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The concern of this chapter is a collection of methods
for the evaluation of a finite sum whose summands are
given as a sequence, either in a functional form f(k), or
in a subscripted form z;. Analogous to the sense in which
a real function may have for its integral over an interval
an anti-derivative function evaluated at the bounds of the
interval, the value of such a finite sum may be given by
some other function of the lower and upper limits of the
index k.

REVIEW FROM §1.4:

e Let (x,,) be a sequence. Then the expression

Za:j = z0+ 21 + -+ xp (3.0.1)
=0

(and also its value) are called the n*™* partial sum.

NOTATION: Sometimes S,, denotes the n*" partial sum.
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3.1 NORMALIZING SUMMATIONS

DEF: A consecutive summation is an expression

b
>
k=a

where a and b be integers or integer-valued variables, and
where (z,,) is a sequence with its values in an algebraic
structure (e.g., the integers, reals, or complex numbers)
with an associative and commutative addition. Its value,
the sum, is defined recursively.

; 0 if b<a

Z A ifb=a
T =

k=a ( Z;Z :Ijk> +x, ifb>a

The parameters of the expression have names:
e k is called the index variable;
e a is called the lower Ilimit of the index;
e b is called the upper limit of the index;
e 1, 1s called the summand.

If the lower limit a and the upper limit b are both given as
fixed integers, then the sum has a definite value within
the domain of its summands. For instance, if the sum-
mands are integers, then the sum is an integer.
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2
Example 3.1.1: ) k> = 0°+1°+2> = 5. (3.1.2)
k=0
Quite commonly, a summation has a lower index limit

fixed at 0 and a symbolic upper limit of n, in which case
summation may be regarded as an operator on a sequence

(xp, |m=0,1,...)

whose application produces a sequence of partial sums

<zn::cj n = 0, 1,...>
§=0

akin to the way that integration operates on a function to
produce a new function. This chapter develops methods
for evaluating the summation, which, in this context,
often means producing a closed formula for the elements
of the sequence of partial sums.

Example 3.1.1, cont.: With the variable n as the up-
per limit, the value of the sum of the form (3.1.2) is

zn:kz _ 2n3 +3n? 4+ n

k=0 6
This formula could be confirmed immediately by mathe-
matical induction, or by any of the methods of summation
to be introduced in subsequent sections of this chapter.
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Sums over Sets

In a more general context, the indexing set of a given

summation may be any finite set T'. Given any function
f with values in Z, Q, R, or C, the sum

> )

is well-defined. In a sum over an unordered indexing set,
the order in which the index variable ¢ takes its values is
not specified or implied, and the value would be the same
for any order of summation.

Example 3.1.2: The sum of the weights of the edges in
the graph G of Fig 3.1.1 is represented by the expression

> wle)

ecFEq

whose value 1s

6+7+3+2+3+6+5+5+6+4+10+5 = 62

a 6 b 7

® o oC
3 2 3
G d 5 f
® 5 o @
5 6 4
h
g® 10 ¢ 9 ®.

Fig 3.1.1 An edge-weighted graph.
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In principle, the edges of the graph G could be indexed
by integers 0,1,...,11, which would permit the sum of
their weights to be represented by a consecutive summa-
tion. There seems to be little gained from doing so in this
example. Our focus here is to do something more efficient,
when possible, than successively incrementing a running
total by additional summands. Such tedium is unavoid-
able when the summands have no discernable pattern, es-
pecially if the summands are random numbers. However,
in many other cases, when the index set is a subset of the
integers, a transformation may simplify the evaluation.

DEF: Indexing the summands over consecutive integers is
called normalizing a summation.

Example 3.1.3: The sum

>k

1<k<20
kE odd

can be normalized to
9
> (2k+1
k=0
which is readily transformed further into

9 9 9

Y 2k+1) = > 2%+ > 1

k=0 k=0 k=0
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9
— 2Zk+10
k=0

102
= 2. - + 10 (by Corollary 1.5.2)

= 102 + 10
= 100

Many of the methods to be introduced in this chapter
are designed to work on normalized summations. Other
sums are transformed into consecutive sums to permit the
application of such methods.

lverson Truth Function

When the index variable of a summation has irregular
gaps in its range, it may still be possible to normalize, by
inserting into the summand an artificial multiplier that
effectively cancels the summand across the gaps.

Example 3.1.4: For instance, the index variable p of

the sum
> Vb (3.1.3)

p<n
p prime

has gaps between consecutive primes.

DEF: The Iverson truth function is defined by the rule

(predicate) = 1 if the predicate is true
P - 0 1if the predicate is false
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Example 3.1.4, cont.: Using the Iverson truth func-
tion facilitates the reformulation of (313) as a consecutive
summation.

Y vp = > [(pprime)- p]

p<n
p prime

CONVENTION: The value of the product
(P(K)) - ax

is 0 whenever the value of the Iverson expression (P(k))
is 0, even when aj, is undefined.

Example 3.1.5: The value of the sum

n

Z L (p prime)

p=0 p

is well-defined, since the “strong zero” of the Iverson ex-
pression (p prime) cancels the effect of the undefined quo-
tient 11—) when p = 0.

Algebraic Regrouping

Part of the art of simplifying and evaluating sums is
to manipulate them so that recognizable forms emerge.
The familiar algebraic properties of the number system
include several principles for regrouping. These principles
are applied independently and also in conjunction with
the other summation methods of this chapter.
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Proposition 3.1.1 [Distributive Law]. A common fac-
tor can be distributed over all the summands.

Ecak:cgak

keK keEK

Proposition 3.1.2 [Addition Law]. Two sums over the
same index set can be combined into a single sum by
adding each pair of summands with the same index.

Z(ak‘|‘bk) = Zak‘|‘zbk

keK keK keK

Proposition 3.1.3 [Permutation Law]|. The value of
a sum is unchanged by permuting the order of the sum-

mands.
Z ap = Z Ar (k)

keK keK

As a first illustration, we apply these algebraic re-
groupings to an arithmetic progression. From our present
perspective, that means a sequence <an> given by a recur-
rence of the form

ag — C
an, = ap—1 + b forn >0
For instance, the consecutive odd numbers 3,5,7,9, ... are

an arithmetic progression, with initial value ¢ = 3 and
increment b = 2.
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Example 3.1.6: Simplifying the sum of a finite arith-
metic progression

n

Sn = Y (c+bk) (3.1.4)

k=0
can begin with application of the Permutation Law.

n

S =Y (ct+b(n—k)) (3.1.5)

k=0

Adding equations (3.1.4) and (3.1.5) leads into the follow-
ing analysis.

n n

25, = Y (c+bk)+ ) (c+b(n—k))

n

= > [(c+bk)+ (c+bn—k))]  (Addition Law)

n

= Z (2¢ + bn)

k=0
= (2¢+ bn) Z 1 (Distributive Law)
k=0
= (2c+bn)(n+1)

= S, = (c—l— bg) (n+1) (3.1.6)
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Example 3.1.7: This is a special case of formula (3.1.6).

kék - (o+1'7”) (n+1)

JOREs
_ (n+1
B 2
For instance,
6
O+14+24+3+445 = 156 = (2>

Harmonic Numbers

REVIEW FROM §1.2:

The sequence of harmonic numbers (H,,) is defined
by the rule

1
k

M:

H, =
1

+ -+ -+ forn >0

+—\|+—\TT
DO | =
S|

The harmonic numbers are the discrete analogue of the

natural logarithm
"1
In (n) :/ —dzx
.
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Figure 3.1.2 illustrates that the harmonic number and the
natural logarithm are reasonably good approximations of
each other. Familiarity with upper and lower Riemann
sums may add some interest here, but such familiarity is
not necessary for understanding of the correctness of the
approximation.

—

7,722

-
x=1 X=2 x=3 x=4 x=5

X

Fig 3.1.2 Upper and lower Riemann approximations of %

Since the area under the curve 1/x over the interval [1, 5]
is In(5), one observes that In5 is less than the sum of the
areas of the upper rectangles, i.e.,

+ - = H, upper sum

and that Inb is greater than the sum of the areas of the
lower rectangles, i.e.,

1 1 1 1
H5_1:§+_+Z+5<1n5 lower sum

w

This observation generalizes to the following:
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Proposition 3.1.4. For any positive integer n

(a) In(n+1) < H, < In(n) + 1
(b) H, — 1 < In(n) < Hp-1

Proof: Summing the areas of the upper rectangles (i.e.,
taking upper Riemann sums) yields

1 1
mm+4)<-1+.~+—-:1ﬂ (3.1.7)
n
In(n) < 1+ + ! = H (3.1.8)
nin 1 1 = n—1 A,

and summing the areas of the lower rectangles (i.e., taking
lower Riemann sums) yields

1
H,—-1 = 5t < lnn (3.1.9)

n R
Together, (3.1.7) and (3.1.9) imply part (a). Similarly,
(3.1.9) and (3.1.8) imply part (b). &

GKP Notations

DEF: Let n and d be integers. If there is an integer ¢ such
that n = dq, then we say that d divides n. Notation:
d\ n.

DEF: Let m and n be integers whose greatest common
divisor is 1. Then we say that m and n are relatively
prime. Notation m L n.
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3.2 PERTURBATION

The initial step of a perturbation is to equate two ex-
pressions for S,, 11, the n+ 1%* partial sum of the sequence

(Zn)-

n+1

Sn + In+1 = X0 + chk
k=1

The sums on both sides of the equal sign are clearly equal.
Perturbation is a practical method, and additional tricks
are used as needed. What makes it interesting is not the

theory behind it, but the fact that it works so effectively
so often.

Example 3.2.1: A very simple first example of applying
perturbation is to evaluate the summation

Sp o= ) 2° (3.2.1)
k=0

Of course, the solution to the summation (3.2.1) is easily
obtainable by other methods, but the details serve as a
good illustration of the technique of perturbation.
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n+1 n+1
S, +2ntl — 90 4 Z ok — 14 Z oF (set up)
k=1 k=1

= 1+ Z k1 (change of limits)
k=0
= 142) 2
k=0
= 1425,
= S, = 2ntl (solution (3.2.2)

)
For instance, for n = 3, the value of the sum (3.2.1) is

0492l 492493 = 1424448 = 15
and the value of the closed formula (3.2.2) is
221 = 16—-1 = 15

A Classical Example of Perturbation

Example 3.2.2: A classic example to show the power
of the method of perturbation is the sum

Sp o= Y k2" (3.2.3)
k=0

which is not so easily evaluated by the most elementary
methods. The setup used here (and on Example 3.2.1) is
characteristic of applications of the perturbation method.
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n+1 n+1
Sp+(n+1)2" = 0.2 + Z K2k = Z k2" (set up)
k=1 k=1
— Z (k + 1)2F+1 (change of limits)

k=0

— Z k2R 4 22k+1 (Addition Law)
k=0 k=0

= 2 Z ) Z ok (Distributive Law)
k=0 k=0

= 25, + 2(2" —1) (from Example 3.2.1)
= S, = (n+ 12"t —2(2"t 1)
= (n—1)2"t +2 (solution)  (3.2.4)

For n = 3, the result of the term-by-term summation

(3.2.3)

3
Zkzk —0-2041.20492.2213.98
k=0

— 0+2+84+24 = 34

agrees with the evaluation of the formula (3.2.4) derived
by perturbation.

(n—1)2"t = (3-1)2* +2
= 2-164+2 = 32+2 = 34
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Indirect Perturbation

When a first perturbation misses the target, it may
help to adjust what is to be perturbed and to try a second
time, as indicated by the next example.

Example 3.2.3: We evaluate the sum

Sp = Y My (3.2.5)
k=0

by perturbation, as in previous examples.

n+1 n+1

Sp+ Hny1r = Ho + ) Hy, = 0+ H
k=1 k=1

- e = R i)

=  Hppy = > —— (3.2.6)

Formula (3.2.6) is quite correct, but it is not what was
wanted, since the symbol S,, cancelled out. When this
occurs, a standard maneuver is to multiply the summand
by the index variable k£ and to perturb the result.
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Example 3.2.3, cont.: Multiplying the summand Hj,
by the index variable in this example yields the summation

Sn = Y kH, (3.2.7)
k=0

which we now perturb, as follows.

n+1
Sn+ (n+1)Hnpr = 0Ho + )  kHy
k=1

n

= > (k+1) (Hk + klﬁ)

k=0
n n k-%l

= D (ke DHy + >y

k=0 k=0
= Zka + ZHk + Zl
=0 k=0 =0

= Sp + > Hp + n+1
k=0

= > Hy = (n+1)H,p1—(n+1) (3.2.8)
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This time, the result is a formula (3.2.8) for the sum of
consecutive harmonic numbers, the formula we actually
want. For n = 3, directly adding the harmonic numbers,
which are the summands of the sum (3.2.5)

S = on (e (Fel)e(Palel) - B
" 1 12 12"73) 3
k=0

and applying the summation formula (3.2.8)

25 25 13
12 3 3

yield the same result, thereby illustrating correctness of
the formula.

As a second example of indirect perturbation, con-
sider the problem of deriving a formula for summing k2.

Example 3.2.4: To evaluate the sum
Sp = > K (3.2.9)
k=0

we start as usual.

3
T
'—l

n+1
Sn+(n+1)% =0+ ) K = ) K
k=1

I

S

—

n

= > (k+1)? = > (K +2k+1)

7
I
-
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— Zkz + ZQk + Z 1 (Addition Law)
k=0 k=0 k=0
— Zkz + 2Zk + Z 1 (Distributive Law)
k=0 k=0 k=0

= S +2) k+ (n+1)
k=0

N Zk _ (n+1)22—(n—|—1) _ nzg—n (3.2.10)

Thus, as in Example 3.2.3, direct perturbation has yielded
a correct equation that is not the desired result. Seeking
to remedy this situation, we once again multiply the sum-
mand by the index variable and re-perturb.

Example 3.2.4, cont.: Since perturbing the sum of
consecutive values of k2 just above has yielded an eval-
uation for the sum of consecutive values of k, it may be
less than fully surprising that perturbing the sum of values
of k yields a formula for the sum of values of k2. This
time, set

Sp=> K (3.2.11)
k=0

Then

n+1 n+1
Sp 4+ (n+1)° = 0>+ > K =) K
k=1 =1
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n

= > (k+1)°

n

= > (K +3k>+3k+1)
k=0

_ ik3+3§:k2+3§:k+2ﬂ:1
k=0 k=0 k=0 k=0
= S, +3> K +3) k+ ) 1
k=0 k=0 k=0
= 3) K = (n+1®—-3) k- ) 1
k=0 k=0

k=0
3n2 + 3n
_ (n—|—1)3——2 — (n+1)
( _|_1)3 3n2 4+ 5n + 2 o2n3 + 3n2 +n
_= n — _=
2 2
° o2n3 + 3n2 +n
= k2 = 3.2.12

; - (3.2.12)

For n = 3, the value of the sum (3.2.9)
3
d K =07 +17 42743
k=0
= 04+1+4+9 = 14

agrees with the value of formula (3.2.12)

o2n3 + 3n2 +n B 2.324+3.32+3 B 84 _ 14
6 - 6 6
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3.3 SUMMING WITH OGF’S

In this section, it will be seen that most of the sums
evaluated in §3.2 could easily be evaluated, alternatively,

by using OGF's, as indicated by Theorem 1.7.4 and its
corollaries, with the aid of partial fractions, as needed.

REVIEW FROM §1.7:

¢ Theorem 1.7.4. Let B(z) be the OGF for a sequence
(by,). Then the OGF for the sequence of partial sums
of (b,) is

B(z)
1—=z
=~ /n4+r—1
C 1.7.5. = "
e Cor — ;( b )
1 = /n4+r—1
C 1.7.6. = "
* o (1 —az)" nz:%( r—1 )a

Revisiting Examples

Example 3.2.1, revisited: We examine how to use gen-
erating functions to rederive the summation formula

izk |
k=0
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for the powers of 2. As first mentioned in §1.7, the OGF
for the sequence (b;, = 2*) is

By Thm 1.7.4, the OGF for the sequence

u:nb:nzk n=0,1,...
<n Zk Z 77>
k=0 k=0

1S

U(z) = Zunz" = 1iZB(z)
- B 1
(1= 2)(1 - 22)

By the method of partial fractions (described in §2.3),
which here involves the solution of a pair of simultane-
ous linear equations, it follows that

1 —1 + 2
(1 —2)(1 —22) (1—2) (1—2z)

= i(—l)z" + iQ-Q"z"
n=0 n=0

= ) (2" —1)z"

n=0
n

= u, = » 2F =21
k=0
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Example 3.2.2, revisited: We now rederive the sum-
mation formula

D k2% = (n—1)2"t" 4 2
k=0

Corollary 1.7.6 provides the formula
1 =~ /n+r—1 n o n
(l—az)r_nz:%( r—1 )az
into which the substitutions a = 2 and r = 2 yield
1 — (n+1 -
oz = X ()7 = S

from which it follows that

2Z o0 o0
_ E n+1_n+1 _ E { n_n
m = (n ‘|‘ 1) 2 Z = n2'z
Thus, the OGF for the sequence (b,, = n2") is
2z
B = —
(2) (1—22)

By Theorem 1.7.4, the OGF for its sequence

<’Un =) k2 n:O,l,...>
k=0
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of partial sums is

V(z) = Z’Unz” = 1_ZB(Z)

2z
(1 —2)(1 —22)2

By partial fractions, which this time requires the solution
of three simultaneous linear equations, we have

2z B 2 4 8z B 2
1—2)(1—-222  (1—2) " (1-222 (1-22)7

Thus, by Corollaries 1.7.5 and 1.7.6, it follows that

v = » k2¥ = 24 4n-2" — (n+1)2"H!
k=0

= (n—1)2"t 42

For this example, the previous evaluation by perturbation
may seem less effort than the method of generating func-
tions, because of the linear equations and the care needed
to apply Corollary 1.7.6 accurately.

Example 3.2.4, revisited: To rederive the summation
formula

zn:kz B o2n3 +3n2 4+ n
k=0 6

the method of generating functions is easier than pertur-
bation, since it avoids the false start encountered in per-
turbation, which is unlikely to be discovered until the late
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stages. To derive the OGF for the sequence (b, = k?) we
start with Corollary 1.7.5.

T - i(nj:1>'z"

n=0

For » = 3, this yields

-2 ()

n=0
Therefore,
22 = /n n ~.n2—-n n
D O (R SEs
n=0 n=0
and
z > n+1\ , > nZ+n n
o SR

from which it follows that
22 4 2
(1 _ Z Z " - )
By Theorem 1.7.4, the OGF for the sequence

<yn = zn:kz n:O,l,...>
k=0

> . B(z) 224z

_= yTLZ _= = —
Z 1 —2 (1—2)4
n=0

1S
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Corollary 1.7.5 with r =4 is
1 = (n—l—?)) n
PRV
(1-—2) —~\ 3

n=0 n=0
> /n +1\ , > n—+2\ ,
- ("M
n=0 n
Therefore,

(n+1)2  (n+2)2

nd—n n3 + 3n2 + 2n
_|_

o2n3 + 3n2 +n
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3.4 FINITE CALCULUS

In the Fundamental Theorem of Finite Calculus (The-
orem 1.4.3), Part (a) asserts how sums can be evaluated as
anti-differences, analogous to way the fundamental theo-
rem of infinitessimal calculus asserts that integrals can be
evaluated as anti-derivatives.

REVIEW FROM §1.4:

e Given a function f : R — R, the difference function
A f is given by the rule

Af(@) = fle+1) - f(a) (3.4.1)

e Given a sequence (x,,), we define the difference se-
quence (Azx,) by the rule

!/
Az, = x, = Tpt1 — Tn

¢ Theorem 1.4.3 [Fundamental Theorem of Fi-

nite Calculus]. Let (z,) be any standard sequence.
Then
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Summing a Polynomial

We recall that the finite calculus formulas for differ-
encing and summing a falling power are directly analogous
to the infinitessimal calculus formula for differentiating
and integrating an ordinary power.

REVIEW FROM §1.5:

e The n'" falling power function on a real variable z,
for any n € N, is defined by the rule

n factors
_A

= Zc(:c—l)---(a:—n—l—li

e Thm 1.5.1. Forr € Z*, we have A(zL) = ra’=L.

n—1 r41
e Cor 1.5.2. For r € N, we have Z o=
— r+1

REVIEW FROM §1.6:

¢ Thm 1.6.1 Any ordinary power z" equals a linear
combination of falling powers, i.e., in the form

n
" = g ST
r=0

where the coefficients .S,, , are called Stirling numbers

of the second kind.
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We will now use the reviewed results to see how finite
calculus makes many kinds of summation quite routine.

Example 3.2.4, revisited again: In this chapter, we
have already derived the summation formula

zn:kz _ 2n° +3n? +n

k=0 0
first using indirect perturbation, and then again with gen-
erating functions. For this derivation, summation calculus
is easier yet. With finite calculus, we first express k* as
a linear combination of falling powers. For monomials of
low degree, it is easy enough to calculate the coefficients
of the falling powers by ad hoc methods.

kK = 59,2 k2 + Sa.1 ket
= k% + kt (3.4.2)

Summing both sides of equation (3.4.2), we obtain

n

i/& = > (k% + kb

k=0

= zn:ngr zn:kl
k=0 k=0
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Applying Corollary 1.5.2 now yields

k=0 3

(n+ 1> (n+1)2
3 2
nd—n 2
_|_n +n
3 2
o2n3 + 3n2 +n
6

n+1 kz n+1

2

Formula for Summing Exponentials

The supply of useful finite summation formulas is
readily extended beyond the monomial formula of Corol-
lary 1.5.2. This begins with sums and differences of expo-
nentiations in which the base is constant and the exponent
is variable.

Theorem 3.4.1. Let the constant value ¢ be a real num-
ber and let x be a real or integer variable. Then

Ac® = (c—1)c"
Proof: Ac® = Tl —¢® = (¢—1)c". %
Example 3.4.1: For the case ¢ = 2, Theorem 3.4.1 gives

the result
A2Y = (2—-1)2" = 2°
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which is analogous to the differential-calculus result

d

xr xr
— e
dx

= e

This is one of numerous reasons why the number 2 is re-
garded as the natural base of discrete mathematics in the
same sense that the real number e is the natural base for
continuous mathematics. More generally, the continuous-
mathematics formula

dm_l T
da:C—IlCC

is analogous to the discrete-mathematics formula of The-
orem 3.4.1.

Ac® = (c—1)c"

Example 3.4.2 A3 = 3*tl _ 32 — 2.3
A4 = 4%TL _ 4" = 3.4”

This leads to a major formula of the finite-summation cal-
culus, the formula for summing exponentials.

Corollary 3.4.2 [Exponential Formula]. Let ¢ be any
real number except 1. Then

I c" —1
— 3.4.3
> = —— (3.4.3)
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Proof: Forc # 1, applying the Fundamental Theorem of
Finite Calculus to the conclusion of Theorem 3.4.1 implies
that

n—1 L n
>t =
k=0 ¢ =1 {0
c" —1
- c—1 ©
Remark: For the case ¢ = 1, which is excluded from

Corollary 3.4.2, we have the sum
n—1
S
k=0

Example 3.4.3: We observe that when ¢ =5 and n = 4,
the value of the sum on the left side of equation (3.4.3)

3
Z5k — 59451 4 5245% = 1454254125 = 156
k=0

agrees with the value of the quotient on the right side

54 1 625 — 1
- — 156
4 4

As easy as it was to derive the formula

izk |
k=0
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either with perturbation or with generating functions, it is
even easier with the calculus of summation, as now shown.

Example 3.2.1, revisited again: According to Theo-
rem 3.4.1, we have

AF = 9oF

Summing both sides, we obtain
Sk - Yo

after which, applying the Fundamental Theorem yields the

result
n
k=0 k=0
= 2"t 1

Falling Negative Powers

The extension of the list of useful differencing and
summation formulas continues. We observe that non-
negative falling powers can be defined recursively.

22 = 1

et = 2 (x —7) for r > 0

Running the recursion backward extends the utility of the
falling power concept.
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DEF: Non-positive falling powers are defined as fol-

lows.
0

= = 1
. xr—l—l
A forr <0
Tr—r

Example 3.4.4: Here are a few evaluations of the defi-
nition of negative falling powers.

1 20 20 1
x— p— —_— p— p—
z— (—1) x4+ 1 x4+ 1
2 z=L B z=L B 1
z—(—2)  z+2  (2+1)(z+2)
-2 -2 1
=3 _ T oz B

oz —(=3)  z+3  (z+1)(z+2)(z+3)

Proposition 3.4.3. For any positive number r and any
real number x,

1
(x+1)--(z4+7)

Proof: By induction on r. &

Although ordinary powers are additive in a product

of ordinary monomials with the same base, in the sense
that
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it is clear that falling powers are not additive in a product
of falling-power monomials. For instance,

w222 = z(z—1)-z(z—1)(z —2)
but
23 = 25 = p(x —1)(z —2)(z —3)(z —4)

Thus, there is no reason to expect that x=C = (z7)~1.
On the other hand, an important analogy to infinitessimal
calculus is preserved.

Proposition 3.4.4. The difference formula for negative
falling powers is the same formula as for positive falling
powers. That is, for every positive integer r,

Ar=r = (—r)p=t=d

Proof: Start by applying the defining formula (3.4.1) for
the difference operator.

A= = (z+1)=~ — 2=~
1 1

(x+2)---(z4+7+1) (x+1)--(z+71)

Then by routine manipulation
1 [ 1 1
(x+2)---(z4+7r) [z+7+1 x+1

1 —7r
T @+2) - (ztr) _(a:—l—l)(a:—l—r—l—l)]
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(a:—l—l)---_(a:—l—r—l—l)

we achieve the result

Azx=L = (—r)a:_r_l O

Cor 3.4.5. For any integer r # 0 and any real number =,

Azl = pgr—l

Proof: This combines Thm 1.5.1 and Prop 3.4.4. &

Cor 3.4.6 [Monomial Formula]. For integers r # —1
and n,
kr—l—l n

n—1
kz:;)kﬁ - r+1

Proof: This combines the Fundamental Theorem and
Corollary 3.4.5. %

(3.4.4)

Example 3.4.5: To make a direct evaluation of the left
side of Equation (3.4.4) for r = —2,—3 and n = 4, we first
calculate the following partial table of the values of k-,
i.e., of a small integer to a small falling negative power.

r|oor 1z o2 3r 4
1] 1 1 1 1 1
1 2 3 4 5%
0 S S B S S o
1.2 2:3 34 4.5 9:6
_3 1 1 1 1 1
1-2-3 2:3:4 3:4-5 4-5-6 5.6-7
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Caser = —2 and n = 4: The value on the left side is
1 1 1

1
0=2 4+ 1=2 4 272 4 3=2 = 4 4 i _

1-2 23 3-4 4.5
and the value on the right side is
4

k=t 4= 0t 1 1 -1 (1)
-1 |, —1 —1 (=1)-5 —1 5
Case r = —3 and n = 4: The value on the left side is
0=2 4 1=2 4 225 4 323 =
1 N 1 N 1 N 1 T
1-2-3  2-3-4  3-4-5 4-5-6 30
and the value on the right side is
20 42 02 1 1 B
-2 |, —2 —2 (=2)-5-6 (=2)-1-2

Harmonic Numbers

Another analogy between the natural logarithm Inn
and the harmonic number H,, lies in the similarity of the
derivative

d
— lnz = 2!

dx

to the difference formula

AHTL — Hn—|—1_Hn
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and, naturally enough, in the similarity of the summation

formula )
> k=L = H, (3.4.5)
k=0

to the integration formula

t
/ z l'der = lnz
r=1

Product Formula

Analogous to the product formula for derivatives,
(u(z) -v(z))" = u'(2)-v(z) + wz) v'(z)
there is a product formula for finite differences.

Prop 3.4.7 [Product Formula]. Let h(z) = g(z)-f(z).
Then

Ah(z) = Dg(a)- flz+1) + gla)-Af(x)  (3.4.6)

Proof: Once again, it is sufficient to do some routine
algebraic manipulation, starting from an application of
the definition of the difference operator.

Ah(z) = h(z+1) — h(z)
glz+1)- f(z+1) (z) - f(z)

= g(z+1)- flz+1) (z) - f(z)
—g(z)- flz+1) + g(z)- f(z

= Ag(z) - flz+1) + g(z) - Af(z

— g
— g\z

<>
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Example 3.4.6: Take g(n) = n% and f(n) = H,. Ac-
cording to the product formula (3.4.6), we have

A(nan) = An%-H,.1 + n% - AH,

1
= 2n-H, —1)-
n-Hyp1 + n(n—1) n 1
1 n?—n
= 2 H,
n( +n—|—1>+ n—+1
n2—|—n
= 2nH,,
" * n-+1
= 2nH, + n

Unsurprisingly, evaluating the defining formula (3.4.1) for
a finite difference yields the identical result.

AnEH,) = (n+1)2H,., — n*H,

1
— (n2_|_n) (Hn+n——|—1> — (n2 _n)Hn
n®> +n
— (nz—l—n)Hn—l— merE (nz—n)Hn
= 2nH, + n

Summation by Parts

From the infinitessimal calculus, we recall the follow-
ing formula for integration by parts

/ ) @)z = u(zyo()| [ e )ole)de

The finite calculus has an analogous formula, called sum-

a

mation by parts.



Section 3.4 Finite Calculus 41

Proposition 3.4.8 [Summation by Parts]. Let g(k)
and f(k) be functions on the integers. Then

S glk) A(F(K)) = of =3 Afg(k)) fht1)

(3.4.7)

Proof: This corollary to Proposition 3.4.7 follows from
the Fundamental Theorem of Finite Calculus. &

Example 3.2.2, revisited again: After using the sub-
stitutions

glk) = kX and  f(k) = 2F

summing the sequence (k2% | k = 0, 1, 2, ...) by parts
takes the form

zn:kzk — zn:klzk
k=0 k=0

_ klzk n+1

Z kO 2k—|—1
which leads to the calculations

= (n41)-2"t — 2(2"+1 —1)
= (n—1)-2"" 4+ 2
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Example 3.2.3, revisited: Since integration by parts
is helpful in evaluating the integral of Inx to zlnx — =z,
it is unsurprising that summation by parts is helpful in
summing H,, to nH, — n.

n—1 n—1
> Hy = ) kYHy
k=0 k=0

n—1 n—1
7 1 7
— klH — E+1)—— = kLH — 1
“lo Z( b k41 “lo Z
= (nH,—0) — n
= nH, —n

Table 3.4.1 Formulas for the calculus of differences.

function difference function
k- r k=1
c” (c—1) c”
H, !
n-+1
g(k)f(k) | Ag(z) f(z+1) + g(z) Af(z)
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43
Table 3.4.2 Formulas for finite summations.
summation formula reference
n—1 Cn 1
y _
s ¢#0 o (3.4.3)
k=0
n—1 nr—l—l
k- r#£-—1 ; (3.4.4)
k=0 T
n—1
= H, (3.4.5)
k=0
n—1 n
S ok A (1) o(k) (8|
E=0 o
n—1
— ) Ag(k) f(k+1)  (3.4.7)
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3.5 ITERATED SUMS

In the simplest case of iterated summation the index

set U

€U
is a 2-dimensional array, such that one could first take the
row sums and then add those sums to get the total. Some-
times the first summation, called the inner summation, is
for groupings other than rows. Sometimes, when given a

double summation to evaluate, it is helpful to swap the
order of summation.

Double summation need not be twice as hard. Indeed,
sometimes a single sum is recast as a double sum to make
it more tractable. A possible strategy in evaluating a dif-

ficult sum
€U
is to find a partition

v = Ju

keK

such that each of the sub-sums

S = >

1eUy
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is tractable, and also such that the sum

Sa- Y Y

keK keK ieUy

of the sub-sums is tractable.

Independent Indices

An example from graph theory illustrates the simplest
case of a double summation, in which the index of the inner
sum is independent of the index of the outer sum.

Example 3.5.1: The degree of a vertex v of a graph
is the total number of edge-incidences on v. Each edge
e contributes 0, 1, or 2 to that total, corresponding to
the number I(v, e) of times that vertex v is an endpoint of
edge e. Figure 3.5.1 shows a graph, with its vertex degrees
as bold numbers.

S u 4
b
174 X
y4
c d
2® V 4

Fig 3.5.1 Degrees of the vertices of a graph.
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Thus, the sum of all the edge-vertex incidences

Z I(v,e)

(v,e) EVXE

is indexed by the cartesian product V x E, where V is
the set of vertices and E the set of edges. The obvious
partition of this sum over a cartesian product of two sets
is into an iterated sum

Z I(v,e) = ZZI(’U,G)

(v,e) EVXE veVeck

over the incidence matrix, with rows labeled by vertices
and columns by edges, so that the row-sums are the de-
grees.

s t u v v x y 2z degree
a 2 2 1 0 0 0 0 1 6
b 0 0 1 1 1 1 0 O 4
c 0 0 0 0 0O 0 1 1 2
d 0 0 0 1 1 1 1 O 4

Of course, the result of adding the row-sums of an array
equals the result of adding the column-sums. In this case,
since every column-sum is 2, adding the column-sums is
equivalent to doubling the number of edges, which is faster
than adding degree-sums. This observation yields an al-

ternative proof of Euler’s Degree-Sum Theorem (Theorem
0.6.1).
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Thm 3.5.1 [Euler’s Degree-Sum Thm]. The sum of
the degrees of the vertices of a graph equals twice the
number of edges.

Proof: Let V = (V,E) be a graph. Then starting from
row sums

Z deg(v) = Z Z I(v,e) sum of row sums

veV vEV e€EER

swap the order of summation:

— Z Z I(v,e) sum of column sums

eeEveEV

= Z 2 every column sum is 2
eck

= 2|B| ¢

Interchanging the order of summation is a fundamen-
tal technique for evaluating an iterated sum over an array.
It is useful when the implicit repartitioning yields inner
sums and an outer sum for which the total effort of eval-
uation is less than that for the given iterated summation
problem.

In this instance, the cost of repartitioning was trivial,
because the index of the inner sum of the given iterated
sum was independent of the index of the outer sum.
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Dependent Indices

If the limits of the index of the inner sum are inde-
pendent of the index of the outer sum, then the order of
summation can be transposed without changing the limits
of either index. However, it is quite common for the outer
index to range from 1 to n, while the upper limit of the
inner index equals the outer index. As illustrated in Fig-
ure 3.5.2, this amounts to summing over the rows of the
lower-left triangle of an n x n array.

bl.l row sums bl,l column sums
b2,1 bz,z b2,1 bz,z
b3,1 b3,2 b3,3 b3,1 b3,2 b3,3

n,l1 bn,z bn,3 L bn,n bn,l bn,z bn,3 b

n,n

Fig 3.5.2 Row sums and column sums.

Interchanging the order of summation for this form of it-
erated sum turns the outer sums into column sum. The
new inner index (the row index) has the outer index (the
column index) as its lower limit and ranges up to n.

Example 3.2.3, revisited: The sum of the harmonic
numbers has previously been evaluated by perturbation
and by finite calculus. Another effective method is go-
ing to a double sum and then interchanging the order of
summation.
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write as double sum

swap order of summation

factor out constant

evaluate inner sum

add zero

In circumstances when swapping rows and columns of
an array does not adequately reduce the evaluation, it may
help to reorganize the partitioning of summation so that
the inner sum is over some tractable geometric pattern

other than a row or column.
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Example 3.5.2: To envision how to repartition the dou-

ble sum

k—1 1

as an ald in evaluation, it helps to write out the array of
summands, like this.

k| 1 2 3 4 j—
2 | 1

3 | 5 1

4 3 5 1

5 i 3 3 1

Evidently, summing rows or columns amounts to summing
the harmonic numbers. However, the strategy of summing
on the southeastward diagonals (in which the entries are
constant) yields the following result, which is consistent
with Example 3.2.3, which also sums harmonic numbers.

n

S
|
NE
S
&
¥
|
NE
| 3
|
3
SN

n—d
1 j=1

d=

3
3
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Linear Partitioning: Floor Sums

Sometimes a sequence of less tractable summands can
be partitioned into consecutive finite subsequences with
tractable sums. In particular, this may occur when the
summands are the floors or ceilings of a non-decreasing
sequence.

Example 3.5.3: Seeking to evaluate a sum of floors may
suggest resorting to an approximation, such as

S VR

/” 2 dy
=0

n

n

> | V]

k=0

&Q

&Q

2
_ 23
3 =0
_ 2 32
3
For n = 9, the value of this approximation is
2 2 2
~nd/? = -.9%2 = Z.97 = 18
3 I 3 3

whereas the exact value 1s

{\fOJJﬂﬁJJr V2| + V3

+ |V4| + | V5 +{\/6J+{ﬁj+{\/§J+{f9J

= 04+14+14+14+24+2+2+2+2+3 =16
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Sometimes, an approximation this rough meets the
purpose at hand. However, it is helpful to be in command
of methods that get an exact value when it is needed.
There are five steps in the derivation of an exact eval-
uation formula for such a sum by the method of linear
partitioning.

Step 1. List the early terms of the sequence,
and partition them according to the value of the
summand.

Step 2. Express the size of all but the last cell.

Step 3. Express the size of the last cell, which
needs individual attention, since its size might
not follow the same rule as the other cells.

Step 4. Evaluate the given sum.

Step 5. Confirm for a small case.

We now demonstrate the application of this method to
Example 3.5.3.
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Example 3.5.3, cont.: As the index k of the sum

[VE]

n

k=0

increases, the value of the summand |k| increases also,
but more slowly than the index itself.

Step 1 is to partition the index values according to the
value of the summand. The partition for £ =0,1,...17 is
as follows:

Table 3.5.1 Partitioning for the summand |k].

1 3 5) 7
e W NV - N 7 - N\
k 0 123 45678 9101112131415 1617

Vk] 0 1112222233 33 3 33 44

Step 2 is to express the sizes of all but the last cell. Each
other cell in Table 3.5.1 is grouped with an overbrace, with
its size written over the overbrace. The smallest number
within each cell is the square m? of some number m. Since
the number (m + 1)? starts the next cell, it follows that

the cell containing m? is

{mz, m2+1, ..., m2—|—2m}
Evidently,

#{mz, m>+1, ..., m2—|—2m} = 2m+1
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Step 3 is to express the size of the last cell

whose entries correspond to the uppermost summand |/ | .|
Its size is

Step 4. To evaluate the given sum, we multiply each of
the realized values of the summand by the corresponding
number of values of the index k£ and then sum the prod-
ucts.

N
WVE| = > @m+1)-m + (n—[vVn]?+1)-|Vn]
V)1
= D @mrasmb) 4+ (n- VAl +1)- Vel
m3 3m2\ LV ,
= (23 +32 )‘ o (n—[val*+1) - [val

— 2L\gﬁj‘+3h§ﬂ‘ + (= lval” +1) - [Vl

Step 5. We confirm for the small case n = 11.
Sum values in Step 1:

O+1+14+14+24+2424+2+2434+3+3=22
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Compare with the value by formula of Step 4.

2lVILSE  BLVILEE (11 _ {fnf + 1) | viT]

3 2
— 4+ 9 + 3.3 = 22

Example 3.5.4: We now use linear partitioning to eval-

uate the sum .

> gkl

k=1

Step 1. List the early terms of the sequence, and partition
them according to the value of the summand.

1 2 4 8 16
N N e N e | e N
k 1 2345678---1516---31 3233 ---

llgk] 0 1122223---3 4.4 5 5 ...

Step 2. To express the size of all but the last cell, we
observe that the cell corresponding to the summand m is

{2m, 2™ 41, ..., 2"t —1}
Its size 1s

#{2m, 2™ 41, ..., 2"t -1} = 2™

Step 3. The last cell is

{2Ug”J, ollenl 41 . n}



56 Chapter 3 Evaluating Sums

Its size 1s
n—2lenl 41

Step 4. Evaluate the given sum, using the previously de-
rived formula (e.g., see Example 3.2.2) for summing & - 2".

Zngj = Z m-2" + |lgn| (n—QUg”J—I—1>

= (UgnJ—Z).QngnJ + 2 4 |lgn] (n_2|_lgnj+1>

Step 5. Confirm for the small case n = 9.
Sum the values in Step 1: 0+14+14+2+242+24+3+3 = 16.
Compare with the value given by the formula of Step 4.

(lg9] —2) - 2829 4+ 2 4 |Ig9] <n—2Ug9J +1)
= (3-2)-2° + 2 4+ 3(9-2°+1)
=1-2° +2 + 3-2 = 16

Remark: The two evaluations just considered have an
easy second step, because within each group the value of
the summand is constant. If the summand were k{\/@,
for instance, then an inner sum might be introduced in
Step 2 for the partial sum over the interval corresponding
to a group.
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3.6 INCLUSION-EXCLUSION

Sometimes, the index set for a complicated sum has
subsets with tractable sums, but those subsets overlap.
The strategic insight of the inclusion-exclusion method is
that the partial sums over those subsets can be combined
into a total sum by subtracting the overcounts.

Venn Diagrams for Overlapping Subsets

The simplest case has two overlapping subsets, A and
B, asin Figure 3.6.1. The domain from which both subsets
are drawn is denoted U.

U

Fig 3.6.1 Venn diagram for two overlapping subsets.

Suppose that the objective is to calculate the sum Saup
over the set A U B, with partial sums S4, Sp, and Sanp
over subsets A, B, and Sanp, respectively. Then

Saup = Sa+SB—5SanB



58 Chapter 3 Evaluating Sums

Example 3.6.1: The number of integers in the range
1,...,n that are divisible either by 2 or by 3 is expressible
as a consecutive sum with indexing in the integer interval
[1: n] and the summand

f(k) = { 1 if n is divisible either by 2 or by 3

0 otherwise

that is, by the sum

n

> (2\k V 3\k)

k=1

Every number that contributes 1 to this sum lies either in
the set {k € [1 : n] | 2\k}, with cardinality |n/2], or in
the set {k € [1 : n] | 3\k}, with cardinality |n/3]. Adding
these two cardinalities overcounts by |n/6], the number
of integers in [1 : n] that are divisible both by 2 and by 3.
Thus,

n

Sk v 3wk = |5 +

2] - 2
In Figure 3.6.1,
A = {kell:n]|2\k}

and

B = {ke€[l:n]|3\k}

Theilr intersection is
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ANB = {ke[l:n]]|6\k}

and

U = [1:n]

In Example 3.6.1, the implicit summand is the num-
ber 1, since we counted the number of elements in a set.

That is,

SX:Z1:|X|

keX
for X = A, B, AnNB, or AUB

Example 3.6.2: A related problem is to calculate the
sum of the numbers that are divisible by 2 or 3. Then,
instead of having a constant value of 1, the value of the
summand equals the index itself. That is,

Sx = > k
keX
for X = A, B,ANB, or AUB

Thus,

i) & /2 4 2]

Sa= Y k= > 2/=2) j=2 5
j=1 j=1

2\k<n

Similarly,
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Sp= Yk = gl el

3\k<n

and
|In/6 n/6
Sap = Yk = olafolrln
6\k<n
Therefore,
Sau = So + S — Sans

_ g 2P w2 /3P (/8] In/6]° + [n/6]

2 2 2

For the small case n = 14, direct addition and the formula

both yield Spup = 68.

Venn Diagrams for 3 or More Subsets

Venn diagrams are quite commonly drawn for three
overlapping subsets, and they have this general definition.

DEF: A family of n simple closed curves (typically circles
or ellipses) in the plane, whose interior regions represent
some subsets Aq, As,..., A, of aset A within a domain U,
is called a Venn diagram, after the logician John Venn

(1834-1923).

TERMINOLOGY: The domain U from which both the sub-
sets A and B are drawn is commonly called the universal
set.
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Example 3.6.3: FEurasian Translators, Inc., employs 15
expert linguists fluent in at least two of the three languages
Armenian, Bulgarian, and Czech. Of these,

Sane = 5 speak Armenian and Bulgarian
Sanc = 7 speak Armenian and Czech
and Spnc = 9 speak Bulgarian and Czech

How many speak all three languages? Figure 3.6.2 is the
relevant Venn diagram.

Fig 3.6.2 Venn diagram for three overlapping subsets.

Whereas 15 is the given number of linguists fluent in two
or more of the three languages, the sum

SanB +Sanc +SBnc = 5+74+9 = 21

of the numbers corresponding to the three intersection-
regions for which data are given triple-counts the contri-
bution Sainpnc in the triple intersection at the center of
the diagram and counts all the other translators only once.



62 Chapter 3 Evaluating Sums

Thus, subtracting 15, thereby excluding the total number
of translators who speak at least two of the languages by
the calculation

QSAﬂBﬂC — 21—15 — 6

yields the result
25anBnc = 6

from which one concludes that
SanBnc = 3

It is helpful to check such a result by inserting numbers
into the regions of the Venn diagram. In this case, the
number 3 is inserted into the centermost region, represent-
ing the population of the region AN BNC' in Figure 3.6.3.
Then it must be excluded from the populations given for
composite regions AN B, ANC, and BN C, in order to
obtain populations for the simple regions they contain.

NOTATION: The complement of a set X in a domain U is
denoted X.

Fig 3.6.3 Inserting numbers into regions of a Venn diagram.
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We observe that all of the inserted numbers are consistent
with the original data as well as with the derived popula-

tionof AN BNC.

Sanp = 5 = 2+3 = S, gnc T SanBnc
Sanc = 7 =443 = S, 5nc T S4anBnC
and Spnc = 9 = 6+3 = Sz gne T SanBnc

Context for Inclusion-Exclusion

A more general context of inclusion-exclusion evalu-
ations is a domain U, a real-valued function f : U — R,
and a representation

A = OAk
k=1

of set A as a union of subsets Aj, regarded like a Venn
diagram with n mutually intersecting subsets. (Some of
the regions may be empty.)

Remark: Quite often, the function f : U — R is the
constant function f(z) = 1, in which case the evaluation
amounts to calculating the cardinality of a region.

NOTATION: The intersection of two sets A; and A; may be
denoted by the juxtaposition A;A;.

DEF: An intersection A; A;, --- A; is called an r-fold in-
tersection of the family {A;}.
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Formulas for Inclusion-Exclusion

As illustrated by Example 3.6.3, evaluating sums over
combinations of regions in Venn diagrams takes some care.
Fortunately, such evaluations can usually be reduced to
the application of two or three general inclusion-exclusion
equations for sums over single regions.

Thm 3.6.1 [Exclude-All Equation for Set Size]|. Let
Aq,..., A, be subsets of a set U, with

A = OAk and S5, = Z |Agy - Ay
k=1

Q1500 E€[1in]

so that, for r = 1,...,n, the number S, is the sum of the

cardinalities of all r-fold intersections of the family {Ay}.
Then

A = M A = U]+ SRS
k=1

Proof: First suppose that the element x € U lies in none
of the sets A;. Then x is counted once on the left side of
the equation, and it is counted in the formula on the right
side only by the summand |U|, and not by any summand

Sk.

Now suppose that z lies in exactly m of the subsets A,
with m > 0. Accordingly x is not counted on the left side
of the equation. On the right side, it is counted (TIZ) times
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by S, since there are (ZL) ways to choose k sets from the

m sets A; that contain z, and z is also counted once by
|U|. Thus, its net count on the right side is

2 (7) - 2 ()

= 1-2" =0 ¢

The other main incl-excl formula is derivable by the same
approach, or, as shown here, as a corollary of Thm 3.6.1.

Cor 3.6.2 [Include-All Equation for Set Size]. Let
Aq,..., A, be subsets of a set U, with

— OAk and S, = Z |Agy - Ay
k=1

Q1500 E€[1in]

so that, for r = 1,...,n, the number S, is the sum of the

cardinalities of all r-fold intersections of the family {Ay}.
Then

n

(Al = ) (-1,

k=1

Proof: Observe that the universal set U is the disjoint
union of the set A and the set A; Ay --- A,,. Therefore,

Ul = |A| + \A_lA_z A

and, accordingly,
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Al = U] — \A_1A_2 A_n\
and then, by Theorem 3.6.1,

— (\z‘h Ay .- An‘ _ Z(_l)k5k> _ \A_1A_2 A_n‘

k=1

n

= > (=DF's, ¢

k=1

Thm 3.6.3 provides an inclusion-exclusion formula for
the sum of the values of an arbitrary function f : U — R
on the domain U, not simply for counting the size of a set.

Thm 3.6.3 [General Exclude-All Eq]. Let Ay,..., A,
be subsets of a set U, with

A= J4
k=1
and let f : U — R be a real-valued function. Let the sum

S = > > =)

i1,..,9-€[1lin] x€EA; - A;

r

be taken over all r-fold intersections of the family {A;}.
Then

rCEA, - A, xeU

> f@) = 3 A+ S-S
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Proof: The proof is a straightforward modification of
the proof of the Exclude-All Equation for set sizes. &

In the remainder of this section, the two main inclusion-
exclusion formulas are applied to various combinatorial
problems.

Stirling Subset Numbers

Although there are various similarities between Stir-
ling numbers and binomial coefficients, there is no known
closed formula for Stirling numbers of either kind, unlike
the situation for binomial coefficients. However, there is
a summation formula for a Stirling subset number, whose
derivation by inclusion-exclusion is our immediate objec-
tive. The ideas involved are encapsulated in the following
example.

Example 3.6.4: The Stirling subset number {Z} is the
number of ways to distribute a set of 5 objects into 4
cells with no cell left empty. For a problem this small,
listing cases is easy enough, but it is instructive to ap-
ply inclusion-exclusion. Toward that objective, for ¢ =
1,2,3,4, let A; be the set of distributions with box ¢ left
empty. Clearly,

|A;] = 3>  fori=1,2,3,4
|A;A;] = 2°  fori#j
|A;A; A = 1° for mutually distinct 7, 7, k

Moreover,
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4 5
S, = L (4 —k) (3.6.1)

since there are (:) ways to choose k of the subsets A; from
the collection of four such subsets, and each intersection
A; A;, -+ A;, contains (4 — k)® objects. Furthermore,

ik

| Ay Ay Az Ay| = {i}4! (3.6.2)

since each distribution with none of the boxes left empty
amounts to assigning the labels 1,2,3,4 to the cells of a
partition. Finally, if U is the set of all ways to distribute
5 objects into 4 cells, we have

U] = 4° (3.6.3)

When we substitute into the Exclude-All Equation

A1A2A3A4‘ = |U| — 51 + S2 — S35 + S4

the values from Equations (3.6.1), (3.6.2), and (3.6.3), we
obtain the equation

(e = e (e Q- Q) (e

= 1024 — 972 4+ 192 — 4 = 240

N 5 _240_10
41 4
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A confirming observation is that, since two of the elements
are paired, and since the others have cells to themselves,

clearly
{ 5 } (5) 10
1 2

In a similar manner, an inclusion-exclusion analysis
leads to an identity for the Stirling subset numbers

Um)

Proof of the following theorem simply generalizes the steps
and calculations that we have just completed.

Theorem 3.6.4. Let n and k be a pair of non-negative
integers. Then

Proof: For:=1,2,...,k, let A; be the set of distribu-
tions of n distinct objects into k distinct boxes with box ¢
left empty. Clearly,

Al = (BE—1)" fori=1,2,...,k
and, more generally, for any 7 € [1, k]

A Aiy - Ay = (k—=3)" for mutually distinct ¢y, 9,...,1;
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Since there are (?) ways to choose the mutually distinct
11,%2,...,1;, and since S; is the sum of the numbers of
ways to leave j specific boxes empty (with others possibly
empty also), it follows, by analogy to Eq. (3.6.1), that

S; = (’”T)(k—j)” (3.6.1')

J

Furthermore,

A Ay - A = {Z}k' (3.6.2/)

since each distribution with none of the k£ boxes left empty
amounts to assigning the labels 1,2,...,k to the cells of a
partition. Finally, if U is the set of all ways to distribute
n objects into k cells, we have

U] = B = (IS) (k — 0)" (3.6.3)

Substituting the values from Equations (3.6.1"), (3.6.2'),
and (3.6.3") just above into the Exclude-All Equation

A Ay Ar| = U= 81+ So o+ -+ (<1)FS,

we obtain the identity

(e = e (e o
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Derangements

Inclusion-exclusion is also helpful in analyzing the de-
rangement recurrence.

REVIEW FROM §2.1:

e A derangement is a permutation m with no fixed
points.

e The derangement number D, is the number of
derangements of the integer interval [1 : n].

e The derangement recurrence (see also §5.4) is

D() = 1, Dl = O, (364&)
Dy = (n—1)Dp_1+ (n—1)Dp_s (3.6.4b)

Example 3.6.5: In the classical hatcheck problem,
each of n persons leaves a hat in the cloakroom, but the
hatchecks are lost, and the n hats are redistributed ran-
domly. It asks, what is the probability that no hat goes
to its rightful owner? This problem is recognizable as a
homespun version of calculating the proportion of permu-
tations of n objects that are derangements.

If U is the set of all possible hat distributions, then
Ul = n! (3.6.5)

To calculate the number D,, of derangements, let A; be
the set of permutations in which hat ¢ goes to its rightful
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owner. Then

D, = |A; Ay -+ 4| (3.6.6)

and

[Ail = (n—1)!
More generally,
[Aiy Aiy - Ai | = (n—7)!

which implies that
n
S = (k) (n —k)! (3.6.7)
When the Exclude-All Equation
Ay Ay - A = UL+ D (-1)ES
k=1

is combined with Equations (3.6.5), (3.6.6), and (3.6.7),

we obtaln

Dy = nl + kzi:l(—l)k(?;) (n — k)!

= Z(_1)kz—; (3.6.8)

k=0
Substituting n = 0 and n = 1 into Eq. (3.6.8), we obtain

- , 0!
Dy = ) (-1 ]

k=0
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0!
— (_1)0a — 1
and
1
I
L s k!
1! 1!
_ 0t IRV _ _
= (D' + (D' = 14 (1) = 0

which establishes that equation (3.6.8) satisfies the initial
conditions (3.6.4a) of the derangement recurrence. More-
over, assuming that equation (3.6.8) satisfies the recur-
rence for D,_; and D,,_5, we confirm by the following
calculation that it also satisfies the recurrence for D,,.

(n—1)Dy—1+(n—1)Dy—s

= (n— 1)72( e 2 ;,1)! + (n— 1)2(_1)k (n ;'2)'
=§&N%—§&N“;W+§gmmyﬁ
= g(—l)k% — (-1 EZ:B:

= g}(—l)k% + (—1)"2—5
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Remark: We observe that

D, = Z(—1)kZ—: (3.6.8)

k=0

implies that

n!
k=0

Thus, one might approximate the value of e~!, and hence,
of the number e, by generating random permutations and
counting the proportion that are derangements.

Counting Bipartite Matchings

In the rest of this section, a prior acquaintance with
graph theory would be helpful.
REVIEW FROM §0.6:

e A bipartite graph G is a graph whose vertex set can
be partitioned into two subsets X and Y s.t. every
edge has one vertex in X and the other in Y.

PREVIEW OF §8.6:

e A matching in a graph is a set of edges such that no
two edges have an endpoint in common.

e A perfect matching in a graph is a matching in
which every vertex is the endpoint of one of the edges.
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Example 3.6.6: In the bipartite graph G of Fig 3.6.4,
there are five perfect matchings:

one with f(1) =a (shown with thicker edges);
three with f(1) = b;
and one with f(1) = c.

X Y

G 2 b

3 C

4 d

Fig 3.6.4 Perfect matching in a bipartite graph.

Let U be the total set of bijections X — Y. Then
Ul = 4! = 24 (3.6.9)

A bijection X — Y is consistent with the bipartite graph
G if it is representable as a perfect matching in GG. For
1 =1,2,3,4, let A; be the number of bijections f : X — Y
such that the assignment ¢ — f(7) is inconsistent with the
graph (G, that is, such that vertex f(i) is not adjacent to
vertex 1.

For each choice of a vertex of Y that is not adjacent to
vertex 1, there are 3! bijections X — Y, corresponding
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to the 3! ways to assign the other 3 vertices of X to the
remaining 3 vertices of Y. Thus,

Al = (4 — deg(i) - 3

and there are similar formulas for multiple inconsistencies.

|A1] = |As] = |A4] = 1-3! and |Ay] = 2- 3!
|A1As| = |A14s| = |A1A4] = |A2Ay| = |AsAy| = 2!
and |AsAz| = 2-2!
|A1AsAs| = |A1AsAy| = |AsA3A4] = 1 and |A1A2A4] = 0

~ S =30, 8 = 14,53 = 3, Su = 0 (3.6.10)
Therefore, by using (3.6.9) and (3.6.10) with the Exclude-

All Equation, the number of perfect matchings is shown
to be

A; Ay Ay Ay | = |U| — S1+ S — S35+ 54
= 24-30+14-3+0
= 5

which agrees with our ad hoc count at the outset.

An alternative representation of this counting problem is
the chessboard of Figure 3.6.5. Observe that a square is
shaded if and only if it is forbidden to match the vertex
corresponding to its row to the vertex corresponding to its
column. Each perfect matching corresponds to a selection
of one unshaded square in each row, such that there is at
most one selection in each column.
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Fig 3.6.5 Chessboard representation of a bipartite
matching problem.

Remark: The method given here is applicable also to
counting complete matchings of a bipartite graph when
one part has more vertices than the other.

Chromatic Polynomials

An algebraic invariant called the chromatic polyno-
mial of a graph can be calculated by inclusion-exclusion.

PREVIEW OF §8.3:

e A vertex-coloring of a graph G in the set [1 : n],
often simply called a coloring, is a function f : Vg —
[1:n].

e A proper vertex-coloring of a graph is a color-
ing such that no two adjacent vertices have the same
color.
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DEF: The chromatic polynomial P((G,t) of a graph G
is the function whose value at the integer t is the number
of proper colorings of G with at most ¢ colors.

As a preliminary to a more systematic approach, we con-
sider an ad hoc construction of a chromatic polynomial. It
illustrates why the function P(G,n) is a polynomial.

Example 3.6.7: The graph K, requires at least two
colors for a proper coloring. We observe that, given two
colors, exactly two proper 2-colorings are possible, one of
which is illustrated in Figure 3.6.6. We write p, = 2.
Given three colors, exactly six 2-colorings (i.e., 3!) are
possible, so we write ps = 6.

Fig 3.6.6 A proper 2-coloring for the bipartite graph K .

For any positive integer ¢, the # ways to choose two colors

1s (;) and the number of ways to choose three colors is (é),

By Rule of Product and Rule of Sum, it follows that the
number of proper colorings with ¢ colors is

t t tt—1 tt—1)(t—2
() 1) = 220
= (t*—t) + (* -3t +2t)

= 5 — 2% 4+t (3.6.11)
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In general, it may be computationally difficult to de-
termine the exact numbers of proper colorings

P1r P2 - DPn

for an n-vertex graph G, or even to decide the chromatic
number, 1.e., the smallest positive value. However, what-
ever those numbers may be, the chromatic polynomial is

0 = n(l) () - on ()

Example 3.6.7, cont.: To recalculate the chromatic
polynomial of the graph K s by inclusion-exclusion, its
two edges are labeled 1 and 2, as shown in Figure 3.6.7.

Fig 3.6.7 An edge-labeling for the bipartite graph K ».

Let U be the set of all colorings of K 5 with at most ¢
colors. Let A; be the set of such colorings in which the
endpoints of edge 1 have the same color, and let A5 be the
set of such colorings in which the endpoints of edge 2 have
the same color. Then

P(Ki12,t) = |U| — |A1 Ay

This is a job for the Exclude-All Equation. Evidently,
U] = t>.
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To calculate |A1|, we recognize that there are t possible
choices of a color for both endpoints of edge 1, and then
another ¢ possible choices for the color of the remaining
vertex. Clearly, this holds also for |As|. Thus,

[Ay| = [Ay] = ¢
and S; = |Ai| + |As] = 2t

Any coloring in A; N As has the same color at both end-
points of edge 1 and the same color at both ends of edge 2.
Since these two edges share an endpoint, all three vertices
of K; 2 must have the same color. There are ¢t possible
choices for this color. Thus,

Ay As| = ¢
and 52 — |A1A2| =t

We now complete the recalculation,

| Ay As| = U] = S1 + 5,
= — 2% 4+t (3.6.12)

which agrees with (3.6.11).

Example 3.6.8: To calculate the chromatic polynomial
P(Ky,t) of the complete graph K, by inclusion-exclusion,
label its its six edges with numbers 1,...,6, as shown in
Figure 3.6.8.
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]
Fig 3.6.8 An edge-labeling of the complete graph K,.

Let U be the set of all colorings of K, with colors in [1 : t].
Then
Ul = ¢

Next, let A; be the set of colorings in [1 : £] such that the
endpoints of edge 7 have the same color. Then |4;| = >,
since there are t possibilities for the color of the endpoints
of edge + and t possibilities for each of the other two ver-
tices. Since there are 6 edges, it follows that

S1 = |Ai] + |As] 4+ -+ + |4g] = 6t°

There are (g) = 15 ways to choose a pair of edges, ¢ and
7. For 3 of these pairs, edges ¢+ and j have no vertex in
common, in which case a coloring in A; A; may use t colors
for the endpoints of edge ¢+ and ¢ colors for the endpoints of
edge 7, yielding t? possibilities. For the 12 pairs of edges
that have a vertex in common, there are t choices for the
color of the three vertices in the union of their endpoint
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sets and t choices for the remaining vertex, again yielding
t2 possibilities. Thus,

Sy = 15¢2

There are (g) = 20 ways to choose three edges. Exactly 4

of these 20 triples form a 3-cycle. There are t choices for
the color of all three vertices in that 3-cycle and ¢ choices
for the remaining vertex. The other 16 edge-triples form
a connected subgraph (a spanning tree) that contains all
four vertices of K4, so all four must get the same color,
for which there are t choices. Accordingly,

Ss = 4t + 16t

A subset of four or more edges must contain all the vertices
of K4. It follows that

6
o= (O)e =
6
= (%) = o
and Sg = (6>t =1
6

By the Exclude-All Formula,

P(K4,t) = |Ul — S + S2 — Ss + S4 — S5 + Se
= t* — 6t° 4+ 15t> — (4% +16t) + 15t — 6t + ¢
= t* — 613 + 11t% — 6t
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Remark: There are circumstances where the Exclude-All
Formula is an excellent way to calculate chromatic poly-
nomials, which are not revealed by these small examples.
For instance, it can be used to prove that the chromatic

polynomial of any n-vertex tree is ¢(t — 1)" 1.



