sp—1.k—1 T~ + E kSp—1.1 ™

n

= > (Sn—1h-1 + kSp_1x) 2™ (5.1.4)
k=0

Since z% must have the same coefficient in the two expan-

sions (5.1.2) and (5.1.4) of 2", it follows that
Snk — Sn—lk—1'+ kSn—lk

Thus, the Stirling numbers of the second kind have the
same recurrence as the Stirling subset numbers, which im-
plies that they have the same values. &
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Table 5.1.2 Basic Formulas for Stirling Subset #s

Stirling’s recurrence:

{2} = (k=0) {g} = (n=0)
{Z} - {Z:i} +’f{n;1} for n > 1 (5.1.5)

Special values:

{T} = (n>0) {Z} = 2"t 1 (forn > 1) {Z} 1

Converting ordinary powers to falling powers:

2" = i{Z}azE (5.1.6)

Using binomial coefficients to calculate Stirling subset #s:
J— ] ‘\ N, . k— . n
{k } k= Z(_l)J ( ) (m—3)" = E_O(—l) g (J) g™ (5.1.7)

J=0 J J

Bell numbers:

B, = Z{Z} (5.1.8)

n—1
—1
By = 1; B, = Z(n )Bk forn>1 (5.1.9)
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Column-sum formulas:

{Zii} - Z;(:){i} (5.1.10)

) e e

k=0

SE diagonal-sum formula:

{n+c+1} E:k{n+k} (5.1.12)

Example 5.1.8: The following recursive calculation of
the Stirling number S,,; of the 2nd kind illustrates how
these numbers conform to Stirling’s subset recursion.

r = ot
=12 = g.21 = :131(:13—1)—|—:13l — 72 4+ gt
=15 = x-22 2.2t = 2% —2) + 222 + 22 + 2t
= 22 + 322 4 ot

= z-22 +3z-22 + -2t

= [23(x —3) + 322 + 3[23(x — 2) + 227
+ [at(z = 1) + =Y
= [:Ijé + 333&] + 3[335 1+ 2332] + [z 2 4 :Cl]

= 2% + [322 + 322 + [622 4 23] + 2t

= % 4 622 + T2 + 2t

=X
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5.2 STIRLING CYCLE NUMBERS

Stirling cycle numbers count the possible partitions of
a set into cycles, in effect, the number of the permutations
of the set. They satisfy a recurrence similar to Pascal’s
recurrence, and their non-zero entries form a triangle.

REVIEW FROM §1.6:

e The Stirling cycle number [} | is the number of
ways to partition n distinct objects into £ non-empty
non-distinct cycles.

e Since every permutation of a set of n objects can be
represented as a composition of disjoint cycles, it fol-
lows that the Stirling cycle number || is the num-

ber of permutations with exactly k cycles.

n n
HIER
k1 — Uk
since the number of ways to form a cycle from s objects
already in a cell of a partition is (s—1)!. Thus, to calculate

[Z} , one could multiply the number of partitions of a given
partition type ty ty --- t, by

In general,

(t1 — Dty — 1)1+ (¢, — 1)!

and sum over all such partitions.
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Example 5.2.1: The set {a, b, ¢, d} can be partitioned
into two cycles in 11 ways, which correspond to the 11
permutations of the set {1,2,3,4} with two cycles:

(a)(bed) (a)(bdc) (b)(acd) (b)(adc) ry
(c)(abd) (c)(adb) (d)(abc) (d)(ach) [ ]
(ab)(cd) (ac)(bd) (ad)(bc)

We observe that each of the four partitions of type 31 into
cells corresponds to (3 — 1)!(1 — 1)! = 2 partitions into
cycles. For instance, the partition

{a}{b, c, d}
corresponds to the two permutations
(a)(bcd) and (a)(bdc)

Each of the three partitions of type 22 into cells yields only
(2 —1)!(2 — 1)! = 1 partition into cycles. For instance,

the partition
{ab}{cd}

yields only the permutation
(ab)(cd)
We observe, moreover, that

4.-24+3-1 = 11
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Non-Distinctness of the Cycles

Changing the order in which its cycles are written
does not change a permutation.

Example 5.2.2: For instance,
(ab)(cd) and (cd)(ab)

are representations of the same permutation.

Stirling’s Cycle Number Recurrence

As with Stirling subset numbers, a recurrence simi-
lar to Pascal’s recurrence provides a systematic means to
calculate a Stirling cycle number [Z}, without resorting
to separate counts for each partition type. Moreover, here
too there is no simple algebraic proof, and we resort again
to a combinatorial proof.

Prop 5.2.1 [Stirling cycle-#recurrence]. Stirling cy-
cle numbers satisfy the following recurrence:

Jown -
"] = [Z:H“”_ )[”;1] for n > 1
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Combinatorial Proof: The initial conditions are clear.

As with Stirling subset numbers, the recursion is verified
by splitting the permutations of the integer interval [1 : n]
that have k cycles into two kinds. The first kind contains
every permutation in which the number n gets a cycle to
itself, and the other n — 1 numbers are partitioned into
k — 1 non-empty cycles, so there are

n—1

k—1
cases of the first kind. In the second kind, in which the
number n does not have a cycle to itself, the other n — 1
numbers are partitioned into k non-empty cycles, and then

the number n is inserted immediately after some number
7 in one of those k cycles. There are

(n_l)[n;]

cases of the second kind, because there are, in total, n — 1
other numbers after which the number n could be inserted.
The sum of the numbers of cases in these two types is the
total number of partitions of [1 : n] into k cycles. &

Stirling’s Triangle for Cycle Numbers

There is a triangle for the Stirling cycle numbers, like
Pascal’s triangle and the triangle for Stirling subset num-
bers. It appears as Table 5.2.1.
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Table 5.2.1 Stirling’s triangle for values of [} |.

no | L) T B G] 0] (51 (6] %
0o | 1 1
1| o 1 1
2 | 0 1 1 2
3 0 2 3 1 6
4| 0 6 11 6 1 24
50 0 24 5 35 10 1 120
6 | 0 120 274 225 8 15 1 | 720

We observe that Column 1 of Stirling’s triangle for
cycle numbers is the sequence (n — 1)!.

Proposition 5.2.2. Let n be a positive integer. Then

7] = -

Proof: The number of ways to arrange n objects in a
cycle with a designated starting point is n!. Two cycles
may be regarded as equivalent if they differ only in the
choice of starting point. There are n possible starting
points. Thus, by the Rule of Quotient,

7] = o :

It is less apparent, but not hard to prove, that Col-
umn 2 also has a tractable closed formula.
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Proposition 5.2.3. Let n be a positive integer. Then

[Z] — (n—1)! Hy_s

Proof: Once again, by induction on n.
2
BASIS: L] =1 = (2—-1)IH;.

IND HYP: Assume for some n > 2 that

[” R 1] — (= 2) H, s

IND STEP: Then, by Stirling’s recursion,

5= [7] -]

= (n=-2)l + (n—-1) [n ; 1] (Prop 5.2.2)
= n=-2)! + (n—1)(n—2)1H,,_» (ind hyp)
— (2__11)' + (n— 1) H,—9

= (n—l)!(ni1 + Hn_z) = (n— ) Hpy ¢

Example 5.2.3: The following table helps to illustrate
Proposition 5.2.3. In each column, the product of the
entries in the row labeled H,,_; and the row labeled (n—1)!
is the entry in the row labeled [g}



Section 5.2  Stirling Cycle Numbers 31

n 1 2 3 4 5
3 11 25

(n—1! 1 1 2 6 24
5] 0 1 3 11 50

Rows are Log-Concave

As with the rows of the Stirling triangle for subset
numbers, the rows of the Stirling triangle for cycle num-
bers are log-concave and, thus, unimodal.

Proposition 5.2.4. For all n > 0, the sequence of Stir-
ling cycle numbers
ol 1]
0/’ L117 " ln

is log-concave. That is,

W) L) < GO

Proof: Rows 0 and 1 are vacuously log-concave. Assume
that row n — 1 is log-concave, and consider row n. Under
Stirling’s recurrence for cycle numbers, the product

paine
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has the expansion

e (P e )
[2:;] [”;1] +(n-1y [Z:H Zlﬂ
4 (n—1)[Z:H [n;] + (”—1)[7;:;] [Z;”

to which log-concavity and Lemma 5.1.5 are applied under

the induction hypothesis.
e[
e8] e
[ KT ) PR

(feon[) -6

Figure 5.2.1 illustrates the unimodality of row 6.
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200
150
100
20 I
e A
o 1 2 3 4 5 o6 7 8

Fig 5.2.1 Unimodality of the sequence <[2] | k=0,...,6).

Row Sums

The rows of Stirling’s triangle for cycle numbers have
several other interesting properties. The following prop-
erty is apparent in Table 5.2.1.

Proposition 5.2.5. Let n be a positive integer. Then
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Proof: The simplest proof is that each row sum of Stir-
ling’s triangle for cycle numbers is the total number of
permutations of a set of n objects. An alternative proof
proceeds inductively on the row number, n. &

A subtler property is how each entry in the second
column is related to the row immediately above that entry,
by a weighted row sum.

Proposition 5.2.6. Let n be a positive integer. Then
zn: . [n] [n + 1]
S
j=0 L7 :

Proof: By induction.

BASIS: If n =1, then

il <o -1

IND HYP: For some n > 2, assume that
2 [n-1 _[n
;J [ j ] - [2]

IND STEP: Then, by Stirling’s recursion,

=S en[5])

n

¥

j=0
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" [n—1 " [n—-1
o R
— i - — J
J J

Now split the first sum.

“[n—-1 - n—1 - n—1
= — 1 —1 '

3 PR3 Gl RN ue] by

Apply Proposition 5.2.5 to the first sum.

n

e gl e

j=0 j=0 b 7

Next apply the ind hyp to the other two sums.
n n
(=Dt + | ] + (n=1)],

= (n—1)! + n[g]

Then apply Proposition 5.2.2
n n
- [1] o [2]
and conclude by applying Stirling’s recursion.

_ [”;1] o

Example 5.2.4: With data from Table 5.2.1, we now
illustrate Proposition 5.2.6.

14—|—24—|—34—|—44—16—|—211—|—36—|—41
1 2 3 4|
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= 50
|5
2

Proposition 5.2.6 has Theorem 5.2.7 as a fascinating

consequernce.

Theorem 5.2.7. The average number of cycles in a ran-
dom permutation of n objects is H,,.

Proof: Let the random variable X be the number of
cycles in a permutation on n objects. Then

Pr(k cycles) = %[Z]

Therefore, the expected number of cycles is
- 1 [n7
— ko —
H Z n! Lk
k=0

1 — 1T
= ik
k=0

1 1

= [n—2|— ] (Proposition 5.2.6)
1 "

= —-nlH, (Proposition 5.2.3)
n!
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Proposition 5.2.8 concerns a generalization of Propo-
sition 5.2.6. It asserts that every entry, not just the entries
in column 2, is a weighted sum of the elements of the row
just above.

Proposition 5.2.8. Let n and ¢ be non-negative integers.
Then

GIHE

\e/ LI c+1

Proof: Forc > n, both sides of the equation are 0. Thus,
in what follows, it is assumed that ¢ < n.

BASIS: If n = 0, then for ¢ = 0,

(o) o] = = = L]

IND HYP: For some n > 1, assume for all & that
SO -

= k J c

IND STEP: Then for any ¢ < n, Stirling’s recursion implies

OIVED W1 (VR R )

7=0 7=0

which splits like this:
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e n—1 e n—1
= —1
> () [ e ()]
1=0 1=0
which reduces, by the induction hypothesis, to
e n—1 n
= —1
2 () G v inled)

Applying Pascal’s recursion, we continue

- () CODER] el

=205+

J=0 J=0

—I-(n—l)[ " ]

c+1
which reduces, by the induction hypothesis, to

N n n Iy 1) n
pu— n J—
L ¢ c+1 c+1
N n n
n
L ¢ c+1
and we finish, by applying Stirling’s recursion.

n+1
B [c—|—1] ¢
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Example 5.2.5: Some data from Table 5.2.1 helps us to
illustrate Proposition 5.2.8.

0111011

Columns

Proposition 5.2.9 asserts that a weighted partial sum
of the entries in column ¢ can be found in column c+1. It is
analogous to Proposition 5.1.9 for Stirling subset numbers.

Proposition 5.2.9. Let n and c be non-negative integers.
Then
1 : k
PRI
Cc+ o c
Proof: The equation is clearly true when n = 0. As-

sume, for inductive purpose, that it is true for n—1. After
starting with Stirling’s recursion,

B EINEI N

we apply the inductive hypothesis.
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n n_l k
_ __1\n—k—-1
- [
k=0
n n_l k
= n—k
- [+ X[
k=0
& k
— Znﬂl ] &
C
k=0

The sum in Proposition 5.2.9 can be visualized as a dot
product of a row of falling powers of a fixed base with a
column of Stirling’s triangle.

Example 5.2.6: Consider column 2.

n\l/ n n
k— |2 3 45 JE
55_—]‘6‘60 20 5 1 2
313
_ 4 |11
60-1420-3+5-11+1-50 = 225
5 |50
6 225

That is,

Sl o] o] 5]

=1-60 + 3-20 4+ 11-5 4+ 50-1 = 225 = [
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Southeast Diagonal

The entries along each SE diagonal from column 0 to
column ¢ satisfy a summation formula.

Proposition 5.2.10. Let n and ¢ be non-negative inte-
gers. Then

Proof: The equation is clearly true for all n > 0 when
¢ = 0. Assume, for inductive purpose, that it is true for
¢ — 1. Then, by Stirling’s recursion,

1
[n—l—c—l— ] _ [n—l—c] —|—(n—|—c)[n+C]
c c—1 c
Now apply the induction hypothesis.
c—1 - .
+ k +
= > (k) |7 +(n+c)["CC]
k=0 - -

— Z(n—l—k) n;l{—k &
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Example 5.2.7: The sum in Proposition 5.2.10 is a dot
product of a southeast diagonal of Stirling’s triangle with
a vector of row numbers.

n n n
nl 1 2 3
3 |2
) . 3.2+4.11+5.35 = 225
5 35
6 225

Stirling Numbers of the First Kind

REVIEW FROM §1.6: The Stirling numbers of the first
kind were defined as the coefficients s,, . in the sum

n

= g Sp.c X"

c¢=0

Prop 5.2.11. Let n and ¢ be any non-negative integers.
Then

Sme = (—1)"Fe [Z] (5.2.1)

Proof: We recall the Stirling cycle recurrence of Prop
5.2.1.
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— (k=0) ] = (=0

™ I O

BASIS: The initial conditions
S0.c = (-=1)°*¢(c=0) and Sp.0 = (—=1)"*% (n = 0)
hold, because
22 = 12°
and because the constant term of the expansion

n

= an,c x° (5.2.2)

c=0
is 0, unless n = 0.

IND HYP: Now assume that

n—1
il S g Sn—1,c x°
c=0
IND STEP: Then
= (z—n+1)- 2221

n—1

n—1

C C

= - g Sp—1.c2° — (n—1) g Sp—1.cT
c=0

c¢=0
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n—1 n—1

— E c+1 E c

— Sn—1,cL - (n - 1) Sn—1,cL
c¢=0 c=0
n n—1

c c

— E Sn—1,e—1T — (n - 1) E Sn—1,c L
c=1 c=0

n

- Z(Sn—lac—l —(n—1)sn—1,c)2° (5.2.3)

c¢=0

Since ¢ must have the same coefficient in both expan-
sions, (5.2.2) and (5.2.3), of 2, it follows that

Sn,e = Sn—1,c—1 — (n — 1)3n—1,c

Thus, the absolute values of the Stirling numbers of the
first kind satisfy the same recurrence as the Stirling cycle
numbers. That is,

=[]

This implies, by an induction, that

|3n,c

|3n,c
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Example 5.2.8: The values of s,, . are calculated recur-
sively, as in the proof of Proposition 5.2.11.

r = z
iazz = :1:-:1:l
= zi(z—1) + 2t
— 22 4 gL
= % = :13-:132—|—:13-:13l
= z3(x —2) 4 222 + 22 4 2t
= 2 4 322 + 2t
=2t =z 224+ 3z-22 + - 2L

= [2* +322] + [322 + 623 + [22 + 1]
= % + 622 + T2 + 2t

Table 5.2.2 Basic Formulas for Stirling Cycle #s

Stirling’s recurrence:

o) = =0 o] = =0
Z - [Z:H + (n—1) [n?] forn>1 (5.2.4)

Special values for n > 1:

] oo [ - oo [



|
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Converting falling powers to ordinary powers:

P = En: [Z] (—1)" P (5.2.5)

Row sum formulas:

n

nt = Y [Z] (5.2.6)

pHEGIY 627

Column-sum formula:
n-+1 i |k

— n—k 5.2.8
RN 629

SE diagonal-sum formula:

”+2+1] - i(nﬂc) lnzk] (5.2.9)

k=0
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5.3 INVERSIONS AND ASCENTS

Stirling cycle numbers inventory the set of all n! per-
mutations of the integer interval [1 : n], according to the
number of cycles. In particular, the Stirling cycle number

]
k
is the number of partitions with k cycles. This section
is concerned with two other ways of partitioning those n!

permutations, one according to their number of inversions
and the other according to their number of ascents.

NOTATION: Specifying a permutation
( 1 2 .. n )
v =
a]_ a2 o« o e an
of the integer interval [1 : n] by its lower line

a1a2 o« o e a'I’L

is called the one-line representation of .

Inversions

DEF: In a permutation 7 of the integer interval [1 : n], an
inversion is a pair of integers ¢ < j with 7(5) < 7 ().
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In any permutation 7w of the integer interval [1 : n],
each instance of an inversion corresponds to some larger
integer preceding an integer 5 in the one-line representa-
tion of 7, so they would appear to be inverted in that line.
There are (}) pairs of integers in [1 : n], each of which
could possibly be inverted. At the low end, the identity
permutation of [1 : n] has no inversions. At the high end,
the permutation that reverses the order of [1 : n] has ()
inversions.

DEF: The inversion vector of a permutation 7 is the
vector

by by --- b,

such that b; equals the number of larger integers preceding
7 in the one-line representation of .

Example 5.3.1: The permutation
™ =351624
has the inversion vector

230200

We observe that the coordinate b; of the inversion
vector by by - -+ b, is an integer in the range [0 : n — j].
Moreover, the total number of inversions of a permutation
1s the sum of the coordinates of its inversion vector.
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Example 5.3.1, cont.: The perm m = 351624 has
a total of 7 inversions, the sum of the coordinates of its
inversion vector 230200.

DEF: The inversion coefficient I, (k) is the number of
permutations of the integer interval [1 : n] with exactly k
inversions.

Table 5.3.1 gives the values of some inversion coeffi-
cients.

Table 5.3.1 Inversion coefficients.

n | 1,(0) I(1) I,(2) In(3) In(4) In(5) In(6) In(7) In(8)

0 1

1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 5 3 1

5 1 4 9 15 20 22 20 15 9

6 1 5 14 29 49 71 90 101 101 ---

The table of inversion coefficients can be constructed using
the following proposition. We take I,,(c) to be 0 if ¢ < 0.
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Proposition 5.3.1. The inversion coefficients satisfy the
following recurrence.

Io(0) = 1

n—1
I,(c) = Z]n_l(c—j) forn>1
=0

Proof: The initial condition is true, since the null per-
mutation on the empty set has no inversions.

To affirm the recursion inductively, assume that the recur-
sion holds for the permutations of [1 : n—1]. Now consider
the one-line representation of a permutation 7 on [1 : n]
with ¢ inversions

L T =T

Then the number of inversions contributed by the place-
ment of the integer n within this line equals the num-
ber 7 of integers that follow n on that line. Thus, if n
is erased from that line, then the number of inversions in
the permutation corresponding to the resulting line equals
¢ — j. There are exactly I,,—1(c — j) such permutations
of [I : n—1]. Thus, I,(c) is the sum of the numbers
I,—1(c — j) over the possible values of j. &

Example 5.3.2: We observe in Table 5.3.1 that

14(3) = I3(3) + Is(2) + I5(1) + 13(0)
= 14+2+24+1 =6
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14(4) = I3(4) + I3(3) + 13(2) + I5(1)
= 04+14+242 =5

14(5) = I3(5) + I3(4) + 15(3) + 15(2)
= 04+04+14+2 = 3

Donald Knuth (see [Knut1973], p.12) regards the fol-
lowing observation of Marshall Hall as the most important
single fact about inversions.

Theorem 5.3.2 [Hall1956]. A permutation ® on the
integer interval [1 : n] is reconstructible from its inversion
vector

blb2 bn

Proof: To reconstruct a one-line representation of the
permutation 7w, begin by writing the number n. After the
integers

k,...,n

have been written as directed here, insert the integer £ —1
so that it immediately follows the first b;_1 integers. <

Corollary 5.3.3. There is a bijective correspondence be-

tween permutations on [1 : n] and inversion vectors by by - - -

withb; € [0:n—j] forj=1,...,n.

Proof: The number of permutations of [1 : n] and the
number of such inversion vectors are both equal to n!. By
Theorem 5.3.2, the correspondence of permutations to in-
version vectors is one-to-one. It follows by the pigeonhole
principle that it is onto. &
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Example 5.3.3: The one-line representation of the per-

mutation of the integer interval [1 : 7] corresponding to
the inversion vector

4512010

1s reconstructed as follows:

7

7 6

5 7 6

5 7 4 6

5 3 7 4 6

5 3 7 4 6 2

5 3 7 4 1 6 2
Ascents
DEF: An index 5 of a permutation

mTo= aipas - Qp

is an ascent if a; < a;4; and a descent if a; > a;41.
Remark: An ascent is a special kind of non-inversion.

Example 5.3.4: The ascents of the permutation

T = 351624
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are as follows:

1: 3<5
3: 1<6
H: 2<4

Example 5.3.5: The partition of the permutations of
[1: 4] according to number of ascents is as follows:

3: 1234
2: 1243 1423 1324 1342 2134 2314 2341 2413

3124 3412 4123
1: 3421 3241 4231 2431 4312 4132 1432 3142

4213 2143 3214
0: 4321

Eulerian Numbers

DEF: The FEulerian number
n
(k7
is the number of permutations of [1 : n] with exactly &
ascents.

Prop 5.3.4. The Eulerian numbers satisfy the recurrence
O\ _ {l_ﬁk:O
k 0 ifk>0

<Z>:(k+n<n;1>+(n—m<z:1>fdn>0



54 Chapter 5 Partitions and Permutations

Combinatorial Proof: The basis for the recurrence is
clear. The first summand in the right side of the recursion
follows from the fact that a permutation of [1 : n] with k
ascents is obtained from a permutation of [1 : n — 1] with
k ascents by prepending the integer n at the start of the
one-line representation or inserting it between the integers
of an ascending pair. The second summand corresponds
to the n — k ways to increase the number of ascents by 1
in a permutation of [1 : n — 1] with k — 1 ascents either
by interposing n between any of the n — k — 1 descending
pairs or by appending n at the end of the line. &

As with Pascal’s recursion and the Stirling recursions,
the Euler recursion leads to a triangular table.

Table 5.3.2 FEuler’s triangle for values of ().

no | (o) ) (e () G (5 (g) | Ba
0 | 1 1
1|1 0 1
2 | 1 1 o0 2
3 1 4 1 0 6
4 1 11 11 1 0 24
5 1 1 26 66 2 1 0 120
6 | 1 57 302 302 57 1 0 | 720

We observe that each row of Euler’s triangle is symmetric.
This observation is confirmed for all n as follows.
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Prop 5.3.5 Symmetry for Eulerian Numbers.

(= (i)

Proof: A permutation 7 of [1 : n] with k ascents has
n — 1 — k descents. Accordingly, the permutation whose
one-line representation is the reverse of the representation
for m has n — 1 — k ascents. &
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5.4 DERANGEMENTS

We recall that a derangement is a permutation in
which none of the objects is fixed. The derangement
recurrence (from §2.1)

D() = 1, D1 = O,
D, = (n—1)Dp—1 + (n—1)Dy,—o forn>2 (5.4.1)

is second-degree linear with variable coefficients. From it,
a first degree recurrence can be derived.

Proposition 5.4.1. The derangement sequence satisfies
the recurrence

D() = 1,
D, = nD,_1 + (-1)" forn>1 (5.4.2)

Proof: Recursion (5.4.1) above implies that

D, —nD,_1 = —[Dj—1 —(n—1)D,,_] forn >2
(5.4.3)
We now apply recursion (5.4.3) recursively.
Dn — nDn_l = (—1)[Dn_1 — (n — 1)Dn_2]
= (~1)*[Dp—2 — (n —2) Dpp—3]

= (-1)"7'[D1 = Do] = (-1)"7'[0~1]

= (-
= D, =nD,_1 + (—1)” <>
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Using either of the derangement recurrences, (5.4.1)
or (5.4.2), we can calculate the derangement number D,,.
The ratio D,,/n! is the proportion of permutations that
are derangements. Some values for the ratios D,, /n! and
n!/D,, appear in Table 5.4.1.

Table 5.4.1 Ratios of derangements to perms.
n n! D,, D, /n! n!/D,
0 1 1 1
1 1 0 0
2 2 1 0.5 2.0
3 6 2 0.333333 3.0
4 24 9 0.375  2.666667
5 120 44  0.366667  2.727273
6 720 265  0.368055  2.716981
7 5040 1854  0.367857  2.718447
8 40320 14833  0.367881  2.718263
9 362880 133496  0.367879  2.718284

Seemingly, the ratios D,,/n! and n!/D,, converge rapidly
to e~ and e, respectively. The following proposition and
its corollary confirm this reasonable suspicion. This is
an application of the familiar technique of guessing the
solution to a recurrence and proving the correctness by
induction.
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Theorem 5.4.2. For every non-negative integer n,

1 1 1 1 1
= nl|l— - — - 1\
D, = n! TR T +(—1) ~ (5.4.4)

Proof: For n = 0, both sides of equation (5.4.4) have
the value 1. We asssume inductively that equation (5.4.4)
holds for n — 1. Then

= nD,_1 + (-1)" (by (5.4.2))
n(n — 1)! % — % + % + ...+(_1)n—1ﬁ] (="
n!:é—%+%+...+(_1)n%] o

In §3.6, the derangement numbers were calculated by incl-
excl. In the proof of Thm 5.4.2, we verified the solution
as a “guessed solution” to a recursion. In the next sec-
tion, the derangement recurrence is solved by generating
functions, without resort to guessing.

D,
Corollary 5.4.3. lim — = e~ 1. &

n—oo n!

Remark: By running a Monte Carlo experiment on a
computer, we could use Corollary 5.4.3 to approximate
the value of e.
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Every permutation of n objects may be regarded as a
choice of j objects to fix and a derangement of the other
n — j objects. This leads immediately to the following
assertion, which was previously noted with Example 4.2.4.

Prop 5.4.4. Let n be a non-negative integer. Then

nl = ﬁ: (7)1)”_]- o

i=0

Example 5.4.1: For n = 4, Proposition 5.4.4 corre-
sponds to the equation

= (ot (o (s (s (o

— 1Dy +4-D3 +6-Dy +4-Dy + 1-D,
= 1-94+4.24+6-1+4-0+1-1
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5.5 EXPONENTIAL GEN FUNCTIONS

OGFs are well-adapted to problems about counting
unordered selections. This section develops the other main
variety of generating function, called an exponential gen-
erating function, which is especially useful in counting or-
dered selections. We will see also how EGFs can be used
in solving certain recurrences with variable coeflicients.

REVIEW FROM §1.7:

e The ordinary generating function (abbr. OGF)
for a sequence (g,) is any closed form G(z) corre-
sponding to the infinite polynomial

00

n
E gn<
n=0

or sometimes, the polynomial itself.

¢ The exponential generating fn (abbr. EGF) for a
sequence (g,,) is any closed form G(z) corresponding
to the infinite polynomial

00 o
D On

n.
n=0

or sometimes, the polynomial itself.
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e Prop 1.7.1. Let G(z) and H(z) be the OGFs for
counting unordered selections from two disjoint mul-
tisets S and T. Then G(z)H (z) is the OGF for count-

ing unordered selections from the union S UT.

e The convolution of the sequences (a,) and (by)
is the sequence

apbo, apby + a1by, apby + a1by 4 asby,

e Prop 1.7.3. The product of the generating functions

A(z) = Z apnz" and B(z)= Z b, 2"
n=0 n=0
is the generating function
A(z)B(z) = Z Zajbn—j 2"
n=0 \ 7=0

for the convolution of the sequences (a,,) and (b,,).

The following example reviews how Prop 1.7.1 can be used
to count unordered selections with ordinary generating
functions.

Example 5.5.1: Let a,, and b,, be the numbers of ways
to select n letters from the multi-sets represented by the
strings

“ADD” and “SPICE”
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respectively. Thus, the ordinary generating functions for
the sequences (a,,) and (b,,) are

A(z) = Zanz" = 14+22+222 423

n=0

B(z) = Z bz = 145241022 +102° +52* +2°
n=0

The set of possibilities counted by the sequence (a;) is
completely disjoint from the set counted by the sequence
(b,,), because the set of letters of “ADD?” is disjoint from
the set of letters of “SPICE”. It follows that the number ¢,,
of ways to choose n letters from the multi-set represented

by the string
“ADDSPICE”

is the sum
aobn + albn_l + ... + anb()

More generally, it follows that the sequence (c,) is the
convolution of the sequences (a,) and (b,). Therefore,
according to Proposition 1.7.3, the generating function for
the sequence (c,,) is the product

A(2)B(2) = 14724222 4 412° 4 502* 4 412°
+ 92220 4 727 4 28

For instance, there are 21 ways to choose two letters from
the seven different letters and 1 way to choose the same
two letters, for a total of 22, the coefficient of z2.
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Counting Ordered Selections

To count ordered selections from a disjoint union of
multisets, we use Proposition 1.7.2.

REVIEW FROM §1.7:

o Proposition 1.7.2. Let G(z) and H(z) be the ex-
ponential generating functions for counting ordered
selections from two disjoint multisets S and 71'. Then
G (z)ﬁ (z) is the exponential generating function for
counting ordered selections from the union S UT.

Example 5.5.2: Let r, and s,, be the numbers of ways

to select a sequence of n letters (without repetition) from
the multi-sets represented by the strings

“ADD” and “SPICE”

respectively. Thus, the exponential generating functions
for the sequences (r,,) and (s,,) are

> FAk z 22 23
S(z) = s D s 1452 1207 4605 +120% + 1207
(2) = D sniy = 153 205 4605 + 1205 4120

5
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The coefficient of 22 in the product ]%(z)g(z) is

1-20 2-5 3.1
0!2! i 11! i 210!

- (e (e (e

43
2!

A

9 .
from which it follows that the coeff of ’z— in R(z)S(z) is
43

This corresponds to 72 = 42 possible ordered selections of
two different letters from the seven in the string

ADDSPICE

plus 1 way to choose the same two letters, for a total of
43.

Giving a name to the construction appearing within
Example 5.5.2 facilitates the use of a generalization of
that method, via Proposition 5.5.1, which is analogous
to Proposition 1.7.3.

DEF: The binomial convolution of two sequences (r,)
and (s, ) is the sequence (t,,) whose n*!* entry is

n
n
tn = Z ( ,)rjsn_j

=0
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Prop 5.5.1. The product of the EGF's for the sequences
(rn,) and (s, is the EGF for their binomial convolution.

Proof: The coeflicient of 2" in the product of the expo-
nential generating functions

A <
R(z) = —
(2) ;r —
and N
N ~T
S(z) = n—
(2) ;) —
18
roSn T18n—1 T'nSo
olnl T =01 T o
1 [ n! N n! N N n!
= — T0Sn T1Sn— TnS
n! [0ln! " n—1) """ nlol "

1 [(n n n
= — T0Sn T T1Sp—1 + *** + Tn S0
n! |\O 1 n

1 n
= ﬁ Z (@)rjsn_j

=0

Thus, the coefficient of Z+ in the product ]%(z)g(z) is

n!
o n
Z ( .)rjsn_j ¢
j=0 \J

We complete this section by considering several appli-
cations in which using EGF’s is a highly convenient way
to count.
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Counting Certain Kinds of Strings

If a set of symbols has cardinality k&, then, of course,
there are k™ strings of length n. The examples in the se-
quence to follow impose various rules on the strings and
count the strings that satisfy those rules. The first exam-
ples are easy enough, as an intended warmup, that solution
without EGF’s is well within grasp, and as the complica-
tions increase, the usefulness of EGF’s becomes ever more
clear.

Example 5.5.3: Let b,, be the number of binary strings
of length n with at least one 1. Of the 2" binary strings
of length n, only one has no 1’s. Thus,

b, = 2" —1

Alternatively, we could observe that the EGF for the num-
ber of all-0 strings of length n is €*. Accordingly, the EGF

for the number of all-1 strings of length n with at least one
1 is e — 1. Thus, by Proposition 1.7.2, the EGF for b,, is

B(z) = an% — (P 1) = & — ¢
n=0 )

The coefficient of 2" in e2* — €% is
on 1
nl nl

Thus, the coefficient of Zn—r; 1S

b, = 2" — 1
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Example 5.5.4: Let t,, be the number of ternary strings
(i.e., base-3) of length n in which the digits 1 and 2 must
each occur at least once. Of the 3" ternary strings of
length n, there are 2" strings with no 1’s and 2" strings
with no 2’s and exactly 1 string with no 1’s or 2’s. Thus,
by Inclusion-Exclusion,

t, = 3" —2-2" +1

Alternatively, we could write the EGF for ¢,,, which is
T(Z) = Ztn% — 6Z'(€Z—1)2 — 632_262Z_|_6Z
n=0

Thus, the coefficient of Zn—r; 1S

tp, = 3" —2:2" +1

For n = 3, for instance, the formula t,, = 3" — 2.2" 4+ 1
yields

ts = 32 —2.2° 4+ 1
= 27 — 16 + 1
= 12

This corresponds to 3! = 6 arrangements of the digits
within the string 012, plus 3 arrangements of the digits
within the string 112, plus 3 arrangements of the digits
within the string 122.
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Using EGF's on such simple problems seems not to
expedite the calculation. However, for more complicated
restrictions on the occurrences of some of the symbols in
a string, EGF’s are of considerable assistance.

Example 5.5.5: Let u,, be the number of ternary strings
with at least one 1 and at least two 2’s. Then the EGF
for strings of 2’s with at least two 2’s is

e —z—1

It follows that

U(z) = z_;)un% = e*(ef —1)(ef —z—1)
— 63Z . 262Z . Z€2Z 1+ ZGZ un 6Z
Therefore,
u, = 3" — 2" _p2"l 4on 41

For instance,

us = 3% — 2% —3.22 4 34+ 1
— 27— 16 — 12+ 3 + 1
- 3

This corresponds to the three possible arrangements of the
digits within the string 122.
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Example 5.5.6: Let v,, be the number of ternary strings
with evenly many 2’s and at least one 1. Then the EGF
for strings of evenly many 2’s is

22 4 Z6

z
I + o1 + a1 + ol +
e fe”
B 2
Accordingly,
A = zZ" L e’ 4+ e~
V(z) = Z’Unm = e*(e — 1)
n=0 )
— l.<63z —62Z—|—6Z . 1)
2
Therefore,
0 ifn=20
o= {%(3" — 2" + 1) ifn>1

For instance, this formula yields

27T —-8+1
Vg = 2—|_ = 10

which corresponds to the 7 binary strings (i.e., no 2’s) with
at least one 1, plus the 3 strings

122 212 221
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An Application To Stirling Subset #s

Continuing as in the immediately previous examples,
the EGF for the number of ternary strings with at least
one 0, at least one 1, and at least one 2 is

(e — 1)3 — %% — 327 1 367 — 1

o0 n

_ n 2TL <
= g (3" —3-2" +3) )
n=1
If we identify the distinct positions 1,...,n in the sequence

with n distinct objects, then this is also the generating
function for partitioning n distinct objects into three dis-
tinct boxes, with no box left empty. This is 3! times as
many as if the boxes were indistinguishable, so that we
were counting partitions into three subsets. Thus,

I

n=0

is an EGF for column 3 of Stirling’s subset triangle. This
calculation has an immediate generalization with a corol-
lary that is equivalent to Theorem 3.6.4.

Prop 5.5.2. Let n and k be non-negative integers. Then

A NE 0



{
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Corollary 5.5.3. Let n and k be non-negative integers.

Then .
() = w2 (5o

Proof: The sides of the equation are the coefficients of

Z’I’L

n!

in Proposition 5.5.2. &

Example 5.5.7: Applying the formula of Corollary 5.5.3
yields the evaluation

45 (o

(o G (e

[1-0-1+2-1-(=1)+1-16-1]

~N o= N

which agrees with our previous calculations of

2



72 Chapter 5 Partitions and Permutations

An EGF for Derangement Numbers

We now show an example of how, sometimes, an EGF
can be used in solving a linear recurrence with a variable
coefficient. We then use this technique in finding a gener-
ating function for the derangement numbers.

Example 5.5.8: Consider the following recurrence of
degree 2.

ag = 0, a1 = 1;

an, = 3nap—1 — 2n(n—1)a,—o forn > 2

Step 1. Multiplying both sides of the recursion by Zn—r;
and then summing from n = 2 to oo leads to the equation

g Ay — = g 3na,_1— — g 2n(n — 1)a,—o—
n! n! n!
n=2 n=2 n=2

which simplifies to the form

o n o n— o n—2
2" z 9 z
Xan Ty = 323 ancapmyy = 227 ) ana oy
n=2 n=2 n=2

Step 2. By substituting the EGF
N > ~T
A(z) = Zanm
n=0

we obtain the equation

(2)21(2)—&12 —ag = 3z (A(z) — a()) — 222121(2)



agp

ai
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Step 3. We then solve for A(z)

A(z) —1z2—0 = 3z (A(z) — O) — 27;2121(7;)
z
1 —32z+ 222

Step 4. Use partial fractions to solve for a,,.

(3) Az) =

o0 n o0

N z 1 1 n n
A(z) = Zanm = T~ = Z(z —1)z

4) = an = (2" —1)n!

Check the Answer: We now verify that the answer

an, = (2" — 1)n! satisfies the recurrence.
= (2°-1)0! = 0, (initial condition)
= 2 -1 = 1; (initial condition)
= 3na,—1 — 2n(n —1)ay—o (recursion)

What enables the substitution of the EGF A(z) to
lead to the successful conclusion of Example 5.5.8 is that
in the recursion

a, = 3na,—1 — 2n(n—1)a,—y forn >2
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the variable coefficients of a,,_1 and a,,_o are the falling
power monomials 3nt and —2nZ, of degrees 1 and 2, re-
spectively. Fortunately, the variable coefficient of the de-
rangement recurrence has the same property. The non-
homogeneous part adds a small complication.

Thm 5.5.4. Let ﬁ(z) be the EGF for the derangement
numbers D,,. Then

Proof: This pf follows the paradigm of Example 5.5.8.

D, = nD,_1 + (-1)" (Prop 5.4.1)

00 o 00 o 00 nZn
= > Dnp =) nDnai— + ) (F1)"—
n=1 n=1 n=1
R ZO > Zn—l
= D(Z)—D()a = Z;Dn_lm+€ —1

= ﬁ(z)—l = zﬁ(z) + e 7 -1

= D(z) = 16:,2 o

Corollary 5.5.5. Let (D,,) be the derangement sequence.
Then

1 1 1 1 1
oo " T Tyt



D(z)
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Proof: To rederive Theorem 5.4.2, this time as a corol-
lary to Theorem 5.5.5, we proceed as follows:

n! 1 —2z 1— 2z (0! 1! 21 3!

> z" e * 1 1 z 22 23
- Y, - _ [___+___+...

We recognize (1 — z)~! as a summing operator.

D, 11 1 1 .
o “nta gt ot EU

o111 |
— V| — — — - _
;‘D”_”'[oz IR R R A

|



76 Chapter 5 Partitions and Permutations

5.6 POSETS AND LATTICES

A lattice is a highly structured kind of poset.

FROM APPENDIX A3:

e A partial ordering on a set P is a binary relation
< with the following properties, for all z,y, z € P:

i. x <z (reflexive)
ii. if z <y and y < z then x = y (antisymmetric)
iii. if z <y and y < z then z < z (transitive)
e Two elements x,y in a poset P such that either z <y
or y = x are said to be comparable.
o If z <y, we may say that y dominates z.

o We write x <y if z < y and = # y.

e The structure P = (P, <) is called a partially or-
dered set or a poset. The set P is the domain.

e Writing or saying “the poset P” (giving the domain
of the poset, rather than the complete structure) is
commonplace and convenient.

e The order of a poset P = (P, <) is the cardinality
of its domain P. Informally, the word size is also
used.

e A subposet of a poset (P,=<) is a subset S C P, in
which ¢ <g y if and only if x <p y.



Section 5.6 Posets and Lattices 77

Products of Sets

One way a poset arises is when subjects are scaled in
more than one attribute, e.g., College Board scores.

Example 5.6.1: The cartesian product [m : n] x [r : s]
of two integer intervals is partially ordered under the rule

(a,b) < (¢,d) ifa < candb < d

This construction can also be generalized to an iterated
product over arbitrarily many integer intervals or, indeed,
over arbitrarily many posets.

Cover Digraph

Several digraphs and graphs are associated with a
poset. The most useful is the cover digraph.

DEF: If £ <t < y in a poset (P, =), then t is called an
intermediate element between x and y.

DEF: If x < y and if there is no intermediate element ¢,
then y covers .

DEF: The cover digraph of a poset (P,=<) has the ele-
ments of the set P as its vertices. There is an arc from z
to y if and only if x is covered by y. The cover graph is
its underlying graph. A Hasse diagram for the poset is
a drawing of the cover graph in which the dominant of any
two comparable elements must appear above the other.
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Example 5.6.1, cont.: Figure 5.6.1 illustrates the cover
digraph and Hasse diagram of the poset [0 : 1] x [0 : 2].

N P
N

1,2

(1,1) (0,2) (
(1,0) (0,1) (1,0)

Fig 5.6.1 Cover digraph and Hasse diagram of [0: 1] x [0 : 2].

0,0)

For any poset P = (P, <), we may observe that z < y
if and only if there is a directed path from x to y in the
cover digraph. The digraph corresponding directly to the
partial ordering itself is called the comparability digraph,
and its underlying graph is called the comparability graph.

The Boolean Poset

The boolean poset is among the most familiar partially
ordered structures.

DEF: The boolean poset
Bn _ <2[1:n], g>

has as its domain the set of subsets of [1 : n]. They are
partially ordered by set-theoretic inclusion.
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Example 5.6.2: Figure 5.6.2 shows a cover digraph for
the boolean poset By.

1234

e

123 234

SR

12 13 23 14 24 34

\ @

Fig 5.6.2 The boolean poset 5.
Various properties of the boolean poset B,, can be observed
in Figure 5.6.2. For instance, at level k, the number of

subsets is the binomial coefficient (Z) Also, the subset Y
covers the subset X if X C Y and if Y — X is a single

element of [1 : n].

The Divisibility Poset

REVIEW FROM §3.1:

e The notation k \ n means that the integer k divides
the integer n.



80 Chapter 5 Partitions and Permutations

DEF: In the divisibility poset D,, = (D,,, \ ), the domain
is the set

= {ke[l:n]|k\n}

and the relation is divisor of. The infinite divisibility
poset D = (Z", \) has as its domain the set of all posi-
tive integers.

Under the divisibility relation, y covers z if the quotient

E . .
- 1S prime.

Example 5.6.3: Figure 5.6.3 illustrates the divisibility
poset Dro.

/\
\/

/ \

1
Fig 5.6.3 Cover diagram of the divisibility poset Dr,.

The Partition Poset

DEF: A partition V of a set S is a refinement of the

partition U if every cell of V is a subset of some cell of
U. This relation is denoted U 1 V.
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DEF: In the partition poset P, = (P,, J), the subsets
of the integer interval [1 : n| are partially ordered by the
refinement relation.

Example 5.6.4: We now consider an ad hoc calculation
of a Stirling subset number. The integer interval [1 : 4]
can be partitioned into 3 cells in 6 ways:

12-3-4 13-2-4 14-2-3 4\ 6
23-1-4 24-1-3 34-1-2 3

Example 5.6.5: A partition V covers a partition U if
it splits a single cell of U into two non-empty subcells.
Figure 5.6.4 illustrates a cover diagram for the partition
lattice P4. Hyphens are used to delimit the cells.

1-2-3-4

e

12-3-4 13-2-4 14-2-3 1-23-4 _1-24-3 1-2-34

e e Y

123-4 12-34 124-3 134-2 13-24 14-23 1-234

=

234
Fig 5.6.4 The partition poset P,.
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Inversion-Dominance Ordering on Perms

NOTATION: The set of all permutations of the integer in-
terval [1 : n| is denoted X,,. (Under the composition of
permutations, it is a group, in the sense of Appendix A2,
called the symmetric group.)

DEF: The inversion-dominance relation
™ < T

on X, means that every inversion of 7 is also an inversion
of 7.

Example 5.6.6: The permutation m = 1342 has two
inversions, namely

m(4) <m(2) and w(4) < m(3)

In addition to those inversions, the permutation 7 = 3142
has both those inversions and the inversion

7(2) < 7(1)
as well. Thus, 1342 < 3142.
DEF: The inversion poset Z,, = (X,,, =) is the partially
ordered set whose domain is the set of partitions on [1 : n],

with the inversion-dominance relation # < 7 as its partial
ordering.
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Example 5.6.7: A digraph representing the cover di-
graph of 7, is drawn in Figure 5.6.5 so as to embody the
shape of the truncated octahedron, whose 1-skeleton is the
underlying graph. Observe that the direction of the arcs
is away from 1234, the least inverted permutation, and
toward 4321, the most inverted.

4231 4213

2431 ¥

2341 Q

2134
1234

Fig 5.6.5 Cover digraph of the inversion poset Z,.

The underlying graph is obtained by drawing an edge
between two permutations whose one-line representations
differ only by a single transposition of adjacent integers.
The direction reflects increasing the number of inversions.
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Minimal and Maximal Elements

DEF: A minimal element in a poset P is an element x
such that there is no element w with w < z. If x < y for
every y € P, then z is the minimum element.

DEF: A maximal element in a poset P is an element y
such that there is no element w with y < w. If x < y for
every x € P, then y is the maximum element.

Example 5.6.8: In Figure 5.6.6, there is no minimum
or maximum element. However, the elements a and b are
maximal, and the elements d, 7, and k£ are minimal.

Fig 5.6.6 A poset with two maximal elements
and three minimal elements.

Example 5.6.2, cont.: The minimum element of the
boolean poset B,, is the empty set (), and the maximum
element is the entire set {1,2,...,n}.
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Example 5.6.3, cont.: The min of the divisibility poset
D,, 1s the number 1, and the max is the number n. The
infinite divisibility poset D has no maximum.

Example 5.6.5, cont.: The min of partition poset P, is
the unpartitioned set [1 : n]. The max is the partition

1—-2—---—n
into singletons.

Example 5.6.7, cont.: The minimum element of the
inversion poset 7, is the permutation 12...n, and the
maximum element is the permutation n(n —1)...1.

Lattice Property

A lattice is a poset with upper and lower bounds for
pairs of elements, as per this list of definitions.

DEFINITIONS:

e An upper bound for a subset S of a poset P is an
element u such that s <« for all s € S.

e A lower bound for a subset S of a poset P is an
element w such that w < s for all s € S.

e A least upper bound for a subset S of a poset P
is an upper bound u such that if z is any other up-
per bound for S, then u < z. We commonly write
lub(z,y) for the least upper bound of a subset of two
elements, which, if it exists, must be unique, by the
antisymmetry property.



86 Chapter 5 Partitions and Permutations

e A greatest lower bound for a subset S of a poset
P is a lower bound w for S such that if z is any other
lower bound for S, then z < w. We commonly write
glb(z,y) for the greatest lower bound of a subset of
two elements, which, if it exists, must be unique, by
the antisymmetry property.

e A lattice is a poset such that every pair of elements
has a lub and a glb.

Example 5.6.2, cont.: The boolean poset B,, is a lattice,
in which the least upper bound of two subsets is their
union and the greatest lower bound is their intersection.

Example 5.6.3, cont.: The divisibility lattices D and
D,, are lattices, in which the lub of two numbers is their

LCM and the glb is their GCD.

Proving that the partition poset is a lattice involves
a few details regarding the least upper and greatest lower
bounds.

Example 5.6.5, cont.: The partition poset P,, is a lat-
tice. The constructions of the least upper bound and the
greater lower bound are now given.

NOTATION: In the partition lattice P,,, let U V V denote
the set of non-empty intersections of a cell of a partition
U with a cell of another partition V.

Example 5.6.9: Let U be the partition 123 — 45 — 678
and let V' be the partition 14 — 235 — 67 — 8. Then U V
V =1-23—-4—-5-67—-8.
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Prop 5.6.1. In the partition poset Py, the partition UVV
is the least upper bound of partitions U and V.

Proof: See Exercises. &

NOTATION: Let U and V' be two partitions of the integer
interval [1 : n]. Then

o Let Ky y denote the bipartite graph whose partite
sets are the cells of U and the cells of V', respectively,
and where a cell of U is adjacent to a cell of V' if they
have a vertex in common.

e Let UAV denote the partition of [1 : n], each of whose
cells is the union of the vertices in a component of

KU,V-

Example 5.6.9, cont.: Let U be the partition
123 — 45 — 678 and V the partition 14 — 235 — 67 — 8.
The graph Ky vy is shown in Figure 5.6.7.

U: 123 45 678

\
(

V: 14 235 67 8
Fig 5.6.7 The bipartite graph Ky for two partitions.

Then U ANV = 12345 — 678.
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Prop 5.6.2. In the partition poset Py, the partition UA\V
is the greatest lower bound of partitions U and V.

Proof: See Exercises. &

Example 5.6.10: The poset whose cover diagram ap-
pears in Figure 5.6.8 is not a lattice, because although d
and e are both common lower bounds for b and ¢, neither
is a lower bound for the other.

b/a\c

d e
f
Fig 5.6.8 A poset that is not a lattice.

Poset Isomorphism

DEF: An isomorphism of posets (P, <p) and (Q, <¢)
is a bijection

f:P—=Q
such that z <p y in P if and only if f(z) <¢ f(y) in Q.
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Example 5.6.11: The divisibility poset D5 is isomor-
phic to the poset of integer pairs [0 : 1] x [0 : 2], under the
bijection

1 (0,0) 2 (0,1) 3— (1,0)

4-(0,2) 6—(1,1) 12— (1,2)

Figure 5.6.9 shows the Hasse diagram for the poset Djs.
Fig 5.6.9 Hasse diagram of the divisibility poset D;,.

Example 5.6.12: The divisibility poset D3 is isomor-
phic to the boolean poset B3 under the bijection

1—0 2 — {1} 3 — {2} 5— {3}
6 — {1,2} 10— {1,3} 15— {2,3} 30— {1,2,3}

Example 5.6.13: Figure 5.6.10 shows Hasse diagrams
for the five isomorphism types of posets of size 3. The
only one of them that is a lattice is at the far right.
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C b b ¢
abec a I A \ /
o000 ® 0 a C a

O relations 1 relation 2 relations

Fig 5.6.10 Hasse diagrams of the posets of size 3.

Observe that two of the posets of size 3 with 2 relations
have isomorphic cover graphs (see §7.4). This complicates
classifying the isomorphism types of posets of a given size.
Also observe that not all simple graphs can occur as cover
graphs, as indicated by Proposition 5.6.3.

Proposition 5.6.3. The cover graph of a poset (P, =)
cannot contain a 3-cycle.

Proof: Suppose that elements u,v,w € P form a 3-cycle
in the cover graph. Then in each pair, one element must
cover the other. By transitivity, there cannot be a cycle
in the cover digraph, so one of them, say u, must cover
neither of the others, and another, say w, must cover both
the others. But then u < v < w, which implies that w
does not cover wu. &

Chains and Antichains

There are two extreme forms of posets. At one ex-
treme, in a chain, every pair of elements is comparable.

b

a
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At the other, in an antichain, no two elements are compa-
rable.

DEFINITIONS: Here are a few related definitions:

e If every two elements of a poset (P, <) are compara-
ble, then (P, <) is said to be totally ordered, lin-
early ordered, or a chain.

e A poset in which all elements are incomparable is
called a clutter or an antichain.

e The height of a poset is the cardinality of a longest
chain.

e The width of a poset is the cardinality of a max-size
antichain.

A collection of elements of a poset forms a chain if and
only if there is a directed path in the cover digraph from
the vertex corresponding to one of them to the vertex cor-
responding to another of them, with the vertices corre-
sponding to all the others as interior vertices along the
way. A collection of elements of a poset forms an antichain
if the corresponding vertices are mutually unreachable in
the cover digraph.

NOTATION: It is common practice to refer to a poset, at
times, by its domain, that is, writing simply P for (P, <).

Posets have some general structural properties. The
following two are among the most easily proved.
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Proposition 5.6.4. Let (P,=<) be a poset, let C' be a
chain in P, and let A be an antichain. Then the intersec-
tion A N C' contains at most one element.

Proof: Let z and y be any elements of the poset (P, <).
If z,y € C, then they are comparable. If z,y € A, then
they are incomparable. &

Theorem 5.6.5. Let (P, <) be a finite poset of height h.
Then P can be partitioned into h antichains, and into no
fewer than h antichains.

Proof: By Proposition 5.6.4, it follows that an antichain
contains at most one element of a longest chain C'. Thus,
the number of antichains whose union contains C' is at
least h, the number of elements in chain C'.

Proof that the poset (P, <) can be partitioned into h an-
tichains is by induction on the height h.

BASIS: If h = 1, then the poset (P, <) itself is an an-
tichain.

IND HYP: Assume that such a partition exists for h = n—1.

IND STEP: Suppose that height h = n. Let A; be the
antichain containing all minimal elements of the poset P.
Then the longest chain in the subposet P — Ay is of length
n — 1. By the induction hypothesis, it follows that the
subposet P — A; can be partitioned into n — 1 antichains.

¢
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Example 5.6.2, cont.: A chain in the boolean poset B,
is a sequence of sets, each nested in its successor. Thus the
height of the poset B,, is n + 1, corresponding to starting
with the empty set and including one additional element
at a time. An antichain is a collection of subsets, no two
of which are nested. The collection U;, of subsets of size
k is an antichain. Clearly, the boolean poset B,, can be
partitioned into these n+1 collections Uy, for k = 0,...,n

Example 5.6.3, continued: A chain in the divisibility
poset D,, is a sequence of numbers, each of which is a mul-
tiple of its predecessor. It follows that the height of the
divisibility poset D,, is 1 plus the sum of the exponents
in the prime factorization of n. The subset Ej of num-
bers whose exponent sum is k£ is an antichain. Clearly,
the divisibility poset D,, can be partitioned into these col-
lections FEj, as illustrated in Figure 5.6.11. For instance,
12 = 223!, so the exponent sum is 3 = 2+ 1, which implies
that four antichains are necessary and sufficient.

/\
/\/
\/

Fig 5.6.11 Partitioning poset D;, into four antichains.
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Ranked Posets

Boolean posets, divisibility poset, partition posets,
and inversion posets all appear to be layered, so that any
traversal of the cover graph is between adjacent ranks.
The formal name used for these layers is ranks.

DEFINITIONS: Here is another list of related definitions:

e A rank function on a poset (P,=<) is a function
p : P — N such that if the element y covers the
element x then p(y) = p(x) + 1.

e A ranked poset is a poset with a rank function.

e The k' rank of a ranked poset P is the antichain Py
of elements of rank k.

o The k" Whitney number Ni(P) of a ranked poset
(P, =) is the cardinality of the k™ rank of P.

Example 5.6.2, cont.: The rank function of the boolean

poset B,, assigns to every subset of [1 : n] its number of

elements. Thus, the Whitney number Ny (B,,) is (Z)

Example 5.6.3, cont.: The rank function of the divis-
ibility poset D,, assigns to every divisor of n the sum of
the exponents in its prime power factorization.

Example 5.6.3, cont.: The rank function of the per-
mutation poset P,, is the number of cells in the partition.
The Whitney number N,.(P,) is the Stirling subset num-
ber {Z} For instance, P, has {;L} = 7 elements of rank
2 at the middle level of the cover diagram.
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DEF: A poset is graded if all maximal chains have the
same length.

Prop 5.6.6. A graded poset can be ranked.

Proof: Assign rank p(z) = 0 to every minimal element
z. Then, proceeding recursively, assign rank p(z) + 1 to
an element that covers z. &

Prop 5.6.7. The inversion poset Z,, is a graded poset.

Proof: All the maximal chains extend from 12---n to
n(n —1)---1 and are of length n. The rank of each per-
mutation is the number of inversions. &

Some posets cannot be ranked.

Example 5.6.14: The poset of Figure 5.6.12 is unrank-
able. Indeed, any poset with an odd cycle in its cover
graph is unrankable.

/d
C
N/

Fig 5.6.12 An unrankable poset.
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Linear Extensions

Linear extension of a poset is a way to make a par-
tially ordered set into a totally ordered set.

DEF: An extension of a poset (P, =) is a poset (P, =*)
with the same domain, such that x <* y whenever z < y.
Thus, an extension adds one or more relations.

DEF: A linear extension of a poset (P, <) is an ex-
tension that is totally ordered.

Example 5.6.15: The partial orderings on a set P are
partially ordered by extension. The linear extensions are
the maximal orderings. The clutter is the minimum or-
dering.

Proposition 5.6.8. Every finite poset (P, <) has a lin-
ear extension.

Proof: Suppose that |P| =n.
BASIS: If n =1, then (P, <) is linearly ordered.

IND HYP: Assume that any poset of size n — 1 has a linear
extension.

IND STEP: Let z be a minimal element of (P, <). By
the induction hypothesis, there is a linear extension of the
poset P — {x}. Complete the linear extension of P by
making = precede every element in the linear extension of

the poset P — {z}. &
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Example 5.6.16: Here are three linear extensions of the
boolean poset Bs.

P <1 <2<3<12<13 <23 <123
P <3<1<2<23<13<12< 123
P <1<2<12<3<23<13 < 123

DEF: A topological sort is an algorithm whose input is
a poset (P, <), and whose output is a list (z;) of the
elements of the domain P of that poset that is consistent
with a linear extension of the poset.

In the following algorithm for a topological sort, we
take Min(P) to be a function on a non-empty poset that
returns a minimal element of the poset.

Algorithm 5.6.1: Topological Sort

Input: a finite poset (P, <) of size n
Output: a roster (z;) of P such that z; < z; for 0 <i<j<mn

Initialize 3y =0

while P # ()
z; = Min(P) {returns a minimal element of P}
P:=P—x,
j=g+l

continue
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Dilworth’s Theorem

Whereas Thm 5.6.5 concerns the decomposition of a
poset into antichains, there is a complementary theorem

of Robert P. Dilworth (1914-1993) that concerns a decom-
position into chains. There are two preliminary lemmas.

Lemma 5.6.9. Let (P, <) be a poset, and let L be the
set containing all the minimal elements of P. Then L is a
maximal antichain.

Proof: Every element of L is a min element in P, so no
two are comparable. Thus, L is an antichain. If y € L,
then since y is not a min element, there is an element
z € L such that z < y. It follows that L U {y} is not an
antichain. &

Lemma 5.6.10. Let (P, <) be a poset, and let U be the
set that contains all the maximal elements of P. Then U
1s a maximal antichain.

Proof: The proof parallels the proof of Lemma 5.6.9. <

Theorem 5.6.11 [Dilw1950]. Let (P,=<) be a finite
poset of width w. Then P can be partitioned into w
chains, and into no fewer than w chains.

Proof: By Prop 5.6.4, each chain contains at most one
element of any antichain, in particular, of a largest an-
tichain. It follows that the width w is a lower bound on
the total number of chains in a partition of P into chains.
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Proof that a partition into w chains exists is by induction
on the width w, with a secondary induction on the size of
the poset P.

BASIS: If w =1, then P itself is a chain.

IND HYP: Assume that such a partition exists, for w =
n—1.

IND STEP: Suppose that width w = n. If |P| = n, then
each of the n elements of P serves as a chain. Assume
that this is also true for all posets of width n whose size
1s less than the size of P.

Now let A be a maximum antichain, that is, an antichain
of size n.

Case 1. Suppose the following two conditions hold:

(1.1) The antichain A is not the set of all maximal
elements.

(1.2) The antichain A is not the set of all minimal
elements.

We define the subposets

IV

a]}
a]}

Observe that the following two properties hold.

A = {z€eP|(Fac A
A = {zeP|(Fac Al

IA

i) =4 < |P|.

Proof of (i). If every min element of P were in A,
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then the subset of A containing only those min
elements of P would, by Lemma 5.6.9, already
in itself be a max antichain. This would imply
that that subset is the antichain A, which vio-
lates condition (1.2). Thus, some min element of
P cannot be in A. Since it is a min element, it
cannot dominate any element of A. Hence, that
min element also cannot be in ZA.

(ii) |=4] < |P].

Proof of (ii). If every maximal element of P
were in A, then the subset of A containing only
those maximal elements of P would, by Lemma
5.6.10, already in itself be a maximal antichain.
As before, this would imply that that subset is
the antichain A, in violation of condition (1.1).
Thus, some maximal element of P cannot be in
A. Since it is a maximal element, it cannot be
dominated by any element of A. Thus, that max-
imal element cannot be in SA.

Any antichain in the subposet ZA is also an antichain
in the poset P. By construction, A C ZA. Thus, the an-
tichain A is a maximum antichain in ZA. By the induction
hypothesis, it follows from (i) that the subposet = A can be
partitioned into n chains, Bq,..., B,. Since every element
of Z A dominates some element of A, and since A C 2 A, it
follows that the minimal element of each of these chains B;
is some element b; € A. Since {By,..., B, } is a partition,
the elements bq,...,b,, are distinct.
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Similarly, it follows from (ii) that the subposet <A can be
partitioned into n chains, C4,...,C),, that the maximal
element of each of these chains C; is some element ¢; € A,
and that the elements cq,...,c, are distinct.

Since |A| = n, it follows that A = {by,...,b,} and that
A ={c1,...,cn}. Hence, the minimal element b; of each

chain Bj is the maximal element c, ;) of some chain Cr;,

and the union of the two chains is a chain B; U C(;) In
poset P, as illustrated in Figure 5.6.13. The chains

B4 UCW(l), cony B, UCw(n)

are a partition of P.

Bl Bz B3

E

A O O O

Cﬁ(l) t

C
Cr2) m(3)

Fig 5.6.13 Partitioning poset P into 3 chains.

Case 2. Suppose, alternatively, that there are no an-
tichains of maximum size n, except for either the set of
all maximal elements of P or the set of all minimal ele-
ments of P (or both). In this case, let u be a minimal
element and v a maximal element. Then the size of the
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largest antichain in the poset P — {u,v} is n — 1. By the
ind hyp, the subposet P — {u,v} can be partitioned into
n — 1 chains. These n — 1 chains, along with the chain
{u,v} give a partition of poset P into n chains. &



