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Chapter 4

Binomial Coefficients

4.1 Binomial Coefficient Identities
4.2 Binomial Inversion Operation
4.3 Applications to Statistics

4.4 The Catalan Recurrence

Binomial coefficients are seemingly somehow involved
with almost every combinatorial construction.



2 Chapter 4 Binomial Coefficients

4.1 BINOMIAL COEFF IDENTITIES

Table 4.1.1 Pascal’s triangle of binomial coefficients.

nl (o) () G ) & G G G E |2
0] 1 1
111 2
o0 1 2 1 4
511 3 3 1 3
401 4 6 4 1 16
501 5 10 10 5 1 32
6/ 1 6 15 20 15 6 1 64
701 7 21 35 35 21 T 1 128
S| 1 8 28 56 70 56 28 8 1 |256

REVIEW FROM §1.3 AND §1.5: We recall the following
definitions and results.

e Prop 1.3.1. The combination coeflicients (Z) satisfy
Pascal’s recurrence:

(n) =1 foralln >0 left column

(O> =0 for all £ > 1 top row

(1) = G () e
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e The binomial coefficient b, j, is the coefficient of

z¥ in the binomial expansion

(1+2z)" = an,kazk
k=0

e Prop 1.3.2. The binomial coeffs satisfy Pascal’s
recurrence.

e Cor 1.3.3. Forall k,n € N,

n
— b,
(1) = e

e Since combination coeffs have exactly the same values
as binomial coeffs, as per Corollary 1.3.3, they are
commonly referred to as binomial coefficients.

e Prop 1.5.3. For all non-negative integers n and k,

(Z) - Z—T_ (4.1.22)

e Cor 1.5.4. For all non-negative integers n and £,

(Z) T K (nn!_ B! (4.1.2b)
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Combinatorial vs. Algebraic Proofs

TERMINOLOGY: An algebraic proof of an equation is
achieved by transforming one side of the equation with the
ald of substitutions and of arithmetic operations into the
expression on the other side.

TERMINOLOGY: A combinatorial proof of an equation
is achieved by showing that both sides of the equation
count the same thing. Sometimes such a proof uses the
pigeonhole principle.

Numerous examples of both kinds of proof follow. Some-
times we give two or more proofs of a single assertion.
Various general methods, including mathematical induc-
tion, may be used with either type of proof.

Symmetry

Some identities are generalizations of properties read-
ily noticeable in Pascal’s triangle. One such property is
that each row of Pascal’s triangle is palindromic: it reads
the same forward or backward. For instance, we observe
the symmetry of row 8.

1 8 28 56 70 56 28 8 1

Proposition 4.1.1 [Row-Symmetry Property]. For
any integers n and k such that 0 < k < n,

02 s
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Algebraic Proof: Using Eq. (4.1.2b) yields this easy
algebraic proof.

(Z) B k!-(:!—k)! B (n—z!)!.k! B (nik> <

Combinatorial Proof: The left side of Eq. (4.1.3) is
the # ways to select k& objects from the set of n, to be
in the designated subset. The right side is the # ways to
select n — k objects to be excluded from it. There must
be the same number of ways to do either. &

Row-Sum Property

Another property of Pascal’s triangle is that the sum
of the entries in each row is a power of 2. E.g., in row 8,

1 +8+28+56-+70+56+28+8+1
— 9256 = 2°

Proposition 4.1.2 [Row-Sum Property|. The sum of
the entries in row n of Pascal’s triangle is 2". That is,

En: (Z) - (4.1.4)

k=0

Combinatorial Proof: According to Corollary 1.3.3,
the summands on the left side are the number of ways to
choose subsets of cardinality &£ from a set S of n objects,
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for respective values of k. Their total is the number of
ways to select a subset from S, over all possible subset
sizes, which is clearly 2", shown on the right side, since
each of the n objects is either present or absent. &

Algebraic Proof: Substituting £ = 1 into both sides of
the equation for a binomial expansion yields the following

result.
- £0)-
k=0
n . - n n . - n n
= (+ey| = Z(k)x _ Z(k>1
k=0 r=1 k=0
" /n
2" =
-7 =2 () °

Algebraic Proof: Another algebraic proof is by induc-
tion, starting with row 0 of Pascal’s triangle as a basis
case, and then using Pascal’s recursion to show that the
sum 1n row n doubles the sum in row n — 1. &

Column-Sum Property

Some other properties of Pascal’s triangle emerge af-
ter further investigation. For instance, the sum of all the
entries in any column, up to and including the entry in
row n, can be found in the next column in row n + 1.
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Example 4.1.1: In columns 2 and 3 of Pascal’s triangle,
we see the following configuration.

dlf [g ;

2

3 3

4 1+3+64+104+15 = 35
5 10

6 15

7 35

Prop 4.1.3 [Column-Sum Property|. The sum of the
entries in column ¢ (¢ > 0) of Pascal’s A\, from row 0 down
to row n, equals the entry in row n+ 1, column c+1. Le.,

2= w

Proof: By induction on the row number n.

BASIS: For n = 0, the sum of the entries down to row 0
is 1, in column ¢ = 0, and is otherwise 0; also,

( 1 ) B {1 ife=20
c+1 0 otherwise
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IND HYP: Assume for some n > 1 that

> () - (1)
— C c+1
IND STEP: Then

> () -5+ ()

— ( " >—|— (n) (induction hypothesis)

c+1 C

1
— (Zi— 1) (Pascal’s recurgpon)

Diagonal-Sum Properties

DEF: A diagonal from the upper left of a 2-dimensional
array, toward the lower right, is called a southeast di-
agonal. A diagonal in the opposite direction is called a
northwest diagonal.

DEF: A diagonal from the lower left of a 2-dimensional
array, toward the upper right, is called a northeast di-
agonal. A diagonal in the opposite direction is called a
southwest diagonal.

We observe that the sum of the elements along a fi-
nite initial segment of the southeast diagonal in Pascal’s
triangle appears just below the southeasternmost entry.
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Example 4.1.2:

) [;

Here is a southeast diagonal-sum.

o L)

1

1+3+6+10+15

10
15

35

N O T e W N

Prop 4.1.4 [SE-Diagonal-Sum Property]. The sum
of the first n + 1 entries on the southeast diagonal from
row r, column 0 in Pascal’s triangle equals the entry in
row r +n+ 1, column n, the entry immediately below the
last entry of the diagonal. That is,

i(;k) (r+Z+1>

k=0
Proof: This result follows from two previously derived
properties of Pascal’s triangle.

ey

k=0

(4.1.6a)

(4

k=0

(symmetry)

35
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(r +n+ 1) (col )
= column-sum property
r+1
1
— (r + Z + ) (symmetry) O

The following corollary simply reverses the order of
summation of the elements on the diagonal.

Cor 4.1.5 [NW-Diagonal-Sum Property]. For any
non-negative integer m such that 0 < m < n, the binomial
coefficients satisfy the equation

é(;:i) - (";1) (4.1.6b)

Proof: Reversing the NW diagonal sum

() () ()

on the left of the equation yields the SE diagonal sum

() () e ()

which starts at row n — m and includes m + 1 entries
downward, ending at row n, column m. By Prop 4.1.4,
the value of this southeast diagonal sum is the binomial

coefficient
n+1
(") 0
m
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The sums of northeast diagonals are Fibonacci num-
bers. For instance, the sum 1+ 54 6 4 1 along the north-
east diagonal that starts at (g) is the Fibonacci number

fr =13,

Example 4.1.3: The boxed Fibonacci numbers shown
here do not actually appear at the locations shown. They
are simply the sums along the northeast diagonals that
lead to them.

ol G B ) [
0 1 2 3 4
1
2 I 1+3+1 = 3] = £
3 3 21
41 4 1+6+10+4 = [21] = |,
5 10
6 6
7] 1

Prop 4.1.6 [NE-Diagonal Fibonacci Property]. The
sum of the entries on the NE diagonal from row n, column
0 in Pascal’s triangle equals the Fibonacci number f,, 1.

That is,

En: (” f k) = for (4.1.7)

k=0
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Proof: BAsIS: For n =0 and n = 1 the northeast diag-
onal sums are 1 = f; and 1 4+ 0 = f5, respectively.

IND HYP: For n > 2 assume that

n—1 n—2
Z(n_;_k> = fn and Z(n—i—k> = fn-1
k=0 k=0

IND STEP: By the Pascal recursion, we have

() = CE) )

Therefore,
“(n—k “(n—k—1 “(n—k—1
S =) e ()
k=0 k=0 k=0
2 n—jg—2 X n—k—1
- ( J ) + 2 ( k )
=0 k=0
= fon-1 + Jfn (induction hypothesis)
= fut1 (Fibonacci recursion )<

Products of Binomial Coefficients

Another pattern in Pascal’s triangle is the relation-
ship between each element and the element to its upper

left.
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Example 4.1.4: We observe in this inset from Pascal’s
triangle that

n n n n n

o] 3] l4) I5 [7].4 _ 35.2 _ 99 = [6]
= 4| 7 7 3
6 50 or, equivalently

7 6
4 = 140 = :

o (-4 =0 = [
8

The generality of this relationship, which is called the ab-
sorption property, is established by the next proposition.

Prop 4.1.7 [Absorption Property]. For 0 < k < n,

(Z)k - n(Z:D (4.1.8)

Algebraic Proof: By algebraic manipulation, we have

(Z)k - %k - (kiEl)! - ”(n(lq_—l)lk)f1 - "(ZQ

Combinatorial Proof: Alternatively, we observe that

the left side
n
k
()
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is the number of ways of choosing a board of k£ directors
from a set of n persons and then a chairperson from within
that board of k. This is clearly equivalent to the number
of ways to choose a chairperson from a set of n persons
and then another k£ — 1 persons from the remaining n — 1
persons for the rest of the board of directors, which is the

right side
n—1
(o) °

Absorption is a special case of a relationship between
an element and other elements along the northwest diag-
onal direction. This relationship is expressed by a highly
useful combinatorial identity that generalizes the following
illustration.

Example 4.1.4, cont.: Observe that whereas at one
position northwest of the coefficient (Z) we have

00 — 6\ 74l_354
- \3/  \4/)7 7

at three positions northwest of (Z) in Pascal’s triangle, we

have
Ao (Y _ (7 43 —
\1)  \4/)7 210
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o N O Ot =

DEEEE o pam .,
4 72 4) 73 /3 1
or, equivalently
7
[}

S v

The following formulation of this property is called the
subset-of-a-subset property.

Prop 4.1.8 [Subset-of-a-Subset Identity].
For 0 <k <m <n,

W) - (GG @

Algebraic Proof: By straightforward algebraic calcu-
lation, we have

(Z) (7:) T om! (nn!— m)! k! (nT'— k)!
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Combinatorial Proof: We can also reason combinato-

rially that the left side
n\ /m
m) \ k

is the number of ways of choosing a board of m directors
from a set of n persons and then an executive committee
of k persons from within that board of m. This is clearly
equivalent to the number of ways to choose an executive
committee of k persons from a set of n persons and then
another m — k persons from the remaining n — k persons
for the rest of the board of directors, which is the right

0 ;

Vandermonde Convolution

Thm 4.1.9 [Vandermonde Convolution]. Let n, m,
and k be non-negative integers. Then

W) - ()

7=0

Combinatorial Proof: A combinatorial proof supposes
that there are n +m objects in a set, n of them blue and
m of them red, and that k objects are to be chosen, for

which there are clearly ("zm) ways in all, the number of
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the right side. The number of ways to select j blue objects
and k — 7 red objects is the product (?) (ij); so the sum
of all these products, which is on the left side, must be the
same total as the right side. &

Another Proof: The sum on the left of the combinato-
rial equation above equals the coefficient of ¥ on the left
side of the polynomial equation

(I+z)"1+z)" = (L+az)"™"

and the binomial coefficient on the right side of the combi-
natorial equation equals the coefficient of z* on the right
side of that polynomial equation. &

Summary of Binomial Coeff Identities

Table 4.1.2 Basic Binomial Coefficient Identities

(Z) -~ (n;) n (Z:i) Pascal Rec  (4.1.1)

n n&
( k) = 7 Falling Power Formula (4.1.2a)
!
(Z) = 4 (nn_ ] Factorial Formula (4.1.2b)
n n
(k) — (n B k) Symmetry (4.1.3)
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= 2" Row-Sum (4.1.4)

= (n + 1) Column-Sum (4.1.5)
c+1

)
)
r JIZ k) _ (r +n+ 1) SE Diagonal (4.1.6a)
)
)

) .

k=0

m _ |

Z (n — (n + ) NW Diagonal (4.1.6b)

m — k m
k=0
“(n—k . . .

Z( I = fot1 Fibonacci NE Diagonal (4.1.7)
k=0

n n—1 )
(k) k = n(k B 1) Absorption (4.1.8)
n m n n—k
(m) (k) = (k) (m B k) Subset-of-a-Subset  (4.1.9)

n' " ] = nAm Vandermonde Convo (4.1.10)
: 1) \k—7 k

=0

Parity of Binomial Coefficients

Beyond the basics of binomial coefficients, there are
many fascinating byways. For instance, how might one
determine the parity of a given binomial coefficient, such

as
165
93



k

)
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without doing a lot of calculation? Scanning Pascal’s tri-
angle enhances the mystery. One observes that all the
entries in rows 1, 3, and 7, numbers of the form 2" — 1,
are odd. Moreover, the number of odd numbers in a row
appears to be a power of 2. Determination of the parity

of a binomial coefficient was studied systematically by the
British mathematician James Glaisher (1848-1928).

Theorem 4.1.10. Let n and k be non-negative integers.

Then
(Ln/2J> mod 2 otherwise

(Z> [k/2]

Proof: This proof splits naturally into four cases.

0 mod 2 if n is even and k is odd

Case 1 — n even and k odd:  Since n is even, it is clear
that, for this case, the value of the right side of the ab-

sorption identity
n n—1
k =

is even. Since the product k(g) on the left side must also
be even, and since k is odd, it follows that (Z) is even.

Case 2 — n even and k even:  For this case, we expand
the binomial coefficient.

_ n_ﬁ _nn-1)n—=2)---(n—k+1)

ko 1-2-3---k



20 Chapter 4 Binomial Coefficients

(n—1)(n—=3)---(n—k+1) n(n—2)(n—4)---(n—k+2)

1-3-5---(k—1) 2 4.6k

Since the denominator has k/2 even factors, we continue

(n—1)(n—=3)---(n—k+1) n(n—2)(n—4)---(n—k+2)

1-3-5--(k—1) 25 .1-2-3...%

and, since the numerator has k/2 even factors,

(n-D(n=3)-(n—k+1) 27-5(53-1)(5-2)-- (53

1-3:5---(k—1) 2%.1.2.3...%

(n=1)(n-=3)---(n—-k+1) (n/Q)
1-3:5---(k—1) k/2

Therefore,

n n/2

1.3,5,,,(,6_1)(0 _ (n—l)(n—S)...(n—k—l-l)(k/z

It follows that for n and k& both even,
n n/2 In/2|
= = d 2 4.1.11
() = (i) = (iay) m R

The first equivalence in (4.1.11) holds because each of the
factors preceding the binomial coefficient in the numerator
and in the denominator is odd, and multiplication of an
integer by an odd number does not change its parity. The
second holds because n/2 = |[n/2| and k/2 = |k/2]| for N
and k both even.

)



Section 4.1 Binomial Coeff Identities 21

Case 3 — n odd and k odd:  As in Case 1, our starting
point is the absorption identity

(i) = (0)

Since n and k are both odd, and once again, since multi-
plication of an integer by an odd number does not change

the parity, it follows that
n n—1
(k) (k B 1) mod 2
Since n — 1 and k£ — 1 are both even, it follows from Case

2 that
(1) = (i) moa

and, hence, that
(o) = (Gag) moa2

Case 4 — n odd and k even:  The symmetry identity
implies that

(n_k)(@ _ (”_’“)(nﬁz) and n(ni;i1> _ n(”;l)

It follows from the absorption identity

o=0(,"5) = (1)
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n) = ()

Since n — k and n are both odd, we have

(1) = (") moa2

Applying Case 2 to the right side, we obtain

() = (10 D o

[k/2]

Since n is odd, the upper index |(n —1)/2] equals |n/2].
¢

that

A simple algorithm to decide the parity of a binomial
coefficient is to apply Theorem 4.1.10 iteratively, either
until the upper index is even and the lower index odd or
until the lower index is 0.

Example 4.1.5: Here are both possible types of termi-

nation.
1
65 82 41 20 — 0 mod 2
93 46 23 11

)= ()= (3) = () = () = 1o
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In order to see why the number of odd binary coefficients
in a row of Pascal’s triangle is a power of 2, we observe
that, in binary numbers, the integer operation

n — |n/2|

is achieved by erasing the rightmost bit. We observe also
that Case 1 of Theorem 4.1.10, in which n is even and
k is odd, is discernible by a 0-bit at the right end of the
binary numeral for n and a 1-bit at the right end of the
binary numeral for k. If the parity algorithm uses binary
numerals, then iterative erasure of the rightmost bits is
not actually necessary. It is possible, instead, to align both
numerals flush right and to scan to see whether there is a
0-bit above a 1-bit.

Example 4.1.5, cont.: In scanning the aligned binary
numerals

16519 = 101001015,

9310 = 01011101,

leftward from the right end, the first occurrence of a 0 in
the upper index occurs at the 2'-bit. Since there is also a
0-bit immediately below it, the scan continues. The next
0 in the upper index occurs at the 23-bit, and there is a
1-bit below it, so the scan terminates and the decision is
even parity. In scanning the aligned binary numerals

75190 = 10010115
1150 = 00010115

one observes that there is a 0-bit beneath every 0-bit in
the upper index, so the decision is odd parity.
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Proposition 4.1.11. The number of odd binomial coef-
ficients in row n of Pascal’s triangle is 2", where w is the
number of 1-bits in the binary representation of n.

Proof: For the binomial coeflicient (Z) to be odd, there
must be a 0 at each bit in the binary numeral for £ for
which there is a 0 at the corresponding bit of the binary
numeral for n. However, if there is a 1 at a bit of the
binary numeral for n, there may be either a 0 or a 1 at the
corresponding bit of the binary numeral for k. If there are

w 1-bits for n, then there are 2 values for k that satisfy
the rule for the 0-bits. &

Corollary 4.1.12. If the integer n is of the form 2" — 1,
then every binomial coefficient in row n of Pascal’s triangle

is odd.

Proof: There are no 0-bits in the binary representation

of 2" — 1. &
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4.2 BINOMIAL INVERSION

This section develops an incremental technique used
with binomial coefficients, called binomzial inversion. Its
main application in this section is within a solution of the
derangement recurrence.

DEF: The transform of the sequence (f,) under bino-
mial inversion is the sequence (g,,) with

gn = i(@)(—l)jfj (4.2.1)

=0

A characteristic property of anything mathematical that
is correctly called a duality operation is that a second
application of the operation restores the original object.
Theorem 4.2.1 confirms that a transformation called bino-
mial inversion of sequences has this property.

Theorem 4.2.1. Let (f,) be a sequence and (g,) its
transform under binomial inversion. Then, for all n > 0,

fu = é(?)(—l)jgj (122)

In other words, retransformation restores the original se-
quence (f,).
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Proof: Start at the right side of Eq. (4.2.2) and substi-
tute the inversion formula of Eq. (4.2.1) for g,.

s S () (e

_ : ;( )() Ly, (4.2.3)

Exchanging the order of summation is useful here.

ZZ( )( ) —1)7Fif, (4.2.4)

=0 j3=12

Applying subset-of-a-subset identity (Prop 4.1.8) reduces

the # occurrences of the summation index 3.

o o [

—1
=0 j3=12 ‘]

Then factor to simplify the inner summation.

B0 e

Substitute £k = 7 — 1.
n n n—i n— i
EORECT)
i=0 k=0

Inner summation — exponentiated binomial.
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i=0
Using the Iverson truth function (i = n) leads to comple-

tion of the proof.

= (Z)f (n=n) = fu o

Observe at Eq. (4.2.4) above that the summation index
7 occurs twice in the summand within a binomial coeffi-
cient, once as an upper index, and once as a lower index.
In such circumstances, as seen here, the subset-of-a-subset
identity often facilitates a transformation that reduces the
number of occurrences of the summation index in the sum-
mand.

Some Basic Examples of Inversions

The first three examples here of inversion are intro-
ductory, to show how inversion works.

Example 4.2.1: The constant sequence

(fu) = 1 1 1 1

has the inversion
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=0\
S0

j=0
= (-2 =1
I

= (gp) =1 0 0 O
More generally, the sequence

(fn) = ¢ ¢ ¢ ¢

has the inversion

(gn) = ¢c 0 0 O

Example 4.2.2: The natural number sequence

(f) = 0 1 2 3

is inverted as follows.
In = Z (n> (1) £
= En: j (7)(—1)3' (4.2.5)
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Apply the absorption identity to eliminate an occurrence

of the index j.

= v
a3 (1)

Substitute 7 =7 + 1 to align the binomial coefficient with

the summation limits.

B —1 ifn=1
=1 |0 if n#1
= (gny = 0 —1 0 O

In Eq. (4.2.5) of this example, the summation index j oc-
curs within a binomial coefficient and also as a multiplier.
The absorption identity is the usual binomial identity by
which the number of occurrences of the index variable is
reduced in such a circumstance.

Theseq 0 1 2 3 --- can also be represented as

<(71L)> Accordingly, it should be unsurprising if calculating
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the inversion of the sequence (:f) is similar to Example
4.2.2.

Example 4.2.3: The binomial coefficient sequence

- ()

for a fixed non-negative number r has the inversion se-
quence

n

In = Z(g(—l)jf;‘

= \J
_ é (i) (?) (—1) (4.2.6)

Apply the subset-of-a-subset identity and then factor.

SOy
- ()56

Substitute 3 =2+ r. Then

e () E (T
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At Eq. (4.2.6), the summand has two occurrences of the
summation index 7. This time, both are within different
binomial coefficients, with one occurrence as an upper in-
dex and the other as a lower index. The subset-of-a-subset
identity is frequently used to eliminate one of the occur-
rences in such summands, thereby simplifying the sum.

Derangements

The point of learning how to invert sequences is not
just to pose a new class of computational exercises. Bino-
mial inversion has numerous extrinsic applications.

Example 4.2.4: Every permutation of the integer in-
terval [1 : n] can be obtained by choosing » numbers from
[1 : n] and deranging them. Accordingly, if D; is a de-
rangement number, then

v ) () ) ()2

It follows that the sequence



fn
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has the binomial inversion

By the duality property of binomial inversion, we have

J

pu = (03 (%) -1V

j=0
n - n
= 3 ()i
=0
- Sy
=0
Dn_ll 11 [l dim
= =ty gt () T e

Thus, the proportion of derangements among the permu-
tations of a set of n objects tends to e™! as n gets larger, a
result that we previously derived with inclusion-exclusion
in Example 3.6.5. This illustrates again our perspective
that it is helpful to have a variety of mathematical tools
available for the solution of a given problem.

1
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More Examples of Inversions

The summation techniques presented in this section
for transforming sequences are widely applicable. The
next section of this chapter applies these methods to com-
putations in probability and statistics. We complete the
present section with two more examples that combine the
method of binomial inversion with the binomial identities
derived previously.

Example 4.2.5: When two factors of a summand are
both binomial coeflicients that contain the index of sum-
mation as a lower index, the key to simplification is to set
up an application of the Vandermonde convolution, which
would simplify the summand. The sequence

o = (Y)

has as its binomial inversion the sequence

Gn = i(g(—l)jfj

Sl
00

Apply the symmetry identity as a setup
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N :0 (7) (n . j)

J

and then invoke the Vandermonde convolution.
B N +n
- n
Example 4.2.6: Sometimes there is a quotient of two

binomial coeflicients both of which contain the index of
summation. The sequence

gn = Z(n)(—l)jfj

= \J
-2 (e ()

Here we apply the subset-of-a-subset identity

()G) = G)G)

thereby obtaining
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s 0
"ERR/C)
()50

j
which can be simplified using the diagonal-sum identity

 (N\T'/N 41
- () )
N +1
N-—-—n+1
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4.3 APPLICATIONS TO STATISTICS

Binomial coeflicients frequently occur in sums that
arise in probability and statistics. We continue to seek
to reduce the number of occurrences of the index of sum-
mation within the summand. There are a few additional
rules of thumb to be learned here and used.

Probability and Random Variables

Some basic definitions are now recalled from elemen-
tary statistics and probability. The pace of the exposition
here presumes that the reader has some prior familiarity
with these topics.

DEF: A discrete probability space is a pair (€, Pr) as
follows.

e The discrete set (2 is called a sample space.
o A subset of () is called an event.

e The set 2% of all subsets of € is called the event
space.

e The function Pr : 2% — R is called a probability
measure, and it satisfies the following axioms.

1. 0 < Pr(A) < 1, for every event A C Q. The
number Pr(A) is called the probability of the
event A.

2. Pr(Q2) = 1.
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3. If the events Ag, for s € 5, are mutually exclusive
subsets of €2, then

Pr( U AS) = ZPr(AS)

seS seS

DEF: A random variable X on a sample space is a real-
valued function. It is called a discrete random variable
if the set of values it takes is finite or countably infinite.

NOTATION: Let X : 2 — R be a discrete random variable
on a sample space {2 with probability measure Pr. For
z € R, the probability of the set {w € Q | X(w) = x} is
denoted Pr(z).

Mean and Variance

The expected value of a random variable, also called
the mean, is commonly described as a weighted average.
The variance and the standard deviation are measures of
dispersion from the mean.

DEF: Let X : 2 — R be a discrete random variable on a
sample space ) with probability measure Pr, and let D
be the set of values that X takes. The expected value
or mean of the random variable X, denoted E(X) or
x, is the sum

E(X) = px = »_ =z-Pr(z) (4.3.1)
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DEF: Let X : 2 — R be a discrete random variable on a

sample space ) with probability measure Pr, and let D
be the set of values that X takes. The variance of the
random variable X, denoted V(X) or ¢%, is the sum

VX) = 0% = Y (e —px)? Prle) = B(X - ux]?)
e (4.3.2)

DEF: Let X : 2 — R be a discrete random variable. The
standard deviation of the random variable X, de-
noted SD(X) or ox, is the square root of the variance.

SD(X) = ox = /0% (4.3.3)

NOTATION: When it is clear from context to which ran-
dom variable X they pertain, the subscripts for mean and
variance may be denoted u and o2.

DEF: In calculating the mean of a list of numbers or
the variance of a list of numbers, one regards each
element of the list as equally likely.

Proposition 4.3.1. Let X : {2 — R be a discrete random
variable. Then

ox = E(X?) —u? (4.3.4)

Proof: Let D be the set of values taken by X. We pro-
ceed straightforwardly, starting from the Equation (4.3.2).

0% = Y (v —px)?-Pr(z)

reD
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= ) (@® = 2zpx + py) Pr(z)

xeD
= Z z” Pr(z Z 2zux Pr(x) + Z 1 Pr(z)
xeD rED xeD
= B(X?) - 2ux - ZazPr ) + - ZPr
reD r€D
= BE(X?) —2ux -px +px -1
= BE(X?) - py %

Binomial Distribution

The prototypical experiment whose outcomes have a
binomial distribution is a sequence of n tosses of a coin.
Taking one of the possible outcomes of an individual toss,
say heads, to be “success”, what is binomially distributed
is the number of heads. We now apply the binomial coef-
ficient identities of §4.1 to the calculation of the mean and
variance of the binomial distribution.

DEF: Given an experiment with binary outcome (success
or failure) that is to be performed n times, the binomial
random variable X is the number of successes. Suppose
that the probability of success is p, and that the n trials
are independent. Then

Prx =g) = () - (43.5)

J

The sample space is the sequence of outcomes of the n
trials. An event is a set of possible outcomes.
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Proposition 4.3.2. The expected value of a binomial
random variable X on n trials, each with probability p
of success, is

E(X) = np
Proof: FEq. (4.3.1) defines expected value.

— zn:j.Pr(X:
=0

We substitute the probability of a binomial random vari-
able, as given by Eq. (4.3.5).

n

= Z]( .)p”(l -p)"’
=0

Absorption eliminates one of the four occurrences of the

summation index j.

n

= Z”(n-_ 1) p(1—p)"

= M

_ an(n_1> i=1(] — p)n

7 —1

Substituting : = 7 — 1 yields the summation

n—1
n—1Y ; n—1—i
:an( ; )p(l_p) 1
=0

that we recognize as a binomial expansion, and simplify.
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= nplp+(1-p)"™"

Prop 4.3.3. The variance of a binomial random variable
X on n trials, each with probability p of success, is

V(X) = np(1—p)
Proof: Once again, start at Eq. (4.3.1).

B(X?) = Y7 Pr(X =)

= éf (?) p(1—p)"~’

There are once again four occurrences of the index j of
summation. Applying absorption reduces the exponent of

7 in one occurrence, a reasonable step.

=0 )1
= npzn:J (n — 1) pj—l(l _p)n—J
=0 )-1

Substitute : = 7 —1 to align the indices of the binomial co-
efficient with the upper and lower limits of the summation,

another reasonable step.



= np + n(n—1)p* = np + n*p®> — np
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np g(l + 1) (n ; 1) p'(1—p) i

Splitting the sum like this helps here

because the summation in the first part is recognizable as

a binomial expansion.

Applying absorption again now eliminates one occurrence

of the summation index.

n

np + mp) (n—1) (?:f)pi(l —p)"

i=0
Substituting £ = 7 — 1 realigns the lower index of the

binomial coefficient with the lower limit of the summation.

np + n(n—1)p° En: (n B 2>pk(1 —p)nT2k

k=0
2

n*p® 4+ np(1 — p)
By Propositions 4.3.1 and 4.3.2,
% = B(X?) - B(X)
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= [n’p® + np(1 — p)] — n°p°
= np(1 —p) &

Unbiased Estimator of the Mean

An intuitive statistical approach to estimating the
proportion of persons in a population of large size N who
have a given characteristic (such as enjoying recreational
mathematics) is to take a random sample and to use the
proportion in that sample to estimate the proportion in
the general population. We will use binomial coeflicient
identities in confirming the validity of this approach.

DEF: An estimator 6 of a statistical characteristic 6 of a
population is said to be an unbiased estimator if the

A

expected value F/(0) for a random sample equals 6.

Proposition 4.3.4. The sample proportion is an unbi-
ased estimator of the proportion of individuals in a general
population that have a given characteristic.

Proof: Suppose that in a population of size N exactly
M individuals have a given trait. A sample of size n is
taken. The random variables of interest are the number m
of persons with that trait and the proportion

X =

m
n

of persons with the trait. The total number of ways to
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choose a sample of size n is

N

n
The number of ways that a sample of size n could have
exactly 7 persons with the prescribed trait is the product

()0

J n—J

of the number of choices of 7 individuals from the popula-
tion of size M with the trait and the number of choices of

the remaining n — j individuals from the N — M persons
who do not have the trait. Thus,

o)
8

Accordingly,

3

BX) = 3 L prim=j)

o,
I
S

3
N
=
SN———
N
i
|
m.z
SN———

S | =
o

Il

@)

LR
TN
3 =
N—
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=200 2 (e

Apply the absorption identity to eliminate one occurrence

of the index of summation.

) 2 ()0
-0 20500

7=0

Now use the Vandermonde convolution.

- 500 (o)
M nl (N—1)2=t M

n N&mo (n — 1)! N

Thus, the intuitive method of estimating the mean is un-

biased. &

Unbiased Estimator of the Variance

Let X be a random variable on a space €2. The iden-
tically distributed random variables

X1 Xo ... X,

are the values of X on n samples from {2, with sample



E(02) =
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mean X. Statisticians use the estimator

o _ XX - X)X - (D X))

[0} _=
n—1 n—1

with n — 1 in the denominator (rather than n), for the
variance. This is explained by the next proposition.

Proposition 4.3.5. The sample statistic

o _ XX - X)X - nT (D X))

[0} _=
n—1 n—1

(4.3.6)

1s an unbiased estimator of the variance of the random
variable X .

Proof:
p(rxy)  E[EX)]
n—1 n(n —1)
- TSR - e D)

Split the double summation into two parts.

1

= T LB - e )

- Y B

1=1 53=1
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- (nil n—l) ZEX2
- n—lZZE - (J #1)

1=1 53=1

[ 0 .

DN O ) SIS
=1 =1 7=1
Both sums are resolvable.

1 —1
_ L oexey - Ml gy

n n(n —1)
= E(X®) — BE(X)’
= V(X)

Thus, division by n — 1 leads to an unbiased estimate. <
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4.4 THE CATALAN RECURRENCE

REVIEW FROM §1.2:

e The Catalan sequence {c,} is defined by the recur-

rence
co = 1; initial value
Cp = CoCp—1 T CiCp—2+ -+ Ch_1Co forn >1

Surprisingly, perhaps, the closed formula for ¢, is a mul-
tiple of a binomial coefficient.

Binary Trees

In graph theory, the set 7, of binary trees can be
defined recursively:

e The empty tree ® is in the set 7.

e The tree K] with a single vertex designated as the
root is in the set 7, .

o If "€ 7, ,and if v is a vertex of the tree T', then each
of the following rooted trees is in the set 7, .

i. The tree obtained by adjoining a new vertex to
v, called the left-child of vertex v. (A vertex has
at most one left-child.)

ii. The tree obtained by adjoining a new vertex to
v, called the right-child of vertex v. (A vertex
has at most one right-child.)
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Figure 4.4.1 illustrates the binary trees with 0, 1, 2, and
3 vertices. It is easy enough to verify for these small cases
that the Catalan number ¢,, is the number of binary trees
with n vertices.

Co =1 d {empty tree}
Cq =1 O
o Q
Co = 2 / \
o o
O O Q Q Q
/ / / A\ \ \

C3 = ' « o o » ®

/ \ / \

[ o o o

Fig 4.4.1 The smallest binary trees.

Remark: In computer science, each child of a vertex of a
binary tree is designated either as a left-child or a right-
child, even if there is only one child. The importance
of this designation occurs in applications such as binary
search trees and priority trees (see |GrYe2006]).

DEF: The left subtree of a binary tree 1" is the subtree
whose root is the left-child of the root of T'. The right
subtree of a binary tree 1" is the subtree whose root is

the right-child of the root of T
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Proposition 4.4.1. For n > 0, the number of n-vertex
binary trees equals the Catalan number c,,.

Proof: By induction on the number n of vertices.

BAsSIS: Clearly, ¢g = 1 and ¢; = 1 are the numbers of
binary trees with 0 and 1 vertices, respectively.

IND HYP: Let n > 0. Suppose for all integers k& with
0 < k < n, that ¢, is the number of binary trees with &
vertices.

IND STEP: Suppose that a binary tree has n vertices. For
k =20,1,...,n — 1, the number of possible left subtrees
with k vertices is ¢, by the induction hypothesis. Of
course, the right subtree would then have n—k—1 vertices,
so that there would be a total number of n vertices within
the union of the two subtrees and the root, as depicted in
Figure 4.4.2.

@8 nhew root
P ~N

binary tree with - ~

k vertices > binary tree with
@ @ n-k-1 vertices

Fig 4.4.2 Joining left and right subtrees to a root.

The induction hypothesis also implies, therefore, that the
number of possible right subtrees is ¢,,_j._1. Hence, by the
rule of product, there are cpc,,_i_1 n-vertex binary trees
with k£ vertices in the left subtree. Accordingly, the total
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number of n-vertex binary trees is given by the sum

n—1
Cnp — E Ci, Cn—k—1
k=0
= CgCp—1 + C1Cp—2 + -+ + Cp—_1Co &

Nested Parentheses

The set P of well-nested strings of parentheses
is defined recursively (as depicted in Figure 4.4.3 below):

e The empty string A is in P.
o If P, P, € P, then the string (P;)P, is in P. That

is, we insert the string P; inside a new pair and then
juxtapose the string P, at the right.

In listing the well-nested strings with 0, 1, 2, and 3 pairs
of parentheses, the new pair specified by the recursion rule
above is depicted by brackets.

0 pairs A = empty string co=1
1 pair  [] c1 =1
2 pairs [0, [() o =2

3 pairs  [100), [1(0);[0]0, 100 ()] c3 =5

Proposition 4.4.2. Forn > 0, the number of well-nested
strings of parentheses equals the Catalan number c,.

Proof: This proof follows the exact same lines as the
proof of Proposition 4.4.1. The new pair of parentheses
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with well-nested substrings inside and outside in the re-
cursive construction here corresponds to the new root with
left and right binary subtrees there. &

Subdiagonal Paths

DEF: A northeastward path or NE-path in the array
[0 : n] x[0:n]is a path whose directed edges are each one
unit in length and lead northward or eastward.

DEF: A subdiagonal path from (0,0) to (n,n) in [0 :
n] x [0 : n] is a NE-path along which each point (z,y)
satisfies the inequality « > y.

The inequality in the definition means, as illustrated in

Figure 4.4.3, that the path never crosses above the longest
northeast diagonal.

® © o o o (5,5)

(0,0) o o o o
Fig 4.4.3 A subdiagonal path from (0,0) to (n,n).
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Proposition 4.4.3. For n > 0, the number of subdiago-
nal paths from (0,0) to (n,n) in the array [0 : n] x [0 : n]
equals the Catalan number c,,.

Proof: In every prefix of a well-nested string of paren-
theses, the number of left parentheses is greater than or
equal to the number of right parentheses, and the total
number of left parentheses equals the total number of right
parentheses. Both these facts are provable by an induc-
tion on the length of the string. It follows that the well-
nested strings of n pairs of parentheses are in bijective
correspondence with the subdiagonal paths in the array

[0:n] x[0:n]. ¢

Solving the Catalan Recurrence

Of the many methods of solving the Catalan recur-
rence, the one now presented, based on work of D. Andre
in 1878, is probably the simplest to follow.

Theorem 4.4.4. The Catalan recurrence

co = 1; initial value

Cn = CoCp—1 + Ci1Cp—a + -+ + cp_1cp forn >1
has the solution
1 2n 1 (2n)!
C’I’L — = .
n+1\n n+1 nln!
Proof: Consider the set Syg of all NE paths from (0,0 to
(n,n) in [0 :n] x [0 : n]. Suppose that each step eastward
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on an NE path is represented by the letter EE and that
each step northward is represented by the letter N. For
instance, the path in Figure 4.4.3 is represented by the
string

ENEENENNEN

This correspondence is evidently a bijection between the
set Sxyg of NE-paths and the set of strings in E and N of
length 2n with n occurrences of each letter. The number
of ways to choose the n locations for the N’s in such a

string is
2n
n

The bijection establishes that this is the total number of
NE paths. By Proposition 4.4.3, the Catalan number ¢,
equals the number of subdiagonal paths in the array [0 :
n] x [0 : n]. Our approach is to subtract from this total
the number of strings that do not represent subdiagonal
paths.

Observe that a path is not subdiagonal if and only if, at
some point, the number of northward steps has exceeded
the number of eastward steps. Accordingly, the corre-
sponding string
51592 ...89n

would have a prefix in which the number of N’s exceeds
the number of E’s. If 27 + 1 is the smallest index at which
this occurs, then the number of E’s in the prefix

§182...825+1

is 7 and the number of N’s is 7 + 1.
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It follows that in the suffix

8254282543 - -352n

there are n — 7 E’s and n — 5 — 1 N’s. Suppose that in the
suffix, each E is replaced by an N and each N by an E. This
is called a reflection of the subpath or a reflection of
the substring. The resulting string has n—1 E’s and n+1
N’s. It represents an NE path in [0:n —1] X [0 : n 4+ 1],
and there is a bijection between the set of non-subdiagonal
paths from (0,0) to (n,n) in [0 : n] x [0 : n] and the set of
NE paths from(0,0) to (n—1,n41) in [0 : n—1]x [0 : n4+1],
whose cardinality is
2n
()

Thus, the number of subdiagonal paths from (0,0) to
(n,n)in [0 :n] x [0:n]is

(2n> B ( 2n ) (2n)2=Lt(n+1)  (2n)2=Ln

n! n!
1 2n
B n—l—l(n) ©

Example 4.4.1: ¢35 =

n n—1 B

Example 4.4.2: ¢4, =



56 Chapter 4 Binomial Coefficients

Generalized Binomial Theorem

An alternative proof of the solution to the Catalan
recurrence uses the generalized binomaial theorem.

NOTATION: The k* derivative of a function f(z) may be
denoted f(#).

DEF: An analytic function is a function f(x) with an n'®

derivative for every n > 0.

Thm 4.4.5 (Generalized Binomial Theorem). For
any real number s, the exponentiated binomial (1 + z)*
has the power series

(1+2z)° = Z(Z):ck
k=0
. 1 Sl 82 9 SE 2

Proof: For f(x) = (14 z)®, observe that

f0) = (1+2)"| =1 = s
=0
f/(O) = s(l—l—az)s_l — 5.1 = &L
=0
f”(O) = s2(1 4 z)%7 = §2.1572 = &%
=0

By induction, it can be proved that
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Recall that the Maclaurin series expansion® of an analytic
function f(x) is

>, f(k)
o) = Zf k!(O) ok

= _).330 4+ f/(o).xl + f//(O). 2

0! 1! 2!

—
-

Thus, the substitution f(™)(0) = s yields the conclusion.
¢

Example 4.4.3: In the solution of the Catalan recur-
rence below, we use this generalized binomial expansion.

(1—42)'% = i @) (—42)"
(

* This is equivalent to the Taylor series expansion at £ = 0.
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Alternative Proof of the Catalan Formula

An alternative proof of the solution

1 on 1 (2n)!
Cn — — .
n+1\n n+1 nln!

to the Catalan recurrence provides a traditional illustra-
tion of the power of the method of generating functions in
solving recurrences. We define the generating function

C(z) = f: cnz"
n=0

and begin as in §2.2.
Step l1la. Multiply both sides of the Catalan recursion by

AL

n—1

2’ = chcn_k_lz" (4.4.1)
k=0

Step 1b. Sum both sides of Eq. (4.4.1) over the same
range of values, as large as possible.

%} o~ n—1
cp2t = g g ClLCp—f_12" (4.4.2)
n=1 n=1 k=0

Step 2. Replace the infinite sum on the left of Eq. (4.4.2)
with a finite sum involving the generating function C'(z).

o n—1

C(z) — ¢y = Zchcn_k_lz"

n:lk:O

Exchange the order of summation.
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oo oo
n
= E E CkCn—k—1%

k=0 n=k+1
oo oo
= z g ez g Cpp_12"F L
k=0 n=k+1

Substitute y =n — k — 1.

o0

oo
= zg ez g c;z’

k=0 7=0

20(2)* = C(z2) +1 = 0 (4.4.3)
Step 3. Solve for C(z) in Eq. (4.4.3) by the quadratic

formula.
14++v1—-4
Clz) = 1= > © (4.4.4)
z

Step 4. To solve for the value of the general Catalan
number ¢,, we apply the Generalized Binomial Theorem,
as in Example 4.4.3, to Eq. (4.4.4).

(1—4z)t? = " (§>(—4z)” = 1+) <§>'_(—4z)"
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14 %-(—47;) + %-(—4;;)2 + o

Since every term of this series except the first is signed

negative, the appropriate choice is the negative root. That
is,

Clz) = 1= V;Z—‘LZ _ ;—j <n>!_(—4z)7(‘4.4.5)

N |~

To simplify (4.4.5), we expand part of the summand

1 /1y 1 1 -1 =3 —(2n — 3)
n! \ 2 onl 2 2 2 2
1 ()"t
= 7 om [[i-1)
71=1
n—1 n—1
L =0y (20— 1)(29)
n! 2 , 27
71=1

= : (4.4.6)

and we substitute the result (4.4.6) back into Eq. (4.4.5),
to obtain

g

o) = 23 B Cay

N |~
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R | G L
2z 22n=1(n — 1)In!
O iU
2z 22n=1(n — 1)In!
B R i VT [P
2z 22n=1(n — 1)In!
= 2n-2)! , _, = 1/2n -2\ ,_,
:nz::l(n—l)!nlz :nzlg(n—1>z
B i 1 (2">z”
—n +1\n

This yields the conclusion




