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Chapter 1 O

Combinatorial Designs

10.1 Latin Squares

10.2 Block Designs

10.3 Classical Finite Geometries
10.4 Projective Planes

10.5 Affine Planes

A combinatorial design (or alternatively, an inci-
dence structure) consists of a domain set X and another
set B, commonly represented as subsets of that domain,
analogous to the way in which the edges of a simple graph
can be represented as pairs of vertices. This final chapter
studies several kinds of combinatorial designs, each with
additional axioms and/or mathematical structure on the
domain and/or on the subsets.



2 Chapter 10 Combinatorial Designs

10.1 LATIN SQUARES

A Latin square is a type of combinatorial design most
easily described as an n X n array.

DEF: A Latin square on a set X of n objectsisann xn
array such that each object in X occurs once in each row
and once in each column.

Example 10.1.1: A Latin square on four graphic pat-
terns is shown in Figure 10.1.1.

Fig 10.1.1 A 4 x 4 Latin square.

The standard symbols for an n xn Latin square are the in-
tegers modulo n. The rows and columns of a Latin square
on Z, are commonly indexed in Z,,, so that there is a row



Section 10.1 Latin Squares 3
0 and a column 0. In particular, the following 4 x 4 Latin

square on Z4 is obtainable from the Latin square of Figure
10.1.1 by a bijection of the symbol sets.

(10.1.1)

W N~ O
DN WO
O W N
O = NW

Remark: A sudoku is a form of 9 x 9 Latin square on the
numbers 1 to 9, with an additional requirement that each
number occur exactly once in certain 3 X 3 sub-arrays.

It is easy enough to construct a Latin square of any
given size.

Proposition 10.1.1. For every positive integer n, there
exists an n X n Latin square with Z,, as the set of objects.

Proof: Let L[i,j] =i+ j modulo n. Thus,

( 0 1 2 - n—2 n-—1

1 2 3 - n-—1 0

2 3 4 ... 0 1

L = . . T . .
n—2 n—1 0 --- n—4 n-—3
Kn—l 0 1 -+ n—-3 n—2)

Clearly the array L is a Latin square. &
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Example 10.1.2: For n = 4, the construction of Propo-
sition 10.1.1 yields the following Latin square.

0 1 2 3

1 2 3 0
9 3 0 1 (10.1.2)
3 0 1 2

A Latin square can be recognized as a type of combi-
natorial design (X, B ) with additional structure. The set
B is ordered, corresponding to the order of the rows in the
array. Each member B; € B contains every object of X, is
construed to be ordered, corresponding to the order of the
elements of a row. Moreover, the number of subsets in B
equals the number of objects in X, and for each object x

and each possible position within a row, there is a unique
row in which x occupies that position.

Product of Latin Squares

The next definition indicates a method of construc-
tion of a new Latin square, starting from two given Latin
squares.

DEF: Let A = (a;;) and B = (b;;) be Latin squares on Z,
and Zg, respectively. Then the product square AR B is
the Latin square on Z, X Z,

apo X B apl X B .- ap(r—1) X B

aigp X B a1 X B - a1(r—1) X B
ARB =

agr—1)0 X B apt X B -+ a@_1y(r—1) X B
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where the s X s submatrix a;; X B is given by

(@ij, boo) (aij, bo1) o (@, bo(s—1))
(aij, b1o) (aij, bir) -+ (aij, bis—1))
a;; X B = . . .
(aij, bs—1)0) (@ij bs—1)1) -+ (aij, bs—1)(s—1))

Proposition 10.1.2. Let A = (a;j) and B = (b;;) be
Latin squares on Z, and Zg, respectively. Their product
A ® B is a Latin square.

Proof: Since each row of A contains each number in Z,
and each row of B contains each number in Z,, it follows
that each row of A ® B contains each pair in Z, x Z,. The
same fact holds for the columns. &

Example 10.1.3: If

0 1 2
A = 0 1 and B = 1 2 0
(] ()> 2 0 1
then
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
( )
(0,1) (0,2) (0,0) (1,1) (1,2) (1,0)
AQB — (0,2) (0,0) (0,1) (1,2) (1,0) (1,1)
(1,0) (1,1) (1,2) (0,0) (0,1) (0,2)
(1,1) (1,2) (1,0) (0,1) (0,2) (0,0)
\(1,2) (1,0) (1,1) (0,2) (0,0) (0,1))
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which we observe is equivalent to the Latin square

0 1 2 3 4 5
1 2 0 4 5 3
2 01 5 3 4
34 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

under the bijection Zsy X Zs — Zg given by

N

0,0)—0 (0,1)—1 (0,2)2
(1,0) =3 (1,1)—4 (1,2)—5

N
N

Orthogonal Latin Squares

DEF: Two n x n Latin squares A = (a; ;) and B = (b; ;)
are orthogonal Latin squares if the n® ordered pairs
(@i j, b;j) are mutually distinct.

Remark: By the pigeonhole principle, two n X n Latin
squares are orthogonal if each possible ordered pair of do-
main elements occurs.

Example 10.1.4: It is easy enough to construct the pair
of orthogonal 4 x 4 Latin squares in Figure 10.1.2 by ad
hoc methods. One Latin square is represented pictorially
by the outer pattern in an array location, and the other
Latin square by the inner pattern.
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0O 1 2 3
1 0 3 2
2 3 0 1
3 2 1 O
outer
3 0 1 2
2 1 0 3
0 3 2 1
1 2 3 0
mner

Fig 10.1.2 Two orthogonal Latin squares.

The next proposition indicates how to construct a
family of mutually orthogonal Latin squares.

Proposition 10.1.3. Fork=1,...,p— 1, wherep is a
prime number, let L]f be the p X p array such that

LYi,j] = ki+jmodp 0<i,j<p-—1
Then the p — 1 arrays
Lpl, Lpz, e Lg_l
are mutually orthogonal Latin squares.

Proof: The entries in row ¢ of the array L]f are

ki, ki+1, ki+2, ..., ki+(p—1)
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which are clearly distinct. The entries in column 5 are

Two of these entries differ by some number ck with 0 <
¢,k < p. Since p is prime, ck Z 0 modulo p. Therefore,
each of the arrays L]f is a Latin square.

Now suppose that the pairs of entries
Lkr. . L. . L & LA
(Lp 4,5, L, [m]) and (Lp 2,51, L, [m])
are identical. Then

kit = kit (10.1.3)
and

Kidj = Kitj (10.1.4)

If ¢ # i, then i — 7 has a multiplicative inverse in L, (see
Corollary 6.4.2). Hence,

k= 177 from (10.1.3)
1 —1
and
Vo= 17 from (10.1.4)
1 —1

Therefore, k = k'. &
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Example 10.1.5: The arrays LZ and L3 of Proposition
10.1.3 are orthogonal.

01 2 3 4 01 2 3 4
2 3 4 0 1 340 1 2
L =14 01 2 3 Ly =112 3 4 0
1 2 3 4 0 4 0 1 2 3
3 40 1 2 2 3 4 0 1

Remark: If p is not a prime, then L]f might not be a Latin
square. For instance, row 2 of the array Lg is identical to
row 0.

Theorem 10.1.4 [MacNeish, 1922]. Let

be r mutually orthogonal m X m Latin squares, and let
B(l), B(2), e B

be r mutually orthogonal n X n Latin squares. Then the
Latin squares

AN @ BD AR g BR) ... A g BT
are mutually orthogonal.

Proof: Suppose that the pair of entries at location 75 x k¢
of the Latin square A®) x B®) and of the Latin square
AW x BW je.,

(al), by2)) and (al?), b1Y))



10 Chapter 10 Combinatorial Designs

is the same as the pair in location pg x uv of those two
Latin squares, i.e., as the pair

( (2) b(“")) and (a(y) b(y))

apq ? uv pq ? uv

Then the pairs

(a(fﬂ) a(y)) and (a(fﬂ) a(y))

i » Aij pq » “pq

are identical, which implies, since A®) and AW are or-
thogonal, that

t=p and jJ=gq
Similarly,

k=u and (=

Therefore, A®) x B®) and AW x BW are orthogonal. ¢

Proposition 10.1.5. For every odd number n > 1, there
is a pair of orthogonal n X n Latin squares.

Proof: This follows from Proposition 10.1.3 and Theo-
rem 10.1.4, since every odd number factors into a product
of odd primes. &

Proposition 10.1.6. Let n = 2% with k > 2. Then there
is a pair of orthogonal n X n Latin squares.

Proof: Example 10.1.4 gives a pair of orthogonal 4 x 4
Latin squares. The following is a pair of orthogonal 8 x 8
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Latin squares.

01234567 01234567
10325476 76543210
23016745 321076514
32107654 45670123
45670123 67452301
54761032 10325476
67452301 54761032
76543210 23016745)

If k£ is even, then n is a power of 4, and if k is odd, then
n is a product of 8 with a power of 4. It follows from the

base cases 4 X 4 and 8 X 8 and Theorem 10.1.4 that there
is a pair of orthogonal n x n Latin squares. &

There are only two possible 2 x 2 Latin squares in Z,,
and they are not orthogonal. Euler conjectured in 1782
that for n odd, there is no orthogonal pair of 2n X 2n
Latin squares. In 1901, Gaston Tarry [Tarr1901] proved
by exhaustion that there is no 6 x 6 pair. However, Ernest
Parker [Park1959] produced a 10 x 10 pair in 1960, and
then Bose, Shrikhande, and Parker [BSP1960] proved that

there is a 2n x 2n orthogonal pair except for n = 1 or 3.

Summary. For every positive integer n except 1, 2, and
6, there is a pair of orthogonal n X n Latin squares.
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Isotopic Latin Squares

DEF: The Latin squares Lli,j] and L'[i, 7] on Z,, are iso-
topic Latin squares if L’ can be obtained from L by a
sequence of transformations, each chosen from any of the
following three types.

e A permutation of the rows.

e A permutation of the columns.

e Applying a permutation o : Z,, — Z,, to the symbols
of the array.

Example 10.1.6: Swapping rows 0 and 1 of the Latin
square

0 1 2 3
1 2 3 0
9 3 0 1 (10.1.2)
3 0 1 2
yields the Latin square
1 2 3 0
0 1 2 3
2 3 0 1
3 0 1 2

Example 10.1.7: Swapping the symbols 0 and 1 in the
Latin square (10.1.2) yields this Latin square.

1 0 2 3

0 2 3 1
2 3 1 0
31 0 2
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Remark: Clearly, isotopy on Latin squares is an equiva-
lence relation.

DEF: A Latin square on Z,, is said to be normalized if
its initial row is

and its initial column is

n—1

Clearly, every Latin square is isotopic to a normalized
Latin square.

Abstract Latin Squares

Isotopy allows three natural kinds of transformation
on Latin squares that may be regarded as natural equiv-
alences. The following alternative conceptualization of a
Latin square allows some additional equivalences.

DEF: An abstract Latin square on Z,, is a set L of triples

(ry ¢, s)

in Z,, X 2, X Z, such that



14 Chapter 10 Combinatorial Designs

e For any (¢, j) € Z, X Z, there is a unique triple
(7“, C, 3) in L such that 1 = r and ,] — c.

e For any (¢, k) € Z,, X Z, there is a unique triple
(7“, C, 3) in L such that 2 = r and k = s.

e For any (5, k) € Z, X Z, there is a unique triple
(T‘, C, 3) in L such that J — c and k = s.

Proposition 10.1.7. Every abstract Latin square corre-
sponds to a unique concrete Latin square (i.e., the array
form). Conversely, for every concrete Latin square, there
is a unique abstract Latin square. &

We observe that the operation of transposition on the
array form of a Latin square has as its abstract counter-
part the operation of swapping the first and second entry
in each triple. Yet from the abstract perspective, we could
equally well swap the first and third entry of each triple.
Indeed, we equally apply any of the six possible permu-
tations uniformly to all the triples. This motivates the
following definition.

DEF: Let m be a permutation on the set {1, 2, 3}. The
operation of transforming a Latin square by applying 7 to
the coordinates of the triples is called a conjugacy op-
eration. The array resulting from applying © to a Latin

square L is called the m-conjugate of L. It may be de-
noted L™.
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Example 10.1.8: Consider the following Latin square
in array and abstract form.

3
2
0
2 1

L =

w = O

1 2 (0,0,0) (0,1,3) (0,2,1) (0,3,
0 3 (1,0,1) (1,1,2) (1,2,0) (1,3,
2 1 (2,0,3) (2,1,0) (2,2,2) (2,3,
3 0 (3,0,2) (3,1,1) (3,2,3) (3,3,

Applying the permutation (1,2)(3) to the set of triples
means swapping the first and second coordinates of each
triple, thereby obtaining

(0,0,0) (1,0,3)
(0,1,1) (1,1,2)
(0,2,3) (1,2,0)
(0,3,2) (1,3,1)

which is the abstract form of

he Latin square

+—\C,0C>r,.
O N

3 2
0 1
2 3

2 3 1 0

Observing that L(12)(3) ig simply the transpose of L, we
recognize that the transformation L — L1123 simply
swaps the roles of rows and columns.

Alternatively, applying the permutation (1, 3)(2) to the set
of triples means swapping the first and third coordinates
of each triple, thereby obtaining

(0,0,0) (3,1,0) (1,2,

, 0
, 0
0

Y

DN U =

(
(
(

Y

Y

Y

1) (2,1,1
2) (0,1,2
3) (1,1,3

2

2 Y

(0
(2,
(3

Y

2,0) (
1)
2)
3) (

Y

Y

2,3,0)
3,3,1)
1,3,2)
0,3,3)

Y

MMM

SN N N’

2 Y
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which is the abstract form of the Latin square

713)(2)

N Wk O
O = W
w N o
O N W

Remark 1: We observe that conjugacy is an equivalence
relation on the Latin squares. The possible class sizes are

1, 2, 3, and 6.

Remark 2: For n < 5, the conjugacy operations on
a Latin square produce only Latin squares that could be
obtained by isotopy operations. However, for n > 6, they
produce additional Latin squares.

DEF: Two Latin squares L and L’ are main class isotopic
if L is isotopic to any conjugate of L',
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10.2 BLOCK DESIGNS

A generic block design can be regarded as a general-
ization of a graph, in which a block is a generalized edge.

DEF: A block design B has a non-empty domain
X = {x1, o, ..., T, }

whose elements are sometimes called varieties and a non-
empty collection

B = {Bi, Bs, ..., By}

of subsets of X called blocks. It is a simple design if
no two blocks are identical.

DEF: The number of blocks in which an element x appears
is called the valence of that element of the design.

DEF: The number of blocks in which a pair of elements x
and y appears is called the covalence of that pair.

Thus, a graph is a block design in which every block has
size 2. The valence of an element within the block design
would be its degree as a vertex of the graph. The cova-
lence of a pair of elements of the design would be their
multiplicity of adjacency as vertices of the graph. To al-
low self-loops in a graph, one would allow the blocks to
be multisets of elements of the design and make suitable
revisions in the definition of valence and covalence.
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DEF: A block design is regular if the following two con-
ditions hold:

e every block is the same size k > 2, which is called the
blocksize;

e cach element z; has the same valence; that is, each ap-
pears in the same number r of blocks, which is called
the replication number.

Thus, a d-regular graph is a regular block design with
blocksize 2 and replication number d.

Balanced Designs

The idea of balancing a design with incomplete blocks
arose with Sir Ronald Fisher (1890-1962) in his theoretical
study of the design of experiments in agriculture.

DEF: A regular block design B with v varieties and b blocks
is balanced and is called either a (v, b, r, k, \)-design
or a (v, k, \)-design if each pair of elements z; and z;
has the same covalence, that is, if each pair appears in the
same number A of blocks, which is called the index of
the design.

A balanced design is complete if £k = v, so that each
block contains all of X. If £ < v, then it is incomplete.

TERMINOLOGY: A balanced incomplete block design is
commonly called a BIBD.
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Example 10.2.1: For X = {0,1,2,3}, the blocks
By :012 B, :013 B3:023 B4:123
form a (4,4, 3, 3,2)-design.
Example 10.2.2: For X = {0,1,...,8,9, A}, the blocks

02348 13459 2456A 35670 46781 57892
68943 T9A04 8A015 90126 A1237

form a (v =11,b = 11,r =5, k = 5, A = 2)-design. In
this design, the initial block generates all of the others, if
we regard the elements of X as integers modulo 11, with
a standing for 10 modulo 11. Then each other block is
obtained by adding 1 modulo 11 to each of the elements
of the previous block.

Example 10.2.3: For every n > 2, setting X = [1 : n]
and By = X yields a complete design with v =n, b =1,
r=1,k=n,and \ = 1.

Example 10.2.4: For every n > 2, setting X = [1 : n]
and having the pairs of elements from X as blocks yields
a balanced design with

v =n, bz(?), r=n—1, k=2, A=1

Thus, the complete graph K,, is representable as a BIBD.
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Example 10.2.5: When a simple graph is drawn on an
arbitrary surface without crossings, each edge lies on ex-
actly two faces. If the graph is K,,, and if all faces are
k-sided, then this drawing may be regarded as a BIBD
with v = n, blocksize k, and A = 2, in which a block is the
set of corners of a face.

Necessary Conditions

The examples above establish that BIBD’s exist for
certain combinations of the parameters v, b, r, k, and .
However, there are no BIBD’s for various other combina-
tions. Our immediate concern is to derive some necessary
conditions for the existence of a (v, b, r, k, X)-design.

Prop 10.2.1. For every non-empty (v,b,r, k, \)-BIBD
(@) A>1 and (b) k<w

Proof: Since there is at least one block, and since it
has at least two elements, some pair has at least once

occurrence. Since all pairs occur equally often, it follows
that A > 1.

Since a block is a subset of the domain, its size cannot
exceed the size of the domain. Thus, £ < wv. Since a BIBD
is incomplete, it follows that k£ < v. &

Proposition 10.2.2. The parameters of a (v,b,r, k, \)-
design on

X = {x1, o, ..., T, }
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satisfy the following two conditions:

(a) bk = vr
(b) rk—1) = A(v—1)

Proof: First consider the v x b incidence matrix

B .o By
Iy l1,1 e L1.,b o .
7 — . . . L,L‘,j _ {1 lffC'LG.B]
0 otherwise

Ly ly,1 Tt Ly,b

There are v rows, each with row-sum r, and there are b
columns, each with column-sum k. Therefore, bk = vr.

Next consider the (”) X b pair-incidence matrix

2

B, . B,
/ e o o /

T1T2 L12.1 L19.

I’ ’
Ty 1T . cee
v—1<v (v—1)v,1 (v—=1)v,b
with )
! L { 1 if TiTj € By
0>t 0 otherwise

There are (g) rows, each with row-sum A, and there are b
columns, each with column-sum (g) Therefore,

\(5) =2(5)
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Accordingly,
A (v—1) = bk(k—1)
= M (v—1) = vr(k—1) since bk = vr
=A(v—-1) = r(k—-1) ¢
TERMINOLOGY NOTE: The inferrability (from Prop 10.2.2)

of values of b and r from values of v, k, and \ justifies
optionally calling a (v, b, 7, k, A)-design a (v, k, A)-design.

Corollary 10.2.3. For every non-empty BIBD,

A<
Proof: Since A(v—1) =7 (k—1) (from Thm 10.2.2) and
k < v (from Prop 10.2.1), it follows that A < r. &

REVIEW FROM LINEAR ALGEBRA:
o If AB is the product of the matrices A and B then
rank(AB) < min{rank(A), rank(B)}

NOTATION: The transpose of a matrix M is denoted M7,

Thm 10.2.4 [Fisher’s Ineq]. In any BIBD, b > v.
Proof: Let [ be the incidence matrix of the BIBD. Then

(1A A A

A r A A - A
. A A 7 A A
W= x A X r A

SR
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Subtracting the first column of a matrix from the other
columns does not change the determinant. Hence,

r A—r A—7 A—1r - A—r
A r—A 0 0 0
- A 0 r— A 0 0
eIy =[N 00 r-x 0
A 0 0 0 e T — A

Adding the other rows of a matrix to the first row does
not change the determinant. Hence,

r+(=1)A 0 0 0 0

A r—=X 0 0 0

- A 0 r—A 0 0

det{II") = A 0 0 r—A\ 0
A 0 0 0 . or—2)

Since the upper triangle of this matrix is all zeroes, the
determinant is the product of the diagonal entries. Thus,

det(IT7) = [r+ (v —1)A(r — A)"~!

By Corollary 10.2.3, r — A > 0. Moreover, 7 + (v — 1)A
is positive. Thus, det(I IT) is non-zero. Accordingly, the
rank of the v x v-matrix I I is v. Since the rank of the
v X b incidence matrix [ is at most b, and since the rank,

v, of the product matrix I I7 cannot exceed the rank of
the matrix I, it follows that v < b. &
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Steiner Triple Systems

DEF: A (v, 3,1)-design is also called a Steiner triple sys-
tem.

Example 10.2.6: The complete balanced block design

domain X = 1, 2
A = { o 0, 1, 2 (10.2.1)

1 block B = {012}

is a Steiner triple system. (A Steiner triple system on a
domain with more than three elements is a BIBD.)

Example 10.2.7: The BIBD
. {domain Y = {0, 1, 2, 3, 4, 5, 6}
| 7blocks C = {013, 124, 235, 346, 450, 561, 602}

is a (7,3,1)-design. As in Example 10.2.2, the first block
generates the others.

Proposition 10.2.5. In a (v,3,1)-design,

(@) r = v;1 and (b)bz%

Proof: Part (a) follows from Proposition 10.2.2(b):
r(k—1)=X(v—-1)

Simply substitute £ = 3 and A = 1.
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For part (b), start with the equation
bk = rv

from Proposition 10.2.2(a). Then substitute 3 for k£ and
(v —1)/2 for r to obtain

v—1
2

3b = v

which leads immediately to the desired formula. &

Corollary 10.2.6. In a (v,3,1)-design,

v = 1 or 3 modulo 6

Proof: Prop 10.2.5(a) implies that v is odd. Thus,
v = 1, 3 or 5 modulo 6

However, if v = 5 modulo 6, then v(v—1) = 2 modulo 6,
contradicting Prop 10.2.5(b). &

Constructing Designs

Jakob Steiner (1796-1893) asked in 1853 whether for
every positive v such that v = 1 or 3 modulo 6, there ex-
ists a (v, 3,1)-design. He was unaware that in 1847, the
Rev. Thomas P. Kirkman (1806-1895) had proved they
always exist. Kirkman’s methods are beyond the present
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scope. We presently offer some elementary methods that
can also be used for constructing BIBD’s with larger block-
size. The first such method generalizes Example 10.2.7.

DEF: A set of numbers

S ={a1, as, ..., ar}

in Z,, is a perfect difference set of index X\ for Z,, if
each non-zero number in Z,, occurs exactly A times in the
list

<£Ifij = a; — a; | a;,a; € S; ’L#]>
It is simply called a perfect difference set if A = 1.

Proposition 10.2.7. A perfect difference set B of cardi-
nality k and index X\ for Z, generates a (v, k, \)-design.

Proof: For j =0,...,v—1,let B; = {j+0b]|be€ B}.
By the definition of a perfect difference set, these blocks
form a (v, k, A)-design. &

Example 10.2.7, cont.: The set {0,1,3} C Z; is a
perfect difference set of index 1, since

1 =1-0 2 =3-1 3 =3-0

4 = 0-3 5 =1-3 6 0—1

DEF: A family § of sets Si1,...,5; C Z,, is a perfect
difference family of index A if each non-zero number in
2., occurs exactly A times in the list

(Tijr = a; —aj | aj,a; € Sy 1#£7; 1 <k<f)

It is called a perfect difference family if A = 1.
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Proposition 10.2.8. If the sets of a perfect difference
family of index A for Z, are all of the same size k, then
they generate a (v, k, \)-design. &

Example 10.2.8: We construct a perfect difference fam-
ily for Zq3

{0, 1, 4} with differences {1, 3, 4, 9, 10, 12}
{0, 2, 8} with differences {2, 5, 6, 7, 8, 11}

These two blocks together generate the following (13,3, 1)-
design.

X =1{0,1,2 3,4,56,7,8, 9, A B, C}

(014 125 236 347 458 569 67TA 78B 89C')
940 AB1 BC2 (03

028 139 244 35B 46C 570 681 792 8A3

\ 9B4 AC5 B06 C17 )

Example 10.2.9: The set {0,1,4,6} is a perfect differ-
ence set for Z;3. Thus, with the domain

X =1{0,1,2 3,4,56,7,8 9, A, B, C}

the set of blocks

B _ 0146 1257 2368 3479 458A 569B 6T7AC
| 78B0 89C1 9A02 AB13 BC24 (035

forms a (13, 4, 1)-design.
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The next example offers a way to construct a new
Steiner triple system from two (possibly identical) smaller
systems.

Example 10.2.10: The cartesian product of the domain
of the (3,3,1)-design A of Example 10.2.6 and the domain

of the (7,3, 1)-design B of Example 10.2.7 is representable
as the following array.

o 1 2 3 4 5 6

0 00 01 02 03 04 05 06
1 10 11 12 13 14 15 16
2 20 21 22 23 24 25 26

To obtain a (21, 3, 1)-design A x B on the set of elements
of that array, we choose as blocks
(i) every column;

(ii) from each row, each triple {ri, rj, rk} such that

{i, 7, k} is a block of B;

(iii) each triple {0¢, 17, 2k} such that {¢, j, k} is a
block of B.

Observe that the number of blocks we have chosen is

T+214+42=70

Two elements zy and z'y’ of A x B appear in one and only
one block. There are three cases.
(i) z # 2’ and y = y": only in the block arising from
column y.
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(ii) = 2’ and y # y": only in the block arising from
row x and the unique block of B in which y and
y' are paired.

(iii) z # 2’ and y # y': let 27 be the remaining
row, and let y”’ be the third entry in the unique
block of B that contains both y and y’. Then
{zy, 2'y’, "y"} is the unique block containing
zy and z'y’.

DEF: The product of two Steiner triple systems A
and B is the triple system whose domain is the product of
the domains of A and B, with blocks as follows:

(i) from each column of the product array A x B,
each triple {rc, sc, tc} such that {r, s, t} is a
block of Aj;

(ii) from each row of A x B, each triple {r:, rj, rk}
such that {i, 7, k} is a block of B;

(iii) each triple {ri, sj, tk} such that {r, s, t} is a
block of A and {%, j, k} is a block of B.

Theorem 10.2.9. Let A and B be Steiner triple systems
with u and v varieties, respectively. Then their product is
a Steiner triple system with uv varieties.

Proof: The proof for the general case is essentially the
same as for Example 10.2.10. &

Remark: The definition and theorem just above are gen-
eralizable to a product of BIBD’s and a theorem that the
result is a new BIBD.
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Isomorphism of Designs

DEF: A bijection f : X — Y of the domains of two block
designs

B = (X,{Bi;) and C = (¥, {Cj})

is called an isomorphism of block designs if for every

block C'; of design C, there is a block B; of design B, such
that the restriction f : B; — C; is onto.

Proposition 10.2.10. Let B = (X,{B;}) be a (7, 3, 1)
Steiner system. Then B is isomorphic to the (7,3, 1)
Steiner system with elements 0,1, 2,3,4,5,6 and blocks

013 124 235 346 450 561 602

Proof: Choose an arbitrary element of X and call it .
Since each of the six other elements of X must appear
with xy exactly once, there must be exactly three blocks
of B that contain xy. Call the other two elements in one of
these blocks x1 and x3, and call the other two in a second
of these blocks x5 and xg. Partially specify the bijection

f by
rot—0 z1—1 z9—2 233 x5+ 6
which ensures some block preservation, namely,

rorixrg — 013 zxgroxg +— 026 xgx425 — 045
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The elements 21 and x2 appear together in a unique block
of B. Since the third element of that block cannot be z,
x3, or xg, each of which appears in another block with x;
or xo, it can be called x4, with the remaining element of
X to be x5.

Completing the bijection specification with
rg—4 x5+ 5
immediately ensures further block preservation
T1ToTy — 124

Moreover, given that xgxixs and zizox4 are blocks, it
follows that the third block containing x1 must be z1x5xz4.
Similarly, the third block containing xzo must be zox3x5.
Since the elements =3, x4, and x4 have so far appeared in
only two blocks each, the seventh block must be x3z4z¢.
Thus all blocks are preserved by the bijection f. &

Remark: There is essentially only one (7, 3, 1)-design, as
established by Prop 10.2.10, and also only one (9, 3, 1)-
design. There are two non-isomorphic (13, 3, 1)-designs
and 80 mutually non-isomorphic (15, 3, 1)-designs. See
the table on p764 of [CoDi2000a).
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10.3 CLASSICAL FINITE GEOMETRY

Many properties of the Euclidean spaces R" can be
derived purely from a short list of axioms about points
and lines, without consideration of distance or angles, and
without consideration that a line in R" contains infinitely
many points. In this spirit, various kinds of combinatorial
designs on a finite set of elements have been called finite
geometries. The elements of their domains are tradi-
tionally called the points of the geometry, and their
distinguished subsets are called the lines of the geom-
etry. The following two general axioms are standard for
geometries.

G1. Two distinct points are contained in at most one
line.

G2. Two distinct lines intersect in at most one point.

NOTATION: In view of Axiom G1, we may denote the line
containing two distinct points v and v by uwv.

TERMINOLOGY: Two disjoint lines of a geometry are often
said to be parallel lines.

DEF: The incidence matrix of a geometry (X, L) with
p points

X = {zy,...,2,}

and ¢ lines

L = {L,...,L;}
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is the p x £ matrix

1 ifx; € Lj
0 otherwise

M(X,L)[ivj] — {

A geometry is commonly specified by its incidence matrix.

Example 10.3.1: Figure 10.3.1 illustrates a geometry
with a drawing of its four points and its six lines.

Lo Li Ly Ls L, Ls Lo %o

2 1 1 0 0 1 0 L X4
71 o 1 0 1 o0 1 X3 «
o 1 0 1 0 0 1 Lo 2
T3 o 0 1 1 1 0 3" L . L

Fig 10.3.1 A geometry with 4 points and 6 lines.

DEF: The dual of a geometry (X, L) is the geometry
(X*, L*) with

X* =L and L* = X

whose incidence matrix is the transpose of the incidence
matrix of (X, L). (In view of the reciprocity of Axioms
G1 and G2, the dual design satisfies both of them.)

Example 10.3.1, cont.: Figure 10.3.2 illustrates the
dual of the geometry specified by Figure 10.3.1.
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Ty x x5 T3

L 1 0 1 0
: ( 1 1 0 0 )

: 0o 0 1 1

L 0 1 0 1

L 1 0 0 1
Lt \o 1 1 0/

Fig 10.3.2 The dual geometry has 6 points and 4 lines.

The Fano Plane

A design named for the Italian geometer Gino Fano
(1871-1952) is the first of three widely cited classical ge-
ometries that we now consider.

DEF: The Fano plane is defined by the incidence matrix

L() Ll L2 L3 L4 L5 L6

0 (O 0 O 1 0 1 1\
1 1 1 0 1 o 0 O
2 1 0 1 o 0 O 1
3 0 O 1 1 1 0 O
4 1 o 0 O 1 1 0
5 0 1 1 0 O 1 0
6 \O 1 0 O 1 0 1)

It is depicted in the diagram in Figure 10.3.3, in which the
line L is represented by a circle.
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Fig 10.3.3 The Fano plane.

We observe that as a design, the Fano plane is precisely
the Steiner triple system of Example 10.2.7.

The Pappus Geometry

A second classical geometry is named for Pappus of
Alexandria (c. 300-350 C.E.), who proved the following
theorem of Euclidean geometry.

Theorem of Pappus. Let 0, 1, and 2 be three distinct
points on a line Ly and 3, 4, and 5 three distinct points
on line Lo = L1, such that there are points of intersection

6 =04N13 7 =05N23 and 8 = 15N24

Then the points 6, 7, and 8 are colinear. &
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Fig 10.3.4 The geometry of Pappus.

DEF: The Pappus geometry is the following finite ge-
ometry

X ={0,1,2 3,4,5,6,7, 8}
L = {012, 345, 064, 075, 163, 185, 273, 284, 678}

or any other geometry of the same isomorphism type.

The Pappus geometry has uniform blocksize 3 and uniform
replication number 3. As in Euclidean plane geometry, no
pair of points occurs more than once in a line. However,
in the Pappus geometry, and unlike Euclidean geometry,
some pairs of points do not lie on any line. This implies
that the Pappus geometry is not a Steiner triple system
or a BIBD. The Pappus geometry shares the following
property with Euclidean plane geometry.

Proposition 10.3.1. Let L; be any line of the Pappus
geometry, and let p be a point that is not on that line.
Then there is a unique line L; containing the point p and
parallel to the line L;.

Proof: The lines of the Pappus geometry are resolvable
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into three classes of parallel lines.
Cy = {012 345 678}
Cy = {064 185 273}
Cs = {075 163 284}

If the given line L; lies in the class C},, then choose line
L; to be the unique line in class C}, that contains point p.

¢

The Desargues Geometry

Another theorem of plane Euclidean geometry is due
to Girard Desargues (1591-1661).

Theorem of Desargues. Let 123 and 456 be triangles
such that the lines 14, 25, and 36 meet at point 0. Let

7 =13N46 8 = 23N56 and 9 = 12N45
Then 7, 8, and 9 are colinear. &

Fig 10.3.5 The geometry of Desargues.
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DEF: The Desargues geometry is the following finite
geometry

X ={0,1,2,3,4,5,6,7 8,9}
L = {014, 025, 036, 137, 129, 238, 467, 459, 568, 789}

or any other geometry of the same isomorphism type.

In the Desargues geometry, as in the Pappus geometry,
there is a uniform blocksize of 3 and a uniform replication
number of 3. As in Euclidean geometry and the Pappus
geometry, no pair of points occurs more than once in a
block. As in the Pappus geometry, and unlike Euclidean
geometry, some pairs do not occur on any line. Accord-
ingly, it is not a Steiner triple system or a BIBD.

Remark 1: Observe that Proposition 10.3.1 does not
apply to the Desargues geometry. In fact, for every line
L; in the Desargues geometry, there is a point p such that
no line containing p intersects the line L;. Such a point p
is called a pole of the line L;.

Example 10.3.2: In the Desargues geometry, the point
8 is a pole of the line 014, and the point 1 is a pole of the
line 568.

Remark 2: Another interesting property in which De-
sargues geometry differs from Euclidean geometry is that
in the Desargues geometry, two lines that are parallel to
the same line are not parallel to each other.
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Example 10.3.3: The lines that are parallel to the line
789 of the Desargues geometry are 014, 036, and 025. Ob-
serve that any pair of them intersects in the point 0.

Partially Balanced Designs

DEF: A (v,b,7,k; A1, A2)-PBIBD (stands for partially
balanced incomplete block design) is a design with v
elements and b blocks, in which

(i) each element lies in exactly r blocks;
(ii) each block contains exactly k elements;

(iii) each pair of distinct elements occurs either in A;

or Ao blocks.

Example 10.3.4: The Pappus geometry is a
(9,9,3,3; 1,0)-PBIBD.

Example 10.3.5: The Desargues geometry is a
(10,10,3,3; 1,0)-PBIBD.
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10.4 PROJECTIVE PLANES

A projective plane is a type of finite geometry, and
thus, a combinatorial design. Toward the end of this sec-
tion, there is a method for constructing projective planes
from 3-dimensional vector spaces. This construction is
what motivates calling these designs projective planes.

DEF: A projective plane P has a domain X, whose el-
ements are called points, and a collection of subsets of X
that are called lines, such that the following axioms hold:

PP1. For each pair of distinct points, there is exactly
one line containing them.

PP2. Each pair of distinct lines intersects in exactly
one point.

PP3. There exist four points, no three of which lie on
the same line.

These three simple axioms have many implications.

Some Basic Examples

Example 10.4.1: The Fano plane is a projective plane.
This can be verified by checking its definition as a design.

Prop 10.4.1. For k > 3, any (v, k, 1)-design B generated
by a perfect difference set S = {ay,...,ar} C Z, is a
projective plane. Moreover, v = k?> — k + 1.
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Proof: Let 1,5 € Z, with + < jy. To find a block in B
that contains both ¢ and 3, let a,, and as be the unique
pair in the difference set S such that a; —a, = 5y —1. Then
the block S + (i — a,.) contains

ar+ (t—a,) = 7 and

as+ (1 —a,) = i+ (a;—a,) = i4+(J—1) = J

No other pair from S has difference 7 — ¢, so no other pair
can translate to ¢+ and 5 in the same block. Moreover, a,

and ag translate to ¢ and j only in the block S + (i — a,.).
This establishes Axiom PP1.

Next, consider two arbitrary blocks of B, say
S+i = {ar+i|ar €S} and S+j = {ar+7j|ar € S}

There is a unique pair a,,as in the difference set .S such
that

j_i — Gy — Qs

It follows that the number 7 + as; = 7 + a, is the unique
point in the intersection

(S+9)N(S+7)

This establishes Axiom PP2.
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To prove the third axiom, let B; and By be any two blocks.
By PP2, they intersect in a single point. Since k > 3, there
are at least two points x1,z9 € B; — By and at least two
points x3,x4 € By — By. The four points x1,z9,x3, x4
satisfy the condition of PP3.

The method of block generation yields v blocks. Thus,
when B is represented as a (v,b,7, k, \)-BIBD, we have
b = v. Hence, the equation

bk = rv Prop. 10.2.2(a)

implies that » = k. Using that fact and the specification
A =1, the equation

rk—1) = A(v—1) Prop. 10.2.2(b)
further implies that v = k% — k + 1. &

Example 10.4.2: The 9-point Pappus geometry is not
a projective plane, since, for instance, the lines 012 and
345 do not meet. Some projective planes do satisfy the
Theorem of Pappus, but some do not.

Example 10.4.3: The 10-point Desargues geometry is
not a projective plane, since (as observed previously) there
are pairs of points with no lines through them. Some non-
Desarguesian projective planes exist, but most of the fa-
miliarly encountered projective planes do satisfy the The-
orem of Desargues.
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Duality Principle for Projective Planes

We observe that Axioms PP1 and PP2 are absolute
duals of each other. The following proposition establishes
a dual to Axiom PP3.

Prop 10.4.2. In a projective plane P, there exist four
lines, no three of which contain the same point.

Proof: By Axiom PP3, there exist four points 0, 1, 2,
and 3, no three on the same line. By Axiom PP1, there
exist lines 01, 12, 23, and 03, as shown in Figure 10.4.1.

0 1

3 2
Fig 10.4.1 Proving the dual to Axiom PP3.

By Axiom PP2 none of these lines contains a third point
from the set {0,1,2,3}. Moreover, since among any three
of these four lines, there are two with a common point in

{0,1,2,3}, it follows from Axiom PP2 that there cannot
be some other point common to all three. &

Duality Principle. The dual of a valid assertion about
projective planes is also a valid statement about projective
planes.

Proof: Axioms PP1 and PP2 are dual to each other,
and Proposition 10.4.2 is dual to Axiom PP3. &
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Projective Planes as BIBD’s

Lemma 10.4.3. For any two distinct lines L and L' of a
projective plane P, there is a point x such that x ¢ LUL’.

Proof: Let y be the intersection of the lines L and L/,
let 0,1 € L—yand 2,3 € L' —y, as shown in Figure 10.4.2.

Fig 10.4.2 A point z not in the union of two lines.

Let x be the intersection of the lines 02 and 13. Since 0 is
the unique interesction point of 02 and L, it follows that
x & L. Since 3 is the unique interesection point of 13 and

L', it follows that x ¢ L'. O

Prop 10.4.4. Any two lines of a projective plane P have
the same number of points.

Proof: Let L and L’ be two distinct lines. By Lemma
10.4.3, there is a point x ¢ L U L’. Now suppose that

L = {yo, -+, yb—1} with yo = LN L

and that, for y = 1,...,k — 1, the intersection of the line
zy; with line L’ is the point z;, as in Figure 10.4.3.
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Zy-1 L

y4
Z 4 2

Yo Y1 Yk-1 L

X
Fig 10.4.3 A bijection between two lines.

Then none of the points z;, with y =1, ..., £k —1, coin-
cides with yp, because the lines L and zy; meet only at
y;. If z; = yo, then line zy; would also meet line L at yo,
which would be a second point in their intersection, since
y; # Yo. Moreover, if ¢ # j, then the lines zy; and xy; are
distinct, and then meet only at z. If z; = z;, then they
would also meet there, contradicting Axiom PP2. Thus,
the correspondence y; — z; is a bijection of L — yy to

L' —yp. &

DEF: The order of a projective plane is defined to be
one less than its blocksize as a design. (Significantly, the
order is not defined to be the number of elements.)

Corollary 10.4.5. In a projective plane of order n, every
point lies on exactly n + 1 lines.

Proof: Using the definition of order just given, this as-
sertion is simply the dual of Proposition 10.4.4. &
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TERMINOLOGY: The set of all lines that meet at a point

x of a projective plane is called the pencil of lines at x.
(See Figure 10.4.4).

Fig 10.4.4 The pencil of lines at point z.

Proposition 10.4.6. In a projective plane P of order n,
the number of points is

n®+n+1
Proof: Let z be any point, and let
L07 L17 R Ln

be the pencil of lines that meets at x. Since every point
of P lies on some line containing x, by Axiom PP1, the
union of these lines is the entire domain of P. Since no
two of these lines intersect anywhere except =, by Axiom
PP2, it follows that the number of points in P equals 1 for
x plus n points on each of the n 4+ 1 lines unique to that
line, that is,

1+ nn+1) =n* +n+1
points in all. &
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Corollary 10.4.7. In a projective plane P of order n, the
number of lines is

n>4+n+1
Proof: This is the dual of Proposition 10.4.6. &

Thm 10.4.8. A projective plane of order n is a BIBD
with parameters

(v=n*4n+1, b=n*+n+1,r=n k=n, A=1)

Proof: This summarizes the results above. &

Constructing Projective Planes

Much of the elementary theory of finite vector spaces
is the same as for real vector spaces. The row-reduction
algorithm is the key to establishing some additional facts
to be used in the construction of some projective planes.
After presenting some of the basics, we will use various
such results from elementary linear algebra withour proof.

FROM APPENDIX A3:

e The vector space Z;’, with p prime, is the set of triples
(1, 2, x3) (called points) in Z, under vector addi-
tion

(z1, T2, ©3) + (Y1, Y2, Y3) = (T1+Y1, T2+Y2, T3+Y3)
and scalar multiplication

c(x1, ¥, ¥3) = (cx1, CT2, CT3)
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o A line in the finite vector space Z;’ is the set of all
scalar multiples of a non-zero point (z1, z2, x3), i.e.,
the set

{(O, O, O), (5131, L9, 5133), (2:131, 25132, 25133), oo
s ((p =)z, (p— V)2, (p— 1)23)}

Proposition 10.4.9. Every non-zero point (zi, x2, T3)
of the vector space Z;’ lies in a unique line of Z;’.

Proof: Certainly, (1, 22, x3) lies in the line comprising
all of its own scalar multiples. Since the modulus p is
prime, every non-zero scalar in Z, is a multiple modulo
p of any other scalar. It follows that any line containing
(21, z2, x3) must be that same line. &

Corollary 10.4.10. The number of lines in the vector
space Z;’ is p? +p+ 1.

Proof: Clearly, the number of non-zero points in Z;’ 1S
p> — 1. Since each line contains p — 1 non-zero points, and
since two distinct lines meet only at (0, 0, 0), it follows
from the Rule of Quotient (§0.3) that the number of lines

1S
pP—1

p— = p’+p+1 ¢

A plane in the finite vector space Z;’ is the set of sums of
the scalar multiples of two points not on the same line.
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DEF: The projective geometry PG(2,p) has for points
the set of all lines of the vector space Z;’ and for lines the

set of all planes of Z;’ :

Example 10.4.4: In Fig 10.4.5, the seven points of the
projective geometry P(G/(2,2) are shown as lines through
the origin 000 in 7.

000 100
Fig 10.4.5 The projective geometry PG(2,2).

Proposition 10.4.11. The projective geometry PG(2,p)
is a projective plane of order p.

Proof: Axiom PP1 holds because two distinct lines in
the vector space Z;’ determine a unique plane. Axiom

PP2 holds because two distinct planes in Z;’ meet in a
line. Axiom PP3 holds because each combination of three
of the following four vectors

(1,0,0) (0,1,0) (0,0,1) (1,1,1)
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lies on a line of Z;’, is a linearly independent set, from
which it follows that they and the lines they generate can-
not all lie in the same plane of Z;’. Hence, PG(2,p) is a

projective plane. Since a plane in Z;’ has p? — 1 non-zero
points and a line has p — 1 non-zero points, it follows that
the number of points in a line of PG(2,p) is

Thus, its order as a projective plane is p. &



Section 10.5 Affine Planes 51

10.5 AFFINE PLANES

An affine plane is another kind of finite geometry.
There is a close correspondence between affine planes and
projective planes.

DEF: An affine plane A has a domain X, whose elements
are called points, and a collection of subsets of X that are
called lines, such that the following axioms hold:

API1. For each pair of distinct points, there is exactly
one line containing them.

AP2. For any given line L; and any point x not on L;
there is a line through x that is parallel to L;.

AP3. There exist four points, no three of which lie on
the same line.

Example 10.5.1: The following geometry, seen previ-
ously in §10.3, is an affine plane called AG(2,2). The
name is explained later in this section.

Lo Ly Lo Ls Ly Ls Lo Xg

o ¢,1 1 0 0 1 0y L X4
1 o 1 0 1 0 1 X3 y
s 1 0o 1 0 o 1] b 2
T o 0 1 1 1 0 3" L . L

Fig 10.5.1 The affine plane AG(2,2).
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Axioms AP1 and AP3 are easily verified for AG(2,2) ei-
ther from the incidence matrix or from the diagram. To
verify Axiom AP2 from the drawing, one recognizes that
lines Ly and L3 are parallel, in the sense of finite geometry,
even though they cross each other in the drawing.

Example 10.5.2: The Fano plane is not an affine plane.
In general, a projective plane has no pair of parallel lines.
Thus, it cannot satisfy Axiom AP2.

Example 10.5.3: We observe that lines of the Pappus
geometry can be partitioned into three cells of three lines
each, as represented by the three columns to the left of
Figure 10.5.2, such that within each cell, each point of the
geometry occurs exactly once.

012, 046, 057
L = { 345, 158, 136
678, 237, 248

Fig 10.5.2 Resolving the geometry of Pappus.

If a point of the Pappus geometry does not lie on a given
line, then it lies on another line in the same column as
the given line, which is parallel to the given line. Thus,
Axiom AP2 holds. However, the Pappus geometry does
not satisfy AP1, so it is not an affine plane.

DEF: A resolvable geometry is a geometry whose lines
can be partitioned into cells such that the lines within each
cell partition the domain.
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Prop 10.5.1. A finite geometry satisfies Axiom AP2 if
and only if it is resolvable. &

The Affine Plane AG(2,p)

DEF: An affine line in the finite vector space sz is the
set of p points produced by adding a fixed pair (c1, ¢c2) to
every point on a line of Z?D,

— {(070)7 (3317 332)7 (23317 2332)7 R ((p - 1)3317 (p - 1)332)}
thereby obtaining a set of the form

= {(Cl, Cg), (5131 —|— C1, T2 —|— Cg), (25131 —|— C1, 25132 —|— Cg), “ e
s (= 1Dz + e, (p—1)z2 + c2)}

This is conceptualized like adding a fixed vector to every

point on a line through the origin in the real plane RZ,

thereby translating the line to a parallel line, as illustrated
in Figure 10.5.3.

affine line y = 7/4+x/4

vector (1,2) line y = x/4

e L <

origin (0,0)

it el S Ikl ity Rl D 4

Fig 10.5.3 An affine line in the plane R”.



54 Chapter 10 Combinatorial Designs

An alternative perspective is to choose numbers a,b € Z,,
such that az; +bzxs = 0, so that the vector (a,b) is normal
to the line K. Then the affine line L is the line normal to
(a,b) that contains the point (c1,¢s), i.e.,

L = {(yh yz) | ayy + bys = acy + bea}

Example 10.5.4: Adding the fixed pair (1,2) in ZZ to
the line

K = {(07 0)7 (17 3)7 (27 1)7 (37 4)7 (47 2)}

yields the affine line

L = {(17 2)7 (27 0)7 (37 3)7 (47 1)7 (07 4)}

We observe that 3-1+4-3=0andthat 3-1+4-2=1,
so the affine line L is also specifiable as the set of pairs
(y1, y2) such that 3y; + 4y, = 1.

DEF: The affine geometry AG(2,p) is the geometry that
has the points of the vector space sz and whose lines are

the affine lines of sz )

Example 10.5.5: In Fig 10.5.4, each of the four classes
of parallel lines is represented by a different graphic — thin
solid curve, thin dashed line, bold solid curve, and bold

dashed line.
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00 10 20
Fig 10.5.4 The affine geometry AG(2,3).

It may be observed in Figure 10.5.4 that every affine line
in AG(2,3) has the same number of points — representing a
common blocksize of £ = 3 as a design, and that each pair
of points occurs in exactly one affine line — representing a
common index of A = 1 as a design. These properties are
verified shortly for every affine geometry AG(2,p).

Proposition 10.5.2. The affine geometry AG(2,p) is an
affine plane.

Proof: (Axiom AP1): Given any two points (z1,zs)
and (y1,vy2) in AG(2,p), the affine line

{(w1,22) + J(y1 — 21,92 —22) [7=0,...,p—1}

contains both (x1,z2) (when j = 0) and (y1,y2) (when
j = 1), and it is the only such affine line.
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(Axiom AP2): Suppose that the affine line

L=A{(ci,c2) +j(z1,22) | j € Zp}

does not contain the point (y;,y2). Then the affine line

{(yi,y2) +j(x1,22) | J € 2}

is parallel to L and contains (y1,y2).

(Axiom AP3): No three of the points
(0,0), (0,1), (1,0), and (1,1)
lie on the same affine line in sz. &

Prop 10.5.3. The affine plane AG(2,p) is a (p?, p, 1)-
design, and, thus, a (p*, p> +p, p+ 1, p, 1)-BIBD.

Proof: The number of points in sz is p?, and thus the
number of points in AG(2, p) is p*. Moreover, the number
of points in every affine line in Z}?, and, thus, in every
line of AG(2,p) is p. Since AG(2,p) satisfies Axiom AP1,
every pair of points of AG(2,p) lies in exactly one line, so

A=1. &

Affine Planes from Projective Planes

Suppose that a particular block B is deleted from
a combinatorial design B, and that each point of B is
deleted from the domain. This is called a restriction of
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the design B to the complement of block B. Then the
incidence matrix of the resulting design can be obtained
from the incidence matrix for design B by deleting column
B and also deleting each row corresponding to an element

of B.

Example 10.5.6:

If we delete column Ly and rows 1, 2,

and 4 from the incidence matrix for the Fano plane

Lo Ly
0 0 0
1 ( 1 1
2 1 0
3 0 0
4 1 0
5 0 1
6 K 0 1

Ly

0

O = O = = O

L3

1

O OO = O =

Ly

—_ O =R =) O O O

then the resulting incidence matrix is

Ly

S Ot W O
_ =0 O

Lo

0

1
1
0

Ls

1

1
0
0

Ly

0

1
0
1

Ls

O = O =

Ls

O = = OO O =

Lg

)

_— O OO = O ==

L¢
1

0
0
1

Referring back to Example 10.5.1, we recognize that the
corresponding design is isom to the affine plane AG(2,2).
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Thm 10.5.4. The geometry G resulting from restricting a
projective plane PG(2,p) to the complement of any given
line L is an affine plane.

Proof: By Axiom PP2, the line L intersects every other
line of PG(2,p) exactly once. Since every line of PG(2,p)
has p+1 points, it follows that every line of G has p points.

(Axiom AP1): FEach pair of points of PG(2,p) not on
line L lies on exactly one line of PG(2,p), by Axiom PP1.
This implies that each pair of points of G lies on exactly
one line.

(Axiom AP2): For each of the points zg,...,z, € L,
the pencil of lines of PG(2,p) meeting at x; partitions
PG(2,p)—x;, by Axiom PP1. By Axiom PP2, none of the
points on line L is on any line of this pencil other than line
L. Thus, after x is deleted from the remaining lines of that
pencil, the resulting subsets partition the set PG(2,p)—L,
which is precisely the domain of the geometry G. Thus,
the lines of G can be partitioned into p + 1 sets of p points
each. In other words, G is a resolvable geometry, from
which it follows (by Proposition 10.5.1) that it satisfies
Axiom AP2.

(Axiom AP3): Choose the first two points w and x of the
needed four from any line of G. Then choose two other
points y and z from any parallel line. Any subset of three
points from this foursome must include either the pair w
and x or the pair y and z. Since there is only one line
through either pair, it follows from Axiom AP1 that no
line can go through three of these points. &
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Projective Planes from Affine Planes

Now suppose that the p+ 1 classes of parallel lines in
AG(2,p) are
Co, C1, ..., O

Suppose further that p + 1 distinct new points
g, OO1y vy XOp

are added to the domain of AG(2,p), that the point oco; is
added to each of the lines in class C';, and that a new line

Lo = {009, 001, ..., 00p}
1s added.

TERMINOLOGY: We adopt the name projective extension
for each artifact of the construction just described.

Theorem 10.5.5. The geometry G resulting from projec-
tive extension of the affine plane AG(2,p) is a projective
plane.

Proof: Since AG(2,p) has p? points and p? + p lines of
p points each, the geometry G has p? + p + 1 points and
p? + p + 1 lines of p + 1 points each.

(Axiom PP1): If two points of the geometry G are already
in AG(2,p), then they are on some line of AG(2,p), and
accordingly, they lie on the extension of that line in G. If
the two points are oo; and oo;, then they lie on the line
L. If one point z is from AG(2,p) and the other is oo,
then since each of class C; partitions AG(2,p), the point
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z lies on some line of class C;, and thus on the extension
of that line in geometry G.

(Axiom PP2): The line L., evidently meets every other
line of G. Moreover, the intersection of two lines not in
the same parallel class of AG(2,p) is a single point, by
Axiom AP1, from which it follows that their extensions
meet only at that same point. If two lines of AG(2,p) are
in the same parallel class C'j, then their extensions meet
only at oo;.

(Axiom PP3): If 4 points satisfy Axiom AP3 in AP(2,p),
then those same 4 points satisfy Axiom PP3 in G. &

Example 10.5.7: Figure 10.5.5 shows how the projec-
tive plane PG/(2,3) with 13 points can be constructed by
extending the 9-point affine plane AG(2, 3).

00 10 20
Fig 10.5.5 Extending AG(2,3) to PG(2,3).



