21:04  9/29/2009

Chapter 2

Solving Recurrences

2.1 Types of Recurrences

2.2 Finding Generating Functions
2.3 Partial Fractions

2.4 Characteristic Roots

2.5 Simultaneous Recursions

2.6 Fibonacci Number Identities
2.7 Non-Constant Coefficients

2.8 Divide-and-Conquer Relations



2 Chapter 2 Solving Recurrences

This chapter is predominantly concerned with solving
a linear recurrence with constant coefficients.

The first approach is completely general:

one derives a generating function for the sequence
specified by the recurrence, and then one analyzes
that generating function so as to derive a closed
form for the values in the sequence.

The second approach is restricted to linear recurrence re-
lations with constant coefficients:

using prior memorization or a table of standard pat-
terns, one sees how a given linear recurrence fits
a standard pattern and adapts the solution.

How to solve simultaneous recurrences is described in §2.5.
Special properties of the Fibonacci numbers are featured
in §2.6. The focus of §2.7 and §2.8 is on techniques for
transforming a more complicated type of recurrence into
a linear recurrence with constant coeflicients, thus precon-
ditioning it for solution by the well-established methods of
the earlier sections.
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2.1 TYPES OF RECURRENCES

REVIEW FROM §1.2:

e A recurrence prescribes a set of initial values
ZIZ():b() 5131:[)1 ZIIk:bk
and a recursion formula
z, = ¢(Tp_1, Tp—o, ..., Tg) forn>k

from which one may calculate the value of x,,, for any
n > k, from the values of earlier entries.

DEF: A recursion formula of the form
Tp = Gp-1Tp—1 + Ap—2Tp—2 + -+ + AT + a(n)

in which each term is linear is a Iinear recursion. Each
coefficient a; may be either a constant coeflicent, the
same for all n, or a function of n, that is, a variable
coefficient.

e It is a recursion of degree d if the number of co-
efficients a; that are non-zero is bounded, and if the
smallest subscript among the non-zero coefficients is

n —d.
e The function a(n) is the particularity function.

e It is a homogeneous recursion if a(n) = 0.
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Some Linear Recursions

Linear recursions are usually easier to solve than non-
linear recursions.

Example 2.1.1: The Tower of Hanoti recursion (intro-
duced in §1.2 and solved in §2.2)

hy = 2hn_1 + 1 (2.1.1)

is a non-homogeneous, linear recursion of degree 1, with a
constant coefficient.

Example 2.1.2: The Fibonacci recursion (introduced in
80.2 and §1.2 and solved in §2.5)

fh, — j%v—l + jiv—2 (2-1-2)

is a homogenous linear recursion of degree 2, with constant
coefficients.

Recurrences without Fixed Degree

A recurrence of fixed degree d for a sequence (z,)
prescribes x,, as a combination of the recent past entries

Ln—1 Lp—2 e Tp—d

In the most important kind of recurrence without fixed
degree, the value of z, is a combination of entries whose
indices are a fraction of n. This is called a divide-and-
conquer recurrence.
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Example 2.1.3: The merge-sort recurrence (explained
and solved in §2.8)

my = 1;

2mia) + n (2.1.3)

mp

is non-homogeneous linear recurrence, without fixed de-

gree, with a constant coefficient. Its recursion formula

expresses that the problem of sorting a list of length n is
T

reduced to merging two lists of size 3.

Variable Coefficients

The three recursions (2.1.1), (2.1.2), and (2.1.3) all
have constant coefficients. One of the most important lin-
ear recursions with variable coeflicients arises in the study
of permutations.

REVIEW FROM §0.5:

e A permutation on a set S is a one-to-one, onto func-
tion from S to itself.

e Theorem 0.5.3. Every permutation is a composition
of disjoint cyclic permutations.

DEF: A derangement is a permutation m with no fixed
points. That is, there is no object z such that n(x) = «.
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Example 2.1.4: Figure 2.1.1 illustrates a derangement.

Fig 2.1.1 The derangement (1 3)(254).

DEF: The derangement number D, is the number of

derangements of the integer interval [1 : n].

The derangements of the smallest integer intervals [1 : n]
are given in Table 2.1.1. We observe that a derangement

has no 1-cycle in its disjoint cycle form.

Table 2.1.1 Derangements of Small Intervals [1 : n|.

n D,,
1 0
2 (12) 1
3 (123) (132) 2
4 (12)(34) (13)(24) (14)(23) 9
(1234) (1243) (1324)
(1342) (1423) (1432)
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Prop 2.1.1. The derangement numbers D,, satisfy the
following recursion formula.

Dy = (n—1)Dp_y + (n—1)Dp_s (2.1.4)

Proof: Every derangement of [1 : n] such that n does
not lie in a 2-cycle can be formed by inserting the number
n, immediately after one of the n — 1 numbers in some
cycle of some derangement of [1 : n — 1].

Every derangement of [1 : n| in which n does lie in a 2-
cycle can be formed from some derangement 7 of [1 : n—2]
either by adding the 2-cycle (n—1 n), or by replacing one
of the n — 2 numbers j in some cycle of m by the number
n — 1 and then adding the 2-cycle (5 n). &

Example 2.1.5: The derangement recurrence (consid-
ered in more detail in §5.4)

D() = 1, D1 = O;
Dn = (n— 1)Dn_1 + (n— 1)Dn_2

is homogenous, linear, of degree 2, whose coeflicients are
variable. The sequence it specifies is convex, since

Dn—l—l + Dn—l (nDn —|_nDn—1) + Dn—l

2 2
Dy,

IV

n
2
D

IV

, form >2
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Even without solving the derangement recurrence, it is
possible to prove inductively that most permutations have
a fixed point, that is, that the ratio % of derangements
to permutations is less than half. '

BASIS: This is clearly true for n =1 and n = 2.

IND STEP: For n > 3, we have

Dn = (n — 1)Dn_1 + (n — 1)Dn_2

< (n—1)@ + (n—1)@ (ind hyp)
_ n(n;l)! B (n;l)! N (n_l)(n;Q)!

n!
T2

Some Non-linear Recurrences

All of the recursions (2.1.1), ..., (2.1.4) are linear.
Various other important recurrences are non-linear.

Example 2.1.6: The Catalan recurrence (introduced in
§1.2 and solved in §4.4)

co = 1;

Cn C0Cn—1 T CiCp—2 + =+ + Cr_1Co

is a homogenous non-linear recurrence without finite de-
gree, with constant coefficients.
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2.2 FINDING AN OGF

This section is devoted to the fundamental method
for solving a recurrence of the form

go = bo, ..., g = by; initial conditions

gn = Y(gn-1,-..,90) forn >k recursion

It uses three steps to determine a closed form for the
corresponding generating function

G(z) = ignz” (2.2.1)

and then a fourth step to derive a closed formula for the
coefficients ¢,,. We describe the four steps of this funda-
mental method with reference to this running example
of a recurrence system.

Example 2.2.1: This is a linear homogenous recursion
of degree 2 with constant coefficients.

go = 17 g1 = 27
gn = 5¢n_1—6gn_o forn >1

Step 1la. Multiply both sides of the recursion equation
by 2.

gnzn — 5gn—1zn - 6gn—2zn
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Step 1b. Sum both sides of the resulting equation over
the same range of values, with a lower bound as low as
possible, and upward to oo.

(1b) Zgnz" = Z5gn_1z" — Z6gn_gzn
n=2 n=2 n=>2

We start all the sums at the lower bound n = 2, because
starting any lower would take the subscript of g, below
0 on the left side, and this recurrence system does not
specify either g_o or g_;.

Step 2. Recalling equation (2.2.1), we observe that

o0 o0
Y gnd" =) gn2" — g1z — g0 = G(2) — g1z — g
n=2 n=0

Thus, we can replace each infinite sum in equation
(1b) by an algebraic expression involving the generating
function G(z).

(2a) Zgnz” = 5z Zgn_lz”_l — 622 Zgn_gz”_z
n=2 n=2 n=2

(2b) G(2) — g1z — g0 = 52(G(2) — go) — 62°G(2)

In (2a), we factor the terms of each sum on the right, so

that the power of z in the summand equals the subscript.
In (2b), we replace all three infinite sums.
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Step 3. Solve for G(z).
(3a) G(z) (1 —5z—|—6z2) = ¢g12+ go — Dgoz

= 2z+1 -5z
1— 3z
3b G —
(30) (2) = T8 16

In (3a) we collect the G(z) terms on the left and substi-
tute initial values for the low-subscripted entries of the

sequence. In (3b), we isolate the generating function G(z)
on the left.

Step 4. Solve for g,.

1 — 3z 1
Ma)  GE) = G550 -3, ~ 12
(4b) - f: 2 = g, = 27

Step (4a) converts the result of step (3b) into a more
tractable form. In (4b) we extract the coefficient g,,.

Check the Answer: A better way to confirm the answer
than by retracing the steps is to verify that the answer
g, = 2" satisfies the recurrence.

g =2"=1, ¢ = 2 = 2 initial conditions
gn = 9Gn—1 — 6gn—2 recursion
5.2"71 _g.2n2

= 5.2"7 1 — 3.9n71

— 9.9n—1

— "
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Step (4a) is usually not quite this simple, as illustrated by
this variation on the running example.

Example 2.2.1, cont.: Suppose that the initial values
in the preceding problem were changed to

Then steps 1 and 2 would be as before. However, here is
how we would finish in the modified problem.

Step 3. Solve for G(z).

(3a) G(2)(1 =52z +62%) = g1z + go — 5zgo

= 22 +0 -0
2z
3b Gl —
(36) (2) 1— 5z + 622

Step (3a) collects the G(z) terms on the left and substi-
tutes initial values for the low-subscripted entries of the
sequence. Step (3b) isolates the generating function G(z2)
on the left.

Step 4. Solve for g,. Step (4a) anticipates a method
called partial fraction decomposition, which is described
in the next section. For now, we can confirm that the cal-
culation in Step (4a) is correct, by proceeding from right
to left on its top line. The next section describes how to
do such a calculation from left to right.

2z —2 2

(4a) G(2) = (1-22)(1—32) 1-2z L
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= ) (-2)2"2" 4+ ) 237"
n=0 n=0
(4b) = g, = 2"t y2.3"

Check the Answer: As before, we verify that the answer
satisfies the recurrence. This time the answer is

gn = —2"t1 4+ 2.3"

g = 21 4+2.3 = 242 =0 initial conditions
g = —2°2+2-3 = —44+6 = 2
gn = 9gn—-1 — 6gn_2 recursion

= 5(=2"+2.3"1) —6(-2""t4+2.3"7?)
= (=5)-2" +10-3""" 4+ 3.2" — 4.3""!
= —2.2" 4+ 6-3""!

= 2"t 4 2.3"

Example 2.2.2: The method of generating functions
also solves non-homogeneous recurrences. We illustrate
this with a revisit to the Hanoi recurrence.

h() = O, hn = 2hn_1 + 1 forn >0
We proceed through the same four steps.

(la) h,z" = 2h,_1z" + 12"

(1b) ihnz" = Zth_lz" + Zz"
n=1
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(2a) ihnz" = QZihn_lzn_l + ziz”_l
(2b) H(:) = ho = 22H(2) + - - -

(3a) H(z)(1—2z):h0+1fz :o+1fz
(36) HE) = i a9

We explain in §2.3 how to split a rational function.

1 1
4a) H — _
(4a) H(z) 1—2: 1-—2
(4b) = Y 27" = Y " = hy, = 2" -1
n=0 n=0

This solution was suggested in §1.2 by examination of
small cases and then confirmed by mathematical induc-
tion.
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2.3 PARTIAL FRACTIONS

Suppose that a linear recurrence
Tp = Qp-1Tp—1+ Gp—2Tp—2 + -+ apxo + a(n)

has constant coefficients a; and that its particularity func-
tion a(n) is a polynomial in n. Then the generating func-

tion constructed by Steps 1, 2, and 3 of the method of §2.2
is a proper rational function.

- bo +brz+ -+ by2?
G pr— ,',Ln pr—
(2) nz:%g 2 et i e

Step 4 is to complete the solution, by deriving a closed
formula for ¢g,,. This section develops the details of Step 4.
Like the previous section, this section explains the details
of the method with the aid of a running example.

Example 2.3.1: The running example now is the ratio-
nal function

1 -5z
1 —7z+ 1622 — 1223

G(z) =
One may verify that it corresponds to the recurrence

g = 1, g1 = 2, g2 = —2;
gn = 7gn—1 — 16g,—2 + 12¢,—3 forn > 2
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Step 4a-1. Factor the denominator into linear factors.
co+ciz+ o+ ezt = co(l—T2) s (1 —T2)%"

with €1 4+ -- -+ ¢, = t. For simplicity, we take ¢g = 1. For
our example, we have

1 -5z
1 —7z4+1622 — 1223
1 -5z
(1 —22)2(1 — 3z2)

G(z) =

By what is called the Fundamental Theorem of Algebra,
a polynomial with complex coeflicients has a factorization
into powers of linear polynomials.

Remark: There is no general method for calculating the
roots of a polynomial exactly for higher degree polynomi-
als. Nonetheless, in practice, one commonly encounters
polynomials that can be factored by elementary methods.

Step 4a-2. Analyze the rational function into a sum of
k rational functions, each of whose denominators is one of
the factors (1—7;)%/, and whose numerators are “unknown
polynomials”, each of the respective form

bjo + bjaz 4 oo+ bje; 1297

Thus,
1 -5z bi,o+ 0112 b2.0

1— 7241622 - 1222 (1-22)2 (1 - 32)
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Step 4a-3. Recombine these summands, with a single
denominator. For the present example,

1 -5z . (bl’() -+ bl,lz)(l — 32) -+ 62’0(1 — 22)2

1 — 7241622 — 1223 (1—22)%2(1 — 32)

Step 4a-4. Then collect terms according to the exponent
of the factor z¢. For the present example,

(b1.0+b2o) + (—3b1,0+ b11 — 4bag)z + (—3b11 + 4bs o) 2>

1 —724+1622 — 1223

Step 4a-5. Next obtain a system of ¢ linear equations in
t unknowns b;; by equating each resulting coefficient of
2" in the numerator to the corresponding coefficient of z*
in the numerator of the original linear function, and solve

that system.

b1.,0 + by = 1 biog = 7
—3b1o+0b11—4bsyg = =5 p = by = -8
—3[)1,1—|—4bg,0 = 0 bg,() = —6

Step 4a-6. Now substitute these solutions into the right
side of the equation of Step 4a-2.
1 -5z 7 — 8z —6

7241622 1222 (1—227  1-3:

Step 4a-7. Transform each term on the right into the
product of its numerator with the power series correspond-
ing, via Corollary 1.7.5, to its denominator. Then simplify
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each power series.

= (T—82) i (nir1> 2"2" + (—6) i (g) an n
= (7= 82) i (n41)2"z" 6 i 3"

Step 4a-8. Finish by combining into a single power series,
and then extracting a closed formula for g,,.

=) [Br+7)-2"=6-3"] = g, = (3n+7)-2" —6:3"

n=0
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2.4 CHARACTERISTIC ROOTS

The method of characteristic roots assumes that
a homogenous linear recurrence of fixed degree d with con-
stant coeflicients has solutions of the form

Example 2.4.1: Running example for this section.

Jn = D5gpn_1 — 6gn_o forn >1

Characteristic Equation

Step 1. Form the characteristic equation, as follows.

(1a) Substitute 7™ for g, in the recurrence.
™ = 5Tl g2
(1b) Factor out 7"~ <,
¢ = 51 — 6
(1c) Move the non-zero terms to the left of the equals sign
P — 5T +6 = 0

thereby forming the characteristic polynomial.
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Step 2. Factor the characteristic polynomial.
(r—=2)(r—=3) =0

We call the roots of the characteristic polynomial
m = 2 and m™ = 3

characteristic roots. They correspond to the linear fac-

tors of the denominator of the generating function derived
in Step 4 of Example 2.2.1. We observe that

g = 17 = 2" and g, = 15 = 3"

are solutions to the given recurrence.

Step 3. As a general solution to the given homogeneous
recurrence, form a linear combination of the characteristic
roots, using unknown coefficients. If none of the roots is
repeated, the result of this step is as follows.

gn = b12" + 03"
We shall eventually return to this step to elaborate on the
case in which one or more roots is repeated.

Step 4a. Use the initial conditions to write a system of
linear equations for the unknown coeflicients.

go = 1 = 02° + 6:3° = by + by
g1 = 2 = 6121 + 6231 = 2[)1 + 3[)2
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Step 4b. Solve for the unknown coefficients.

by = 1 by = 0

Step 4c. Substitute the solutions from Step 4b into the
general solution of Step 3.

gnzzn

We observe that this is the same solution previously ob-
tained for this recurrence in Example 2.2.1.

Alternative Initial Values

Suppose that we now consider, as in the continuation
of Example 2.2.1, the alternative initial values

Then the finish would be as follows.

Step 4a. Use the initial conditions to write a system of
linear equation for the unknown coefficients.

go = 0 = 62" + 53° = by + by
g1 = 2 = b12" + b3" = 2b; + 3by

Step 4b. Solve for the unknown coefficients.

by = —2 by = 2
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Step 4c. Substitute the solutions from Step 4b into the
general solution of Step 3.

gn = —2"T1 4 2.3"

This is the same solution obtained previously, in Example
2.2.1, with these alternative initial values.

Repeated Roots

We now apply the method of characteristic roots to
the recurrence of Example 2.3.1.

g = 1, g = 2, g = =2
gn — 7gn—1 - 16gn_2 + 129n_3 forn > 2

Step 1. The characteristic equation is
T — 717 + 167 — 12 = 0
Step 2. Factor the characteristic polynomial.

(1—2)2%(r=3) =0

Step 3. If a root 7; has multiplicity €;, then use

: " : n . gj—1_n
bJ,OTj ‘|'bJ,1nTj + —|_b]75j_1n TT

in forming the general solution with unknown coeflicients.
In the present example, the general solution is



Section 2.4 Characteristic Roots 23

Gn = b102" + b1 1n2" + by3"

Step 4a. Use the initial conditions to write a system of
linear equation for the unknown coefficients.

go = 1 = b12° + b110-2° + 5:3° = by + by
g = 2 = b1 2" + by 11-2" + 53" = 2by9+2b11 + 3by
g2 = —2 = b102° + b112-2% + by3® = 4byo + 8by1 + 9by

Step 4b. Solve for the unknown coefficients.
bl,() =7 bl,l = 3 bg = —06

Step 4c. Substitute the solutions from Step 4b into the
general solution of Step 3.
gn = 72" +3n-2" — 6-3"

This is the same solution obtained in Example 2.3.1.

Remark: The proof that this method works is a matter
of checking that it always yields the same solution as the
method of generating functions.

Non-homogeneous Equations

To extend the method of characteristic roots to a non-
homogeneous linear recurrence of degree d with constant
coefficients

go = bo, ..., gi—1 = bg_i;
gn = An-1gn—1 + **+ + @Gn_dGn-a + a(n)
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we first isolate the associated homogeneous recur-
rence

gn = Qn-—1 gn—l + -0 Fapn_d gn—d
obtained by dropping the particularity function.

We illustrate the rest of the extended method with a revisit
to the Hanoil recurrence.

h() = O,
hy = 2hp_1 +1 forn >0

Use Steps 1, 2, and 3 to find a general solution to the
homogeneous recurrence h,, — 2h,,_1 = 0.

Steps 1, 2. T—2 =0

Step 3. h, = b-2"

The result so far is called the homogeneous part of the
general solution.

Step 3N. Find a trial function h., that satisfies the orig-
inal recurrence. It is called the particular solution or
the particular part. It usually resembles the particular-
ity function. For instance, if the particularity function is
a polynomial in n, then the trial function can be a polyno-
mial of the same degree, with unknown coefficient. Since
the particularity function for the Hanoi recurrence is a
constant, the trial function can be a constant.

hy = c
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Substitution into the original recurrence leads to a system
of linear equations in the unknown coefficients.

h, = 2h,_1 + 1 (recurrence)
c = 2c +1 (after substitution)
c = —1 (particular solution)

h, = h, + h, = b-2" — 1 (general solution)

Step 4a. Use the initial conditions to write a system of
linear equations for the unknown coeflicients.

hg = 0 = 522 -1 = b-1

Step 4b. Solve for the unknown coefficients.

b =1

Step 4c. Substitute the solutions for b; and by from Step
4b into the general solution of Step 3.

h, = 2" —1

This is the same solution obtained in Example 2.2.2 by
the method of generating functions.

Example 2.4.2: We modify Example 2.4.1 by giving the
recurrence a polynomial particularity function

qgo — 17 g1 = 27
gn = 5Gn_1 — 6gn_o + 4n — 3 forn >1
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We have previously derived for the homogeneous recur-
rence the general solution
Jn = b12" + b3"
Step 3N. As a particular solution we use the form
gn = an + ¢
and substitute it into the particularized recurrence.

An—3 = g, — OGn—1 + 6Gn—2 (recurrence)
= (egm+c¢o) — Bler(n—1) +¢p) + 6(ci(n—2) + ¢)
= n(cy —5ey +6¢1) + (cog — bey + Heg — 12¢1 + 6¢p)
= 2nc; + 2¢y — Ty (after substituting)

This leads to the linear equations and solutions
4 = 261 11

Cc1 = 2 cCo — —

—3 = 260 — 761 2

which are combined with the general solution to the ho-
mogeneous part.

. . n n 11
9n = Gn T gn :bl2 ‘|‘b23 ‘|‘2n‘|‘?

Step 4a. Use the initial conditions to write a system of
linear equations for the unknowns b; and b,.

11
g =1 = 5120+5230+7

11
g = 2 = 5121+5231+2°1+7
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Step 4b. Solve for the unknowns b; and b-.

9
—5 = b+ b by = —8
7
1 _
—— = 2bi + 3b, by = 5

Step 4c. Substitute the solutions for b; and by from Step
4b into the general solution from Step 3N.

g.on 4 Logn gy U
n = —3&- — . n -
g 2 2

Example 2.4.3: We now modify Example 2.4.1 by giv-
ing the recurrence an exponential particularity function.
g9 =1, g =2
Gn = DGn_1 — 6gn_o + (—1)" forn >1

We have previously derived for the homogeneous recur-
rence, as in Example 2.4.2, the general solution

gn = b12" 4 by3"

Step 3N. As a particular solution we use the form
gn — C(_l)n
and substitute it into the particularized recurrence.

(=1)" = gn — 5dn—-1 + 69— (recurrence)
= c(—=1)" 4+ 5c(=1)" 4+ 6¢(=1)"
= 12¢(-1)" (after substituting)
1

c = 3 (solution)
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Combine this solution with the general solution to the
homogeneous part.

A . n n 1 n
9n = Gn + gn = 612 + b23 + E(_l)

Step 4a. Use the initial conditions to write a system of
linear equations for the unknowns b; and b,.

1

=1 = 520 + 5,3 + —
90 127 4 by +12
1

= 2 = y2" + 63" — —
g1 1 + 09 12

Step 4b. Solve for the unknowns b; and bs.

11 8
— =} b by = —
12 1+ 02 1 12
25 3
— = 2b 3b by = —
19 1 + 902 2 19

Step 4c. Substitute the solutions for b; and by from Step
4b into the general solution from Step 3N.

8 3 1
g 52t ¥t gl

Complex Roots

A recurrence in which the initial values are real and
the recursion has real coeflicients has a characteristic poly-
nomial with real coeflicients. The roots of such a polyno-
mial may be complex.
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Example 2.4.4: The recurrence

go — 17 g1 = 27
In = 29p-1 — 2¢n—o forn>1

has the characteristic equation
™ —2r4+2 =0
with roots
m = 1+72 and 7™ = 1—1
Thus, the general solution is
gn = bi(14+2)" 4+ by(1 —20)"
The init conds yield the complex simultaneous equations

go = 1 = bl(l—|—2)0—|—bg(1—2)0 = bl —|— bg
g1 = 2 = bl(l—|—2)1 + bg(l—’i)l

with solution

i+ 1 i—1
b — b =
1 2 2 2

Hence, the general solution is

1 1
n = — 1 \n+1 = - 1 — An+1
g 5; (1 +1) 5; (L —19)
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2.5 SIMULTANEOUS RECURSIONS

With simultaneous recurrences, one uses a substitu-
tion from one recursion to reduce the number of different
sequences occurring in other recursions. The objective is
to reduce the solution of the initial system to the solution
of one or more independent linear recurrences.

0

1S

z_

Fig 2.5.1 Fibonacci rabbit population growth.
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Fibonacci Rabbits

In 1202, Fibonacci imagined a kind of rabbit that
takes one month from birth to mature, with a gestation
period of one month. Every mature female gives birth each
month to a litter of two, with one male and one female. Let
b, represent the number of pairs of newborn rabbits, and
let a,, be the number of pairs of adult (mature) rabbits.
Suppose that there are no rabbits at n = 0 months, and
that a newborn pair initiates the system after 1 month.

The total number f,, = a,, +b,, pairs of rabbits is modeled
by a simultaneous recursion with initial conditions

a0:O7 a1:O7 b():O7 b1:17

and the relational equations

Gp = Gp—1 + bn—l
bn = Qp—1
fn = apn + bn

A first step in solving is to use substitutions to reduce it
to a recurrence with a single unknown. We see that

ap = Qp_1 + b1 = fn—l (251)
bn = Ap_1 = fn_g (252)
fn = ap + bn — fn—l + fn—2 (253)

and that fo =a9g+b6g=0and f1 =a; +6; =0+1=1.
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The resulting single-variable recurrence

fO — 07 fl =1
fn — fn—l + fn—2

is recognizable as the Fibonacci recurrence.

Ubiquitousness of the Fibonacci Seq

Although Fibonacci’s rabbit model is Fibonacci’s in-
vention, the sequence it yields is evidently nature’s inven-
tion. For instance, what follows immediately is an expla-
nation of an occurrence of the Fibonacci sequence in the
construction of a nautilus shell.

DEF: A Fibonacci rectangle is any rectangle, subdivided
into squares whose sides are of lengths that are Fibonacci
numbers, in the following sequence:

e The Fibonacci rectangle 1 is a 1 X 1 square.

e For each n > 2, the Fibonacci rectangle r, is con-
structed by placing a square along the longer side of
the rectangle r,,_1, as in Figure 2.5.2.

8 L N

2 2 2 2

1] 1] [ [A] 1]1 1]1
Fig 2.5.2 Fibonacci rectangles.
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DEF: A spiraled Fibonacci rectangle is a Fibonacci
rectangle in which each square of size 5 X 5 and larger is
placed so that it touches three previous squares, rather
than two. Figure 2.5.3 illustrates a spiraled Fibonacci
rectangle.

\

Fig 2.5.3 Fibonacci spiral.

We observe that the inscribed spiral in Figure 2.5.3 has the
shape of a nautilus shell. It is called a Fibonacct spiral.

Solving the Fibonacci Recurrence

We now use the method of generating functions to
solve the Fibonacci recurrence.
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Step 1. f,z2" = fn_12" + fn_22".
anzn — an—lzn + an—2zn
n=2 n=2 n=>2

Step 2. Use F(z) as the generating function for f,.

Z fnzn — ZZ fn—lzn_l + Z2 Z fn—2zn_2
n=2 n=2 n=>2
F(2) = fiz—fo = 2(F(2) = fo) + 2°F(2)
Step 3. Solve for F(z).

F(z)1—2—-2%) = fiz+ fo — fozr = 12 +0 -0z = 2
F(z) = 7=

1 — 2z — 22

Step 4. To solve for f,,, we use the quadratic equation

1 — 2z — 22 = (1—1+\/5z>-<1—1_\/5z>
2 2

whose roots involve the golden mean and its conjugate

1++/5 . 1=W5
vo= 5 and § = 5

respectively. We then use partial fractions

A 1 1 1
F — - . _
(2) 1 — 2z — 22 V5 (1—77; 1—&7;)
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from which we conclude
fo = —=-("=4") (2.5.4)

which is called the Binet formula for the Fibonacci num-
bers, after Jacquet Binet, who rediscovered it in 1843, af-
ter Euler had published it in 1765. Closed forms for a,

and b,, are readily derivable from (2.5.1) and (2.5.2), re-
spectively.

Proposition 2.5.1. The Fibonacci number f, is asymp-

totic to 7—

V5

Proof: Since ¥ < 1, it follows that 4" is asymptotic to
0. Accordingly, using Eq. (2.5.4) above,

lim = lim

77— 0O ’y
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Some Tiling Problems

One of the many other contexts in which Fibonacci
numbers arise is tiling problems. We visualize paving a
1 x n chessboard with tiles of various lengths. A 1 x d tile
is called a d-tile.

Example 2.5.1: Let {,, be the number of ways to cover
a 1 x n chessboard with 1-tiles and 2-tiles. We have ty =
1, which represents covering a degenerate board with the

empty arrangement. Figure 2.5.4 shows the possibilities
forn=0,...,4.

ty =1
b =1
b =2
k=3
t, =5

Fig 2.5.4 Tiling a 1 x n chessboard.

The number of 1 X n tilings in which the rightmost tile
is a 1-tile is ¢t,,_1. The number of 1 X n tilings in which
the rightmost tile is a 2-tile is t,,_o. The solution to the
resulting recurrence

to = 1, t1 = 1;
tp = th_1 +tn_2

is clearly t,, = fn41, the n + 1*" Fibonacci number.



Section 2.5 Simultaneous Recursions 37

Example 2.5.2: Observe that any tiling in which all
the tiles are of odd length can be converted to a tiling
with 1-tiles and 2-tiles, whose initial tile is a 1-tile, by
breaking a tile of length 2n 4+ 1 into a 1-tile, followed by
n 2-tiles. This breakage operation can be inverted, since
each maximal string of 2-tiles and the 1-tile that precedes
it can be assembled into an odd-length tile. It follows
that there is a one-to-one, onto correspondence between
the two kinds of tiling. Since the number of tilings of
a 1 X n chessboard with 1-tiles and 2-tiles, and with an
initial 1-tile, is the Fibonacci number ¢,,_1 = f,_2, this
must also be the number of tilings with tiles of odd length.
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2.6 FIBO NUMBER IDENTITIES

In the first few entries of the Fibonacci sequence

n_|

fo |

o1 2 3 4 5 6 7 & 9 10 11 12
0 1 1 2 3 5 8 13 21 34 55 89 144
for each instance of a number n and a multiple mn, the
Fibonacci number f,,, is a multiple of f,,. For instance,

fs =5 and fi9p = 55 = 11f;5

This section verifies this and other visible patterns.

Forward-Shift and Subscript Multipliers

As a preliminary, we consider a relationship between
fr+n and f,. Proceeding from k = 2,

Jfng2 = fot1 + fu
frts = fov2 + fog1 = (fog1 + fo) + fota

= 2fny1 + fn

frta = fots + fore = Cfov1 + fo) + (Fotr + fa)
= 3fn+1 + 2fn

fots = fora + fors = Bfar1 + 2fn + 2fas1 + fn)
= 5fny1 + 3/n

frve = fonts + foga = (Bfng1 + 3fn) + Bfnt1 + 2fn)
— 8fn—|—1 + 5fn
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we observe that the coefficients of f,,11 and f, are them-
selves Fibonacci numbers. The observable pattern is con-
firmed by the following theorem.

Thm 2.6.1 [Forward-Shift Identity]. The Fibonacci
numbers satisfy the equation

fn—l—k — fkfn—|—1‘|‘fk—1fn for all k > 1

Proof: By induction on k.
BAsIS: If £k =1, then f; =1 and fy = 0, and, thus,

Jefnv1 + Ji—1fn = 1 fog1 + 0 fro = fauta

IND HYP: Assume for all § in the interval 0 < 7 < k that
fn—l—j — fjfn—I—l + fj—lfn

IND STEP: Then

oot = foak—1 + foor_o (Fibonacci recursion)
= (fe—1fo+1 + fro—2fn) + (fr—2fos1 + fo—sfn) (ind hyp)
= (fa—1 + fr—2)fus1 + (fo—2 + fr_3)fn  (regrouping)
= fefnt1 + Jr—1/n (Fibonacci recursion) <

We now confirm the initial observation regarding multi-
ples.
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Cor 2.6.2. For all k > 0, the Fibonacci number f,, is a
multiple of the Fibonacci number f,,.

Proof: By induction on the multiplier k.
BASIS: This is trivial for £k = 0 and k£ = 1. That is,

fOn =0 = Ofn
fln — fn — 1fn

IND HYP: Assume that the Fibonacci f;,, is a multiple of
the Fibonacci number f,,, for all 4 such that 0 < j < k.

IND STEP: Then

fkn — fn—|—(k—1)n
= f—1)n fn+1 + fe—1)yn—1Jn (by Thm 2.6.1)

By the inductive hypothesis, there is a number M such
that f(z—1)n = M f. Thus,

fkn — anfn—l—l ‘|_f(k—1)n—1fn
= (M frns1+ fi—1yn=1) fn &

Cassini’s Identity

In returning to the early entries of the Fibonacci se-
quence

n_|

fo |

o1 2 3 4 5 6 7 8 9 10 11 12
0 1 1

2 3 5 8 13 21 34 55 89 144
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we also observe that the square of each Fibonacci number
differs by 1 from the product of the Fibonacci number that
follows it and the Fibonacci number that precedes it. For
instance,

fofs =52 =3-3+1 = fafsa+1
Jefs = 8:3 =5-5—-1= f5f5—1

Theorem 2.6.3 [Cassini’s Identity]. In the Fibonacci

sequence (fy),
fn—i—lfn—l = fnz + (_1)n forn >1

Proof: By induction on n.

BASIS: Confirmation that the identity holds for n =1 is
as follows.

Jofo = 1-0 =0
A+t =1-1-1 =0

IND HYP: Assume that
firifio1 = fr+(=1)F for1 <k <n

IND STEP: Then
frtifn—1 = (fn+ foe1)fua (Fibonacci recurrence)

= fafoo1 + [y

= fnfn—l + fnfn—2 — (_1)n_1 (ind hyp)
= fu(fno1 + fa—2) + (=1)"

= fn2 + (—=1)" (Fibonacci recurrence) <
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Fibonacci Number System

It is clear that every non-negative integer is the sum
of some Fibonacci numbers, since 1 is a Fibonacci num-
ber. The following example adds as requirements non-
repetition and non-consecutiveness.

Example 2.6.1: Each of the smallest integers that is
not a Fibonacci number is the sum of two or more non-
consecutive Fibonacci numbers.

4 = 341 10 = 8+2
6 = 5+1 11 = 8+3
7T =542 12 = 8+3+1
9 = 8+1 14 = 1341

Moreover, this property holds for some larger examples.

100 = 8948+ 3 200 = 144+ 55+1

Theorem 2.6.4. Every non-negative integer n is the sum
of distinct non-consecutive Fibonacci numbers.

Proof: By induction on n.
BASIS: The number n = 0 is the sum of the empty set.
IND HYP: Assume for some n > 0 that every number

less than n is representable as the sum of distinct non-
consecutive Fibonacci numbers.

IND STEP: Let f,, be the largest Fibonacci number less
than or equal to n. Since f,,+1 > n, it follows from the
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Fibonacci recursion that

fm—l > n_fm

Thus, when the induction hypothesis is applied to n — f,,,
the summands are non-consecutive Fibonacci numbers,
each less than f,,_1. Accordingly, when f,, is included
in the set of summands, the members of the resulting set
of Fibonacci numbers remain non-consecutive, and their
sum is n. &

DEF: The Fibonacci representation of an integer is its
expression as a sum of distinct non-consecutive Fibonacci
numbers.
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2.7 NON-CONSTANT COEFFICIENTS

A good method for solving any recurrence that is not
specified as a linear recurrence of fixed degree with con-
stant coefficients is to transform it into such a recurrence.
We will apply this strategy to the quicksort recurrence.

A Reduction Strategy

Consider this general linear recursion of degree d with
variable coefficients.

fn)zx, = cpor f(n—1)xzp_1 + ---
+ cn—a f(n—d)zp—q + p(n) (2.7.1)

Substituting f(n)z, = vy, yields the recursion

Yn = Cne1Yn—1 + **+ CnedYn—a + p(n) (2.7.2)

which is linear with constant coefficients, and, therefore,
is amenable to previously developed methods of solution.
A solution

Yn = g(n)

for the recursion (2.7.2) could be reverse-transformed into
a solution

zn = g(n)/f(n)

for the recursion (2.7.1).
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Example 2.7.1: Consider the recurrence

ZIJ():O;

2(n — 1) 1
Ty = ——Tp—1 + —
n n

Multiplying the recursion by n yields the recursion

nr, = 2(n—1)z,—1 + 1
in the form of recurrence (2.7.1). The substitution
Ny = Yn

yields this new recurrence in the form of recurrence (2.7.2).

Yo = 0

Yn = 2UYn—1 + 1
This transformed recurrence is easily solved by the method
of generating functions or by the method of characteristic

roots. Indeed, if we recognize it as the Hanoi recurrence,
we already have this solution for y,,:

Yo = 2" — 1
To obtain the solution for z,,, we substitute y,, /n = z,,:

ne, = 2" —1
2" — 1

n

= Ty, =
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Example 2.7.2: To solve the recurrence
oy — O,

n—1
1
ne, = (1 — —) Tpo1 + (2n)177 forn>1
n

we first multiply the recursion by n"~!, thereby obtaining

n"z, = (n—1)""te,_; +n""t2n)T"

= n"z, = (n— 1)”_1:1:n_1 + 21=n

Substituting n"x,, = y,, yields the recurrence

Yo = 0
n—1
1
Yn = Yn—1 T (5) forn >1
This transformed recurrence is easily solved.
=1+ ! + ! + + !
In = > "1 on—1
1
= 2 - 2n—1
By reverse-substituting vy, = n"x,, we solve the given

recurrerce.

1 5 1 2" —1
ZCTL _— —_ —_ _—
nn 2n—1 nnzn—l
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Sum in a Recurrence: Quicksort

Beyond the complication of variable coefficients, the
quicksort recurrence has no fixed degree. It involves
a long sum of earlier values in the sequence. Another
preliminary to applying the methods of the earlier part of
this chapter is to transform it into a recurrence of fixed
degree.

One signature step of quicksort is choosing a pivot
entry. The other signature step is to tripartition the
given sequence:

e The front part contains every element that is less than
the pivot. This part may be empty.

e The pivot part contains only the pivot entry itself.

e The back part contains every entry not in the other
two parts, all the entries that are greater than the
pivot, plus any duplicates of the pivot. The back
part may be empty.

If the length of a sequence is 0 or 1, then the sequence is
deemed to be sorted. Otherwise, it is tripartitioned, and
then its front part and its back part are quicksorted. In the
implementation represented by the following algorithm,
the pivot is selected at random. (This tends to produce
pivots whose value is relatively near to the median of the
sequence, a fortuitous event that reduces the number of
subsequent iterations.) The following algorithm specifies
the details of a quicksort.
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Algorithm 2.7.1: Quicksort

Input: seq X = (x;); range limits lo, hi
Output: that same sequence in non-decreasing order
if lo > hi then return

else pivot := random({lo, ..., hi})
“ripartition” (xio,...,Zhi) into (Tpiyor) plus

front .= (z; | ; < Tpivot)

back := (x;(j #pivot) | z; > Tpivor)
X := concatenate(Qsort(front), zpiyot, Qsort(back))

Example 2.7.3: Suppose that the given sequence
(78 49 05 14 10 90 44 39 19 55)

gets initial pivot 39. Then the first tripartition is

front part pivot back part
- 7 N~ - % ~
(05 14 10 19) (39)q (78 49 90 44 55)

Subscript ¢ denotes a part that is fully quicksorted. Sup-
pose that at the second stage the pivots chosen in the parts
not yet fully quicksorted are 10 and 78. Then the result
of the second-stage tripartitioning is

((05), (10), (14 19)) (39),
((49 44 55) (78), (90),)

Suppose that at the third stage the pivots chosen in the
parts not yet fully quicksorted are 19 and 49. Then the
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result of the third-stage tripartitioning is

((05) (10) ((14) (19)))  (39)
(((44) (49) (55)) (78) (90))

at which point all parts are fully quicksorted. Concatena-
tion proceeds level by level to this final result.

(05 10 14 19 39 44 49 55 78 90)

Analysis of the Time to Quicksort

Let (),, represent the time needed to quicksort a sequence
of length n. This involves the following time expenditures:

1 to select a pivot location
n to tripartition a seq of length n
Q1 to quicksort a front part of length &
Qrn_1_1 to quicksort the back part of length n — k — 1

The probability that there are exactly k items smaller than
random pivot is

pr (k items < pivot) = —
n

This leads to the following recurrence.

Qo = 0
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n—1

Q, = 1l+n+ Z pr (k items < pivot) - [Qr + Qn—r—1]
k=0
n—1 1

Q= 1n+ > L0t Qo]
k=0
9 n—1

— 1 -
ot ;Qk

An obstacle to solving the recurrence is the unlimited
number of terms in the sum. Often, such a recursion can
be transformed into a recursion of fixed degree, by setting
up a subtraction of sums.

n—1
nQ, = n+n’ + QZQk (2.7.3)

k=0

(n—1)Qu_1 = (n—1)+(n—-1)" + QiQk

k=0

= n®—n + znzsz (2.7.4)
k=0
Productively, subtracting (2.7.4) from (2.7.3) yields
nQn — (n—=1)Qn-1 = 2n + 2Q, 1
and, thus,
n@Qn = (n+1)Qn_1 + 2n

which may be rewritten in the form
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Qn Qn—l 2

n+1 T + n+1
After making the substitution
@ _
n+1
there is the following transformed recurrence
Py = 0
P, = P ~+ - f > 1
n n—1 n+1 orn =~
whose solution is
n n n+1
2 1 1
= — = 2 —:22——2(HTL+1—1)
k_1k+1 k:lk—l_l j=2 7

which 1s then reverse transformed.

Qn = (n+1)P, = 2(n+1)(Hny1 —1)

= 2(n+1) (Hn+n+1> —2(n+1)

= 2(n+1)H, +2 —-2(n+1) = 2(n+1)H,, — 2n
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Confirming Small Cases

Direct application of the recurrence
Qo = 0;
9 n—1
=1 —
k=0
yields the small values

Q1:1+1+2[Q0]:2+0:2

1
Q2 = 1+2+§[Q0+Q1] = 3+1-2 =5
@3 = 1"‘3+§[Q0+Q1+Q2] = 4—|—§.[2_|_5] _ =2

Application of the closed formula
Q. = 2(n+1)H,, —2n
yields the small values

Qi =2-(1+1)H;, —2-1 =4.1 -2 = 2

Qs = 2-(2+1)H, —2-2 = 6-

Qs = 2-(3+1)H; —2-3 = 8.
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2.8 DIVIDE-&-CONQUER RELATIONS

A divide-and-conquer strategy for solving a problem is
to partition it into subproblems, such that the total effort
needed to do all the subproblems is significantly less than
a direct approach to the original problem.

DEF: A recurrence of the form
Ty = CTyp/q + a(n)

is said to be a divide-and-conquer recurrence.

Remark: It represents that each of ¢ subproblems is
smaller than the original by a factor of d and in which
a(n) is the cost of partitioning and recombining.

Binary Search

The signature step of a binary search is that the target
key is compared to the key of the middle record. If it
precedes the middle key, then the target record cannot
be in the second half of the file, so it is inactive for the
remainder of the search. Otherwise, the first half goes
inactive. This step is then applied recursively to the active
half, until there is only one active record remaining.

Example 2.8.1: Suppose we are searching for the target
value y = 74 in the following list of length 16:

Y 5 18 31 34 35 39 42 47
|51 53 60 74 75 80 81 96
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Initially, the entire list is active, with a lower limit location
of lo =1 and an upper limit location of h: = 16.

In the first stage, the middle location is determined to be

lo+ ht B 1+ 16
9 - 9

mid = [ =
The target value y = 74 is compared with the middle value
xg9 = bl. Since

y=174 > x9 =051

and since the list is sorted, it follows that the target value
y = 74, if present in the list, must be in the second half of
the list, which becomes the only active sector. Resetting
the lower limit to lo = 9 achieves the choice of active
sector.

In the second stage, the middle location of the active sector
X9, ..., T1g 1s location

m+hﬂ _|©+1ﬂ

= 13
2 2

mid = [
The target value y = 74 is compared with the middle value
x13 = 75. Since

y:74 S 51313:75

it follows that the target value y = 74, if present in the
list, must be in the first half of the active sector, which
becomes the new active sector. Resetting the upper limit
to ht = 12 accomplishes this.
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In the third stage, the middle location of the active sector
g, ..., T12 1s location

= 11

. [lo—l—hi-‘ [9+121
mid = =

2 B 2
The target y = 74 is compared with x1; = 60. Since

y:74>:1311:60

it follows that the target y = 74, if present, must be in the
2nd half of the active sector, which becomes the current
active sector. Therefore, the lower limit is reset to lo = 11.

In the fourth stage, the middle location of the active sector
11, T12 1s location

= 12

: [lo—l—hi-‘ [11%—12-‘
mid = = |—
2 2

The target y = 74 is compared with xz1o = 74. Since

Yy = 74 Z 19 = 74
it follows that the target y = 74, if present in the list, must
be in the 2™ half of the active sector, which becomes the

final active sector, as the lower limit is reset to lo = 12.

The final active sector has only one item. If it is not the
target item, then the target item is not in the original list.
If it is the target item, as in this example, then its location
is returned as the output of the search.
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The following algorithm gives the general rules for a binary
search.

Algorithm 2.8.1: Recursive Binary Search (RBS)

Input: a non-decr seq X = (x;); range limits lo, hi;
a target value y
Output: if y & {z;o,...,xn;} then x (“not found”);
else min{y € {lo,...,hi} |y =x;}
call RBS(X,lo, hi,y)
lo ify =z,

output := {* iy o

Recursive Subroutine RBS(X,lo, hi,y)

if [o = hi then return

else mid = [(hi + lo) /2]

if y < x,,;4 then ht := mid — 1 else lo = mad
call RBS(X,lo, hi,y)

Analysis of the Time for a Binary Search

Let b,, be the number of comparisons needed to per-
form a binary search on an array of size n. Since at each
stage, the limits of the active search space within the orig-
inal sequence are reset to about half their previous range,
the value of b,, is represented by the following divide-and-
conquer binary-search recurrence:

bl = 2;
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The substitutions n = 2* and byx = ¢, transform this to

the recurrence
co = 2

cp = Crp—1+2
The solution to the transformed recurrence is evidently
c, = 2k+2

from which it follows (by the inverse substitutions k =
lgn and ¢ig 5, = b)) that the solution to the binary-search
recurrence 1s

b, = 2lgn+2

Merging

Mergesort is based on repeated merging. Algorithm
2.8.2 prescribes a process for merging two sorted lists.

Algorithm 2.8.2: Merge

Input: non-decreasing lists L1 and Lo
Output: a merged non-decr list L, initially empty

while both input lists are non-empty
move min(head(L1),head(Ly)) from its own list
to the tail of the output list
if that transfer makes one list empty then transfer
all the remaining elements of the other list to
the end of the output list
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Example 2.8.2: Suppose that the input lists and output
list are initially

Li: 2 14 30 37 55
L,: 3 36 43 65
L :

After two transfers, the lists are

Li: 14 30 37 55
Lo: 36 43 65
L : 2 3

After two more transfers, the lists are

Li: 37 55
Ly: 36 43 65
L: 2 3 14 30

The final lists are

Lli
L2:
L: 2 3 14 30 36 37 43 55 65

The time needed to merge the lists L1 and Lo is at
worst proportional to the sum of their lengths.
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Iterative Mergesort

A mergesort is a sort by iterative merging of sublists
of the initial list.
Example 2.8.3: Suppose that the list to be sorted is
X = [82 48 03 17 11 94 41 37]

which has length 8. From an iterative perspective, this
list is initially viewed as a list of 8 files, each of length 1.

X1 = [(82) (48) (03) (17) (11) (94) (41) (37)]
The files of length 1 are paired, as follows:

o o— [((82) (48)) ((03) (17))
7)) (94)) ((41) (37))

Merging the two sublists of length 1 within each pair yields
this file with 4 sorted subfiles, each of length 2.

Xo = [(48 82) (03 17) (11 94) (37 41)]
The sorted subfiles are paired, as follows.

Xg = [((48 82) (03 17)) ((11 94) (37 41))]

Merging the two sublists of length 2 within each pair yields
this file with 2 sorted subfiles, each of length 4.

Xs = [(03 17 48 82) (11 37 41 94)]
These two sorted subfiles of length 4 are paired.
Xy = [((03 17 48 82) (11 37 41 94))]

Then the two subfiles of length 4 are merged, thus ulti-
mately yielding a fully sorted list of length 8.

X = [03 11 17 37 41 48 82 94]
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Recursive Mergesort

In a recursive mergesort, the order of merger is a bit
different from an iterative mergesort. E.g., the first two
sorted sublists of length 2 are merged into a single sublist
of length 4 before the rest of the sublists of length 1 are
merged into sublists of length 2. Of course, the results are
identical. Algorithm 2.8.3 is for recursive mergesort.

Algorithm 2.8.3: Recursive Mergesort

Input: X = (z1, T2, ..., Ty)
Output: that same sequence in non-decreasing order

Recursive Subroutine MerSo(X)
if n > 1 then
m = [n/2]
X1 :=(21, T2y ...y Tyy)
Xo 1= <33m—|—17 L2y ovey :Cn>
X := Merge(X;, X5)

Analysis of the Time or a Mergesort

Let s,, be the number of comparisons needed in a
mergesort on an array of size n. The value of s,, is repre-
sented by the following divide-and-conquer recurrence:

s1 = 1

Sn. = 28,2+

The substitutions n = 2* and s,. = t;, transform this into

the recurrence
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t() ) 1;
tp, = 2,1 + 2"

which we can solve with generating functions.

o0 o0 o0
sztk = QZsz_ltk_l —I—szQk
k=1 k=1 k=1

2z
1 — 2z

T(z)—1 = 22T(2) +
1

(1 —2z)2

=t = (k+1)2F

T(z) =

Thus, after the inverse substitutions & = Ign and t1,, =
sn, the solution to the mergesort recurrence is

s, = nlgn+n

What enables the divide-and-conquer strategy of a
mergesort to succeed at reducing the work effort, relative
to naive forms of sorting, is that merging two sorted lists
of equal length together takes less work than a naive sort
of the union of the two lists. Naive sorts (e.g., insertion
sorts and selection sorts) of n items require O(n?) steps.
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The Josephus Recurrence

During the Roman occupation of the Judean state,
the Romans had trapped 41 Jewish rebels at a fortress
called Jotapata. Rather than face likely slavery in Rome
or public execution, these patriots made a suicide pact.
Proceeding around a circle, every third man was to be
killed, until there was only one remaining man, who would
then kill himself. Joseph ben Mattiyahu ha-Cohen (who
adopted the name Flavius Josephus after going over to
the Romans), a survivor of several previous losses to the
Romans, calculated what would be the last two positions
on the circle whose occupants would remain alive, so that
he and a friend could survive.

DEF: The Josephus problem is to calculate a closed for-
mula for the values of the sequence JT(Lk), the position of
the last man alive, for a circle of n men in which every k"

man is killed.

40 41 T

19 = Flavius Josephus

Fig 2.8.1 The Josephus problem J4(12).
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For the special case of 41 men, with every 2" man
killed (a variation from the historical event), we can read-
ily simulate the entire process. In each cycle of this sim-
ulation, the bold numbers are those of the men who are
eliminated on that cycle.

1 2 3 4 -.- 39 40 41 0 mod 2
1 3 5 7 .- 37 39 41 1 mod 4
3 7 11 15 --- 31 35 39 7 mod 8
3 11 19 27 35 11 mod 16
3 19 35 3 mod 32

Thus, the man in position 19 is the survivor.

(2)

The survivor position Jy, ' for the first few values of
n is given in Figure 2.8.2. Since every man in an even-
numbered position is killed on the first cycle, every one of
the survivor positions is an odd number.

— |
w [
W [N
<3|
— | oo

Fig 2.8.2 Calculating Jr(bz) for small values of n.

After the first traversal of the elimination process
around the circle, there are two possible cases, depend-
ing on whether the number of men at the outset is odd or
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even. If there are 2n men at the outset, then after elim-
inating the even-numbered on the first cycle, the process
location immediately precedes position 1. We may regard
this as location 2n — 1, with a still-alive occupant, since
the occupant of position 2n is gone, as shown in Figure
2.8.3. The remaining n men, all odd-numbered, are shown
just outside the circle.

oo Z2n : o3 2n-1 1

Fig 2.8.3 After one cycle, for an even configuration.

This is equivalent to starting with n men, whose numbers
are shown inside the circle. Each outer number is obtained
by doubling the inner number and then subtracting 1. Of
course, this applies to the survivor position. Thus, we
have the recursion

J(z) W AC | forn > 1

2n n

If there are 2n+ 1 men at the outset, then after elimi-
nating the even-numbered on the first cycle, the next man
to be killed is at position 1. The status of the process
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immediately thereafter would be as illustrated in Figure

2.8.4. Here, each outer number is obtained by doubling the
inner number and adding 1, which yields the recursion

J2(i)+1 = 2J7§2) +1 forn>1

Thus, the recurrence problem to be solved is as follows:

J& =
Jz(i) = 2Jn2) —1 forn>1
J2(i)+1 = 2J7g2) +1 forn >1
on 2N+ : .3 2N+ 3
2 S
3 7
SE— .

Fig 2.8.4 After one cycle, for an odd configuration.

Applying this divide-and-conquer recursion to n = 41
yields a quick solution for that case:
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7P = 2@ 4

- (2J10 —1+1 = 4=]1(02) -1
= 42J37 = 1) =1 = 81" =5
= 8(2J,Y +1) =5 = 1647 +3

= 16(2J<2> 1)+3 = 3272 —13 = 19

Remark: When the Romans ultimately stormed into the
fortress, all the Jews except for Josephus and his friend
were dead. Upon hearing from Josephus how he and his
friend had survived the suicide pact, the Romans recog-
nized that Josephus was indeed a clever man, who could be
quite valuable to them. Josephus lived out his life writing
versions of history that flattered the Romans.

(2)7

To solve the more general problem of calculating Jj,
we extend the sample of small cases:

n‘891011 12 13 14 15 16 17 18
1 3 5 7 9 11 13 15 1 3 5

From this increased set of small cases, a pattern emerges,
as indicated by the following proposition.
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Prop 2.8.1. If n=2" 4+ k, with 0 < k < 2", then

J@::2k+1::20umﬂzwﬂ>+1

n

Proof: By induction on n.
BASIS: The equation is clearly true for n = 1.

IND HYP: Assume the equation is true for all cases less
than n.

IND STEP: If n = 2" + k is even, then k is even. Thus,

J(2) = 2:]2(31)_1_'_& —1 (recursion)
k
= 2 (2 '35 + 1) —1 (induction hypothesis)
= 2k+1

If n =2" +k is odd, then £ — 1 is even, and

J2 = 273 oy 1 (recursion)

n 2m—1_|_T
k—1 : : :
= 2 (2 S -+ 1) +1 (induction hypothesis)

= 2k+1 ¢



