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There is often a finite way to represent an infinite
sequence collectively. In particular, a
closed formula

is especially convenient. A
recursion rule

specifies later values in the sequence from earlier values.
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1.1 SEQUENCES AS LISTS

In this section, we consider some common Kkinds of
sequences and some of their attributes.

DEF: A sequence in a set S is a list of elements of that
set S (called the range of the seq)

Lo I1 T2

indexed by the non-negative integers, or sometimes by
some other countable set.

NOTATION: Some of the most standard sets of numbers
that serve as ranges for sequences are denoted here in
blackboard bold typeface style:

Z =A4{..., =2, =1, 0, 1, ...} integers
ZT = {1, 2, 3, ...} positive integers

N = {0, 1, 2, ...} natural numbers

R = real numbers

Q = rational numbers

C = complex numbers
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DEF: An algebraic expression in the argument n for the

value of the general element z,, of a sequence (x,,) is called
a closed formula for the (elements of the) sequence.

Example 1.1.1: The closed formula
Ty = n — 5n
specifies the sequence

(z,) : 0 —4 —2 12 44 100 186

Example 1.1.2: The closed formula

n — 27L+2 _n3

Y

specifies the sequence

(yn) : 4 7 8 5 0 3 40
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Fast-Growing Sequences

Rate of growth is understood in relation to the stan-
dard indexing sequence, i.e., the natural numbers.

Example 1.1.3: polynomial seq (z,, = n?)
n| 0 1 2 3 4 5
n:| 0 1 4 9 16 25

A polynomial sequence of degree greater than 1 grows
more rapidly than the natural numbers.

Example 1.1.4: exponential seq (z, = 3™)

n| 0 1 2 3 4 5

3" | 1 3 9 27 81 243

Once a precise notion of comparative rate of growth is
in hand in §1.4, it will be provable that any exponential
sequence (z,, = b™) with b > 1 “grows more rapidly” than
any polynomial sequence. Of course, if 0 < b < 1, then
the sequence (z,, = b") decreases. For instance,

n \ 0 2 3 4 5

1
n 1 1 1 1
(1/3) ‘ 13 5 8 943

Nello

Example 1.1.5: A seq that grows even more rapidly
than an exponential sequence is the factorial sequence

n| 0 1 2 3 4 5
n| 11 2 6 24 120
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Slow-Growing Sequences

Various other increasing seqs grow slowly, relative to
the integers. The first example here involves a fractional
exponent. The second and third involve logarithms and
harmonic numbers.

Example 1.1.6: A sequence (z,, = n") grows more
slowly than ZT if 0 < r < 1. E.g.,

n| 01 2 3 4 5
n210 1 v2 V3 2 VB

Example 1.1.7: The sequence

n |1 2 3 4 5
lgn| 0 1 1g3 2 lg5

grows even more slowly than the seq (z,, = n"), for > 0.
(See Exercises.)

DEF: The harmonic number H,, is defined as the sum
Sl
k1 2
k=1

with Hy = 0 for the empty sum.

S| =

Example 1.1.8: The harmonic sequence

n\ o 1 2 3 4 5
H,| 0 1

DO
—
—
[\V]
ot
—
w
~J
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is closely related to the natural logarithm Inn, as ex-
plained in §3.1.

Example 1.1.9: The values in a sequence need not be
numbers.

PREVIEW OF §8.7: The surface S, is the surface with ¢
handles in the following sequence.

O @ (o) (=) -

Bounded Sequences

DEF: A bounded sequence (z,) is a sequence (typically
of real numbers or integers) for which there is a number B

(called a bound), such that
lz,| < B for all n

The sequence is bounded in absolute value.

Example 1.1.10: The real sequence

1
Ty, = 1—
< n—|—1>

is bounded. It is always non-negative, and its value never

exceeds 1.
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Periodic Sequences
DEF: A periodic sequence (z,) is a sequence for which
there is a positive integer P, such that
Tj+p = X for all j € N
The smallest such integer is called the period of the

sequerce.

Example 1.1.11: An alternating sequence of 0’s and 1’s
0 1 0 1 0 1

is periodic with period 2.

DEF: The remainder function on a pair of integersn € N

and d € Z" is defined as

nmod d = n—d{%J

It is also called the mod function. The arguments n and
d are called the dividend and the divisor, respectively.

Example 1.1.12: The sequence n mod 3

1 2 3 4 5
1 2 0 1 2

n_

0
n mod 3 ‘ 0
is periodic with period 3. More generally, for any fixed
divisor m, the sequence
(x,, = n mod m)

is periodic with period m.
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Generalizations

Example 1.1.13: The formula z(n) = 3" can also be
regarded as a specification of the extended sequence
(3" | n € Z):

DEF: An array of dimension d in a set S is a function
from the set of d-tuples of natural numbers to the set S.

NOTATION: Array elements are commonly written in the
subscripted notation

09,0 0,1 0,2
1.0 21,1 T1,2
2,0 T2,1 T2.2

DEF: The integer interval [k : m] is the set
{k, k+1, ..., m}

The integer interval [1 : n] is used as the standard set of
cardinality n.
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Eventual Behavior of Sequences

DEF: A sequence (z,) eventually has property P if
there is a number N such that the subsequence (z,, | n >
N) has property P.

Example 1.1.14: The sequence
(£, = n®—8n+15)

is eventually increasing, as illustrated in Figure 1.1.1. Its
shape is an upward parabola, with its minimum at n = 4,
after which it is strictly increasing. Thus, it is eventually
increasing.

100

80

60

40

20

o_LL- -

012 3456 7 8 9 1011121314

Fig 1.1.1 An eventually increasing sequence.

Example 1.1.15: The sequence (x,, = 2n° — 2") is
eventually decreasing.
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Remark: Every polynomial (except a constant) is even-
tually increasing or eventually decreasing, depending on
the sign of its term of highest degree.

Example 1.1.16: The decimal digits of

4824

— = 0.52412121212...
8250

are eventually periodic, as illustrated in Figure 1.1.2.

0 Jm
012 34567 8 9 1011121314

Fig1.1.2 An eventually periodic sequence.
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1.2 RECURRENCES

Most of the sequences considered in §1.1 were speci-
fied by a closed function j — z;.

DEF: A standard recurrence for a sequence prescribes
a set of initial values

ZIZ():b() 5131:[)1 Zlfk:bk
and a recursion formula
z, = ¢(xp_1, Tp—2, ..., ¢g) forn>k

from which one may calculate the value of z,,, for any
n > k, from the values of earlier entries.

Example 1.2.1: The recurrence

xg = 0 initial value
T, = X,_1+2n—1 recursion

has as its first few values
ZIZ():O 5131:1 5132:4 5133:9 5134:16
We observe that the recursion formula here depends only

on a fixed number of predecessors of z,,, specifically, only
On Ty_1.

DEF: Inferring a closed formula from a recurrence is called
solving the recurrence.
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Example 1.2.1, cont.: The first few values specified by

the closed formula z,, = n? are

0°=0 1*=1 22=4 3*=9 4% =16
These coincide with those specified by the given recurrence
ZIZ():O 5131:1 5132:4 5133:9 5134:16

An induction can prove that z,, = n? solves the recurrence.

Method of Small Cases

Sometimes it is possible to guess the solution to a
recurrence. More generally, the following approach goes a
long way in mathematics.

1. Examine some small cases systematically.
2. Guess a pattern that covers all those cases.
3. Prove that the guess is correct.
We now describe recurrences and closed formulas for

three well-known sequences: the Tower of Hanot sequence,
the Fibonacci sequence, and the Catalan sequence.
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Tower of Hanoi

Fig 1.2.1 Tower of Hanoi puzzle.

(1) Only one disk may be transfered at a time.

(2) No disk may ever lie on top of a smaller disk.

The minimum number h,, of moves needed to transfer n
disks satisfies the following recurrence:

RECURRENCE
hg = 0 initial value
h, = 2h,_1+1 recursion

We use the recursion to calculate the first few values of
h,, and then guess a closed formula.

SMALL CASES

hg = 0

hiy =1 APPARENT PATTERN
hy = 3 h, = 2" -1
hs = 7

hs = 15

Having guessed that h,, = 2" — 1, we proceed to confirm
the guess with a proof.
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Thm 1.2.1. The Tower of Hanoi recurrence

ho = 0; h, = 2h,_1+1 forn>1 (1.2.1)

has the solution

hy =2" — 1 (1.2.2)

Proof: By induction.

BASIS: Applying the formula (1.2.2) yields the equation
hg =2°—1=1—1 =0, which agrees with the prescribed
initial condition Ay = 0.

IND HYP: Assume that h,_; = 277! — 1.

IND STEP:  Starting with the recursion (1.2.1), we now
complete the proof.

h, = 2h,_1+1 given recursion
= 202"t -1)+1 induction hypothesis
— 2" 241

2" —1 &
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Fibonacci Sequence

DEF: The Fibonacci sequence (f,) is defined by the
recurrence

fo =0 f1 =1 initial values

Jn = Ju-1 + fn-2 for n > 2 (123)

Here are the first few entries:

n_|

fo |

2 3 4 5 6 7 8 9.
1 2 3 5 8 13 21 34 ---

0 1
0 1
DEF: A Fibonacci number is any number that occurs in
the Fibonacci sequence.

A closed formula for the Fibonacci recurrence is not
easily guessed from the small cases. (But, once guessed,
the solution is verifiable by a routine inductive proof.) See
§2.5.

fo = % (6"~ ) (1.2.4)
145

and qu

where ¢ =

N}
N}



fa =

RS
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Example 1.2.2: For the time being, it is interesting
to confirm an instance of the correctness of the formula

(1.2.4) for the Fibo number f,,.

L[4V (15
V5 8 B 8

1 [14+3V5+15+5V5 1 {1-3vV54+15 — 55
8 V5 8

1 (6V5+10v5) )
V5 8 -

Catalan Sequence

DEF: The Catalan sequence (c,) is defined by the re-
currence

co = 1;

Cn = CpCp-—1 + C1Cn—2 + -+ Cn—1€C0

Here are the first few entries:

n| 0123 4 5 6 7T
| 1 1 2 5 14 42 132 429

DEF: Any number that occurs in the Catalan sequence is
called a Catalan number.
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Derivation of this closed formula appears in §4.4.

1
- (2”> (1.2.6)
n+1\n

Example 1.2.3: ¢35 =

Proving Properties of Sequences

Proof that a sequence has some given property can be
derived either from a closed formula or from a recursion,
with the aid of mathematical induction. As an illustration,
we consider the properties of concavity and convezity.

DEF: A sequence (z,) is concave (on the integer interval

la : b)) if

Ln—1 —|_ Ln+1
2

(forn =a+1, ..., b—1)

Ty 2

This means that the point (n,z,) lies above the line seg-
ment joining the points (n —1,z,_1) and (n+ 1, z,41) in
the plane, as in Figure 1.2.2.
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n-1 n n+l1

Fig 1.2.2 Concavity in a sequence.

Example 1.2.4: Concavity of the sequence
1

(B =1 )
follows from the observation that
5 5 2 5 2n 5 2n
e

1 1
— 1 — 1 — — n— n
( n—1>+( n—l—l) Tn—1 + Tntl

Example 1.2.5: That the Fibonacci sequence (f,) is
eventually increasing, after n = 2, follows easily by math-
ematical induction. Moreover, it is a consequence for all

n > 3 that f, <2f,_1.

DEF: A sequence (z,) is convex (on the integer interval
la : b)) if

Ln—1 —|_ Ln+1

Ty <

forn =a+1, ..., b—1
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This means that the point (n,z,) lies below the line seg-
ment joining the points (n —1,z,_1) and (n+ 1, z,41) in
the plane, as in Figure 1.2.3.

A
Xn+1

Xn
Xn-1

n-1 n n+l1

Fig 1.2.3 Convexity in a sequence.

Example 1.2.6: The Fibo seq is eventually convex, af-
ter n = 2. This is now confirmed:

froa1 + fnc1 = fo+2fn_1 (by the Fibo recursion)
21 (by Example 1.2.5)

IV

which is equivalent to the defining condition for convexity.
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1.3 PASCALS RECURRENCE

DEF: The combination coefficient (Z) is the number of
ways (sometimes called combinations) to choose a subset
of cardinality £ from a set of n objects.

M M\

(8X3)

6XT1X9X5

(XX 2

Fig 1.3.1 There are (g) ways to choose 3 balls
from the 9 in the urn.

n
Prop 1.3.1. The combination coefficients (k) satisfy

Pascal’s recurrence

(Iy) (g) = 1 for alln >0

(1) (2) =0 for all k > 1

o () - G (4 e

Proof: The initial values are easily confirmed. Our first
proof for the recursion formula (R) is algebraic. The sec-
ond is combinatorial.
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Algebraic Proof: Algebraic proof of (R) starts with
the right side of the equation and makes substitutions and
arithmetic operations that result in the left side.

(Z:D i (n;) - —(q)?(i)!—k)! T ((:—_kl)—! 0!

_ k(n-—=1)! (n—k)(n—1)!
T Rk T H(n—k)

[k + (n—k)](n—1)!
kl(n—k)!

B k!(nn!—k)! B (Z) <

Combinatorial Proof: The left side counts the num-
ber of ways to choose a subset of size k from the integer
interval [1 : n]. If such a subset includes object n, then it
is counted by the summand (Z:i) on the right side. Al-
ternatively, if such a subset excludes object n, then all &
objects must be chosen from [1 : n—1], and it is counted by
the summand (";1) This approach is called the Method

of Distinguished Element.

Binomial Coefficients

DEF: The coeflicient b,, ;, of z¥ in the expansion

(1+2z)" = an,k "
k=0

is called a binomial coefficient.
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Example 1.3.1: Binomial coeflicients can be calculated
by iteratively multiplying by 1 + x.

(1+2) =1

=14z

1+z)*> = 14 22 + 27

1+2)°> =14 3z + 32° + 2°
1+2)* = 1 + 4z + 62* + 42° + 2*

Proposition 1.3.2. The binomial coefficients b,, j, satisfy
Pascal’s recurrence.

Proof: The initial values of Pascal’s recurrence are sat-
isfied, since the values

bpo = 1 foralln >0
bo, = 0 forall £ > 1

can be verified by considering the direct expansions of
(1+ )% and (1 + 2)", as in Example 1.3.1. To show that
the recursion is satisfied, it is observed that

n n—1
Y ez’ = (142)) bprga’ (1.3.1)
k=0 k=0
n—1 n—1
= an—l,kflfk + szbn—l,kivk
k=0 k=0

n—1 n—1
_ k k+1
— E bn—l,ka3 + E bn—l,ka3
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n n
2 2
= E bp—1.px" + E bp—1h—1T

n

— Z(bn—l,k + bp_1p-1)2”  (1.3.2)
k=0

Thus, the coefficient b,, 5 of ¥ in the sum at the left of
equation (1.3.1) must equal the coefficient of z* in the sum
at the right in equation (1.3.2), i.e., it must equal the sum

bp—1.1 + bn—11-1 &

Cor 1.3.3. For all n,k > 0, the number (Z) of ways to
choose k objects from a set of n distinct objects equals the
binomial coefficient b,, j,.

Proof: By Prop 1.3.2, the combination coeflicients (Z)
and the binomial coeflicients b,, j, satisfy the exact same re-
currence system. An induction argument establishes that
the values must be the same. &

n

TERMINOLOGY NOTE: The number (k) is commonly called
a binomial coefficient. From here on in this book, we
shall refer to it as such.
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DEF: If the zero values are left blank, then the array of
binomial coefficients has a triangular shape and is called
Pascal’s triangle.

Table 1.3.1 Pascal’s A for values of (:f)

no @ GO G G G 6 @ =
o | 1 1
O T | 2
>l 1 2 1 4
s 1 3 3 1 3
41 4 6 4 1 16
50 1 5 10 10 5 1 32
6 | 1 6 15 20 15 6 1 | 64

In this form of Pascal’s triangle, each number is the sum
of the number directly above it and the number in the row
above, one column to the left. Pascal’s triangle also has a
pyramid form:

1
I 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 &5 1
1 6 15 20 15 6 1
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1.4 DIFFERENCES AND SUMS

DEF: Given a sequence (a,), we define the difference se-
quence (Aa,,) by the rule

Aan — dpy1 — Ap

More generally, given a function f : R — R, we define the
difference function A f by the rule

Af(z) = flz+1) - f(z)

Example 1.4.1: If a,, = n?, then
Na, = (n+1)>—n? = 2n+1
and
APa, = 2(n+1)+1)—(2n+1) = 2
These equations yield this difference table.

a,=n2 | 0 1 4 9 16 25 36 49
Aa,, 1 3 5 7 9 11 13
APq, 2 2 2 2 2 2

Example 1.4.2: The sequence (b, = n®) has the dif-
ference table, which was created by calculating its initial
row and then iteratively taking differences.

b, =mn3 | 0 1 8 27 64 125 216 343
Ab,, 1 7 19 37 61 91 127

A2y 6 12 18 24 30 36

ABp, 6 6 6 6 6 -
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Properties of the Difference Function

In Examples 1.4.1 and 1.4.2, we observe that the sec-
ond and third rows of the difference tables for the se-
quences (n?) and (n®), respectively, have the constant val-
ues 2 = 2! and 6 = 3!. An initial aspect of our exploration
is to establish that this phenomenon holds generally.

Proposition 1.4.1. The difference operator /\ is linear.
That is,

A(f(n) +eg(n)) = (Af)(n) + c(Ag)(n)

Proof: The details are straightforward.

A(f(n)+eg(n)) = (f(n+1)+eg(n+1)) = (f(n) +cg(n))
= (f(n+1) = f(n)) + e(g(n+1) —g(n))
= (Af)(n) 4+ c(DLg)(n) <

Prop 1.4.2. In the difference table for the seq
(n" | neN)

the r'® row has the constant value r!, and, accordingly,
all subsequent rows are null.
Proof: By induction.

BASIS:  The entries in the 0" row of the sequence (n°)
all have the value 1 = 0!.
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IND HYP: Assume that all the entries in the (r — 1)*' row
of the table for n"~1 have the value (r — 1)! and that all
higher order rows are null.

IND STEP: It follows from the expansion

An™) = (n+1)" —n" = rm"™ 1 + b._on""% + -+ by

(for appropriate coefficients b;) and from the linearity of

/\ that

Ay = AUTY(A(RT))
_ A(r—l)(rnr—l 4+ br—2nr_2 4o —|—b0)

r—2
= r AT (07T ) by AUTY (nd)
§=0

By the induction hypothesis, A"~ (nf) = 0, for j < r—2,
from which it follows that every term in the sum on the
right has value 0. Thus,

A(r)(nr) _ TA(T—l) (nr—l)

It follows that the r*® row of the difference table for (n")
equals r times the (r — 1)5* row of the table for n"~!, in

which every entry has the value (r — 1)!, by the induction
hypothesis. &
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Summation Operator

DEF: Let (z,) be a sequence with values in an algebraic
structure with an addition. Then the expression

n
>
7=0

is called the n'" partial sum.

DEF: The summation operator maps a sequence
(2, | n € N) to the sequence of partial sums

<Z neN>

Example 1.4.3: Under the summation operator, the in-
teger sequence

(xpy = 1 3 5 7
is mapped to the integer sequence of its n™™ partial sums
j=0
which begins with the values

1 4 9 16
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It may be guessed that u, = (n + 1)?, which is readily
proved by induction. If one now defines

i
—

a, = (25 +1)

o,
I
S

then the sequence (a,, = n?) has the values

0 1 4 9 16

which inverts Example 1.4.1. We recall from §0.3 that the
empty sum is defined to be zero. This accounts for the
value

n—1 —1
a =) (2/+1) = > (2/+1) =0
1=0 =0

The next theorem establishes that the inversion is not
at all a coincidence.

NOTATION: From time to time, it is convenient to use the

"as an alternative to A:I:j.

notation x j

Thm 1.4.3(a). Let (z,, | n € N) be a seq. Then

Za:]’ = xz, — T (1.4.1)
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Proof: Another straightforward calculation.

i
—

(41— z5)

(x1 —x0) + (22 —21) + -+ + (T — Tp—1)
(

Ln _ajn—l) + (ajn—l _ajn—2) + -+ (331 _330)

The upper limit of the sum in equation (1.4.1) must be
n — 1, rather than n, to get the correct result. Figure
1.4.1 illustrates the proof of Theorem 1.4.3(a). The sum

3

/

Tro + g T
J=0

of the lengths along the y-axis clearly equals the height x4
of the rightmost rectangle. Thus,

3
. /
g4 — Ty = ZIZj
i=0

which is the total vertical distance from the top of the
leftmost rectangle to the top of the rightmost rectangle.
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(1 — o) + (22 —21) + (23 —22) + (4 —73) = 24 — T
A
X3'=X4-X3; !
_____ |
Xy' =X b
1; Mgy
v Y X2 | | '
Xo X - Xo# le. G
| |
o y[Xo8] vl 4 4l 4 _

Fig 1.4.1 Accumulating consecutive differences, as
in Theorem 1.4.3(a).

Theorem 1.4.3(b). Let (z, | n € N) be a sequence.
Then

!

k—1
E L = In
j=0

n

Proof: By the def of the difference operator,

!

k—1 (n+1)—1 n—1
E ZIJj ) E ZIJj — E ZIJj
Jj=0 n Jj=0 Jj=0
= Ip <>

Fig 1.4.2 illustrates the proof of Thm 1.4.3(b).
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(o+ 1+ +a3+24) — (To+ 21 +22+23) = 24
A A

} !

4y A |

| Xat | Xy !

X*X3| : _ X$X3| _ :

. W |

Xoxl vl ¥ 4 v X8 v o 4l _ v

Fig 1.4.2 Subtracting consecutive sums, as in
Theorem 1.4.3(b).

The difference of the sum z¢+ -+ x4 of the areas of
the consecutive rectangle including x4 and the sum xy +
.-+ 4 x3 of the areas excluding x4 clearly equals the area
x4 of the rightmost rectangle.

TERMINOLOGY: Thm 1.4.3 is a form of what is commonly
called the Fundamental Theorem of Finite Calculus.
One sees a direct analogy to the Fundamental Theorem of

Infinitessimal Calculus:
a ' dr(Vdt = f(z)— f(0 :
( ) /0 ( ) f ( ) f ( )

w) L[ rdi=f (@)

0
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Growth Rate of Sequences

The most common criterion for comparing the long
term behavior of two sequences is called asymptotic domi-
nance. However, by way of analogy to differential calculus,
a possible measure of the growth rate of a seq is its differ-
ence seq.

Example 1.4.4: To establish, in the sense of finite dif-
ferences, that the sequence (n®) grows faster than the se-
quence (cn?), for any constant value of ¢, we make the
following calculations.

An® = (n+1)° —n® = 3n* +3n+1
Acen® = c¢(n+1)*> —en® = 2en +c
For n > ¢, we have
3n°4+3n > 3ecn+3c > 2en+c

Thus, An® eventually dominates Acn?.

Another possible measure of the growth rate of a sequence
of positive values is the sequence of ratios

Tntl nezZt
T,

of consecutive terms.
Example 1.4.4, cont.: The successive ratios of n° are

+1)3 5 4+3n2+3n+1 3 3 1
u:” n n :1_|___|___|__

ns ns n n2 ns

and the successive ratios of cn? are



Section 1.4 Differences and Sums

c(n + 1)2 cn? + 2¢en + ¢
D) = D)

cn cn

which are clearly smaller.

35
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1.5 FALLING POWERS

REVIEW FROM §0.2: The n'" falling power of a real
number z is the product

n factors

N\

:cﬁzzc(x—l)---(x—n—l—ly forn e N

We recall that the differential calculus has nice for-
mulas:

d o 5 d
de© = de "
So does the calculus of finite differences, but these are not
examples of them:
Az?) = 2z + 1
A(z?) = 32% + 3z + 1

3 = 322 etc.

In the calculus of finite differences, the falling monomial
2 lends itself quite naturally to nice formulas that are
analogous to those of the ordinary monomial ™.

Example 1.5.1: A “nice formula”.
A = (a4 1) - 22
= (z Je(z—1) — z(z—1)(x — 2)
= [(z+1) = (z—2)]z(z - 1)
= 3z(z—1) = 3x2

+1
+1
_|_

Now generalize Example 1.5.1.
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Theorem 1.5.1. A(z%) = rzi=1,

Proof: A straightforward approach.
Az®) = (z4+1)F — 2~
= (z+1)a=t — 2L (z —r+1)
= [(z+1) — (z—r+1)]2a=L = rpr=d ¢

Corollary 1.5.2. For every non-negative integer r and
every positive integer n,

n-l L
o _
;J r+1

-1

Proof: We have j= = A (J+—1> by Theorem 1.5.1.
r

Thus, by the Fundamental Theorem of Finite Calculus, it
follows that

”2_:1 j7“+1 n nr—l—l
o r+1 i=0 r+1

Example 1.5.2: Direct addition and the formula of Cor
1.5.2 give the same result when summing k2.

4
D2 =0-(-1)+1-04+2-1+3-24+4-3 =20
k=0

== T2 = 90
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Unimodal Sequences

DEF: A sequence (z,) is unimodal if there is an index M
such that

o <z < - < axy_1 < Ty

and that (x,) is non-increasing after index M. The value
z s is called the mode and M the mode index. (A tie
is permitted at the mode value.)

Example 1.5.3: Most of the unimodal seqs of interest
in the present context are eventually 0. Figure 1.5.1 illus-
trates that the sequence (i) is unimodal.

80

60

40

20 S

0 -

012 345467 8
Fig 1.5.1 The unimodal sequence (i)
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Thm 1.5.3. For any fixed non-negative integer n, the
binomial sequence

<<:“> r = 0,1,...>

is unimodal with mode index |n/2| and is eventually 0.

Proof: We observe that for » < {gJ, we have — > 2,

"
1
and, hence, nt > 2.
T
— 1
Thus, e > 1. Accordingly,
r
n B nr—l
r—1)  (r—1)!
- nf=l  n—r4+1
(r — 1)! r

nt n
ol \rp

Moreover, for r > {gJ , we have n < 2r+41, and it follows

that n —r <r 4 1. Thus, nor < 1. It follows that
r
n B nttl _on- n-—r < n- (n)
r+1) @+ o ord+1 T ol \p
Of course, the sequence is zero for r > n. &

Remark: Unimodality of a sequence may make it possible
to find the maximum by hill-climbing, for which there exist
highly efficient computational strategies.
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Log-Concavity and Log-Convexity

In trying to establish unimodality, curiously enough,
it is often easier to prove the stronger property called log-
concavity.

DEF: A sequence (z,) of positive real numbers is log-

concave (on the integer interval [a : b]) if, for n = a+
1, ..., b—1,

logz,—1 +logx,4+1

logx,, > (1.5.1)
2
and is log-convex if
logz, < —8%n=1T 08Tni1 (1.5.2)

2

Prop 1.5.4. A sequence (z,,) of positive real numbers is
log-concave (on the integer interval |a : b]) if and only if,
forn=a+1,...,b,

D R (1.5.3)

It is log-convex if and only if

2 < Ty 1Tpgn (1.5.4)

n

Proof: The defining condition (1.5.1) for log-concavity

logz,—1 +logx,4+1
2

logx,, >



Section 1.5 Falling Powers 41
is equivalent to the inequality

2logx, > logx,_1 +logx,i (1.5.5)
Exponentiating both sides of inequality (1.5.5) leads to
inequality (1.5.3), i.e.,

2
X, 2 Tp_1Tpi1

A similar argument establishes the equivalence of inequal-
ities (1.5.2) and (1.5.4). &

Thm 1.5.5. Let (z,,) be a log-concave sequence (over the
integer interval [a : b]). Then it is unimodal (over that
integer interval).

Proof: It follows from Proposition 1.5.4 that the se-
quence of ratios

Z1 Lo 3

Lo L1 L2
(wherever defined) is non-increasing. That is,

T T 1
T n > n-+

2
n Z Tp—1Tn+1 =~

Ln—1 Lp

Let M be the largest number k in the integer interval [a : b]
such that

Ty
> 1

Lh—1
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or M = a if no such number k exists. Then the initial
subsequence

Ty Tg+1l --- TM
is increasing and the terminal subsequence
LM  TM+1 A 4 S

iIs non-increasing, precisely the conditions for
unimodality with mode index M. &

Theorem 1.5.6. The binomial sequence

()] =00

is log-concave on the integer interval [0 : n].

Proof: The falling-power formula for binomial coeffs is

) - ()

< 1 and L < 1, it follows that
r+1 n—r-4+1

nt 2 S nt nt T n—r
r! rl rl r+1 n—r+1
and, in turn, that
n 2 S nt nt T n—r
T rt ol r4+41 n—r+1

B (:r—_ll)! ' (rnrll)! B (rﬁl) ' (ril)

Since
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Accordingly, by Proposition 1.5.4, the binomial sequence
is log-concave. &

Remark: Theorems 1.5.6 and 1.5.5 can be used together
to reconfirm Theorem 1.5.3, that the sequence of binomial
coeflicients (Z), for K =0,...,n, is unimodal.
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1.6 STIRLING NUMBERS: PREVIEW

Stirling numbers are highly useful in counting parti-
tions and permutations.

Falling into Ordinary Powers

The following theorem provides a recursive method
for converting a falling power into ordinary powers.

Theorem 1.6.1. Any falling power ™ can be expressed
as a linear combination of ordinary powers, i.e., in the
form

n

= Z Sn.k 2" with Spn =1 and s,09=0forn>1
k=0

Proof: By induction on the exponent n.
BASIS: Forn =0 and n = 1, we have

22 = 12V

el = lz! + 02!
Thus, we take sg 0 =1, 51,1 =1, and 510 = 0.

IND HYP: Suppose for some n > 1 that there exist integer
coeflicients

Sn—1,0 Sn—-1,1 --- Sn—1n—1
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for which
n—1
xﬂ — E Spn—1.k Zlfk with Spn—1,n—1 = 1 and Sp—1,0 = 0
k=0

IND STEP: It follows that

et = 2" L. (z —n41) (def of falling power z)
n—1
= (z—n+1) Z Sn—1.k " (ind hyp)
r=0
n—1 n—1
= stn_l,k oF — (n—l)an_l,k "
k=0 k=0
n—1
= —(n—1)su_102’ + Z(Sn—l,k—l —(n—1)sp—1.1) "
k=1
+ Sn—l,n—lxn
n—1
= 02" + Z(Sn—l,k—l—(n—l)sn—l,k)ivk + 1z"
k=1
Thus, we may take s,0 = 0, s,, = 1, and s, =

Sn—1,k—1 — (n — 1)3n—1,k7 for O < k < n. <>
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DEF: The coeflicients s,, ;, in the summation

n

= g sn,ka:k

k=0

are called Stirling numbers of the first kind. For
k >mnor k <0, the Stirling number s,, ;, is taken to be 0,
corresponding to letting the upper and lower limits of the
sum go to oo.

The Stirling numbers s, ;, can be calculated by multiplying
the factors in the expansion

n

zt = z(z—1)(z—2)--- (z —n+1)

Example 1.6.1:

2 = g2 — gt
2 = 3 — 322 —|—2:131
2 = % — 62° + 1122 — 62!

S = z° — 10z* 4+ 352° — 5022 + 24zt

Thus, s5,0 = —50 and s3,; = 2. We observe the alternating
signs in each equation.
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Ordinary into Falling Powers

Expressing an ordinary power as a sum of falling pow-
ers is an analogous task.

Thm 1.6.2. Any ordinary power " can be expressed as
a linear combination of falling powers, i.e., in the form

" = Z Sn.k % with Spn =1and S, o=0forn>1
k=0

Proof: Once again, we use induction on the exponent n.
BASIS: Forn =0 and n =1, we have

20 = 122

el = 1zl 4+ 02Y
We take So0 =1, S1,1 =1, and 51,0 = 0.

IND HYP: Suppose that for some n > 1, the monomial

z"~! can be expressed as a linear combination

J
n—1 k
x = g SinT™
k=0

of falling-power monomials .S; ;, z¥, each of degree less than

or equal to j.
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IND STEP: Then

= z.-zg"!
n—1
= - Sh—1.k ok (inductive hypothesis)
k=0
n—1
— Z Sn—l EX X
k=0
n—1 n—1
= Z Sn—1.1 (x — k) k4 Z Sn—1,k k- zk
k=0 k=0
n—1 n—1
= Z Sn—1.k gl Z kSn—1. 2k
k=0 k=0
n n—1
= Z Sn—1.k—1 k4 Z kSn—1. zk
k=1 k=0
n—1
= Sp—in—12" + Z(Sn—l,k—l +kSy 1)z + 08,102
k=1

Thus, we may take
Sn,O = 0, Sn,n = 1, and Sn,k — Sn—1,k—1 + kSn—l,k

for 0 < k < n. &
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DEF: The coeflicients .S,, ;, in the sum

n
" = g Sn,kazE
k=0

are called Stirling numbers of the second kind. For
k > n or k < 0, the Stirling number S, ;, is 0, which
corresponds to letting the upper and lower limits of the
sum go to oo.

Example 1.6.2:
? = 22 4+ ot
2 = 22 4+ 322 4+ L
zt = 22 4+ 622 + T2 4 2L
z° = 2% + 102 + 2522 + 1522 + i

ThU_S, 55,3 — 25 and 54,2 =1.

Corollary 1.5.2 provides a simple formula for the sum
of the values of any falling power n™, over an interval of
integer values of the base n. Accordingly, due to the linear-
ity of the difference operator (Proposition 1.4.1), we could
calculate the sum of the values of any ordinary power n’”,
over a range of values of n, if we first express n” as a linear
combination of falling powers.
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Example 1.6.3: Notice, in particular, in Example 1.6.2,
that n2 = nZ + nt. It follows from Theorem 1.6.2 that

n n n
Dt =D+ Dt
§=0 §=0 §=0

_ (t1D)* (et 1)
N 3 2
73 2
E.g.,0+14+44+94+16425+36 = T3 = 70421 = 91.

In turn, this enables us to calculate the sum of the
sequential values of a polynomial, since a polynomial is
a linear combination of ordinary powers. This method
of summing the values of polynomials will be further ex-

plored in §3.4.

Partitions

DEF: A partition of a set S is a family F = {S1,...,5,}
of mutually disjoint subsets of S, called the cells of the
partition F, whose union is S.

NOTATION: Cells of partitions of a set may be indicated
by the use of hyphens. If the set is small enough, then its
elements can be represented by single characters, thereby
avoiding potential ambiguities latent in juxtapositions of
the characters.
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Example 1.6.4: The partition {{1,3}, {2,5}, {4} } of
the integer interval [1 : 5] may be denoted

13 —25—-4

or also, for instance, by 4—52—-13, since the cells of a
partition and the order within cells are taken to be un-
ordered.

Stirling Subset Numbers
DEF: The Stirling subset number
n
L
is the number of ways to partition the integer interval
[1: n] into k non-empty non-distinct cells.*

In §5.1, we establish that the Stirling number S, ;, of
the second kind equals the Stirling subset number {Z}

Example 1.6.2, cont.: The value S4 5 = 7 is consistent
with the following list of 7 partitions of [1 : 4] into 2 cells,
as an ad hoc calculation of {;L}

1—234, 2—-134, 3—124, 4—123
12— 34, 13—24, 14 —23

* Wikipedia acknowledges D. E. Knuth for promoting usage of
the user-friendly notations, { Z} and [Z], of the Serbian mathemati-
cian J. Karamata (1902-1967) for Stirling numbers.



52 Chapter 1 Sequences

Stirling Cycle Number

DEF: The Stirling cycle number |} ] is the number of
ways to partition the integer interval [1 : n] into k£ non-
empty non-distinct cycles.

In §5.2, we establish that the Stirling number s,, ;, of
the first kind equals the absolute value of the Stirling cycle
number [Z}

Example 1.6.1, cont.: The value s4 9 = 11 of the Stir-
ling number of the first kind is consistent with the fol-
lowing list of 11 partitions of the integer interval [1 : 4]
into 2 cycles, as an ad hoc calculation of the Stirling cycle

number [;L} .

(1)(2 3 4), (2)(1 3 4), (3) 4)
(1)(2 4 3), (2)(1 ), (3)(1 4 2)
(4)(1 2 3), (4)(1 3 2)

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

Remark: Since the Stirling cycle numbers
il L
1 2 n
correspond to an inventory of all permutations of the in-

teger interval [1 : n], according to the number of cycles in
their disjoint cycle representation, it follows that

>[1] = »

j=1 17
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1.7 ORDINARY GENERATING FNS

A sequence (g,,) can be represented by the polynomial

o0
Zgnzn = g0+ gzt g2+
n=0

DEF: An (ordinary) generating function (abbr. OGF)
for the sequence (g, ) is any closed form G/(z) such that

G(z) = Zgnz”
n=0

or, sometimes, it means the polynomial itself.

Exponential Generating Functions

Another kind of generating function, called an expo-
nential generating function, is also used directly for count-
ing and in solving recurrences. More extensive develop-
ment of exponential generating functions appears in §5.5.

DEF: An exponential generating function
(abbr. EGF) for a sequence (g,,) is any closed form G(z)
corresponding to the infinite polynomial

00 o
D On

n.
n=0

or, sometimes, the polynomial itself.
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Direct Counting with OGFs

Ordinary generating functions are readily applicable
to counting unordered selections. We return to a counting
problem first raised in Example 0.3.13.

Example 1.7.1: A combination of letters from the word
SYZYGY may contain at most one S. Thus, an ordinary
generating function for the number of possible combina-
tions containing no letters that are not S’s is

1+ s

Similarly, ordinary generating functions for combinations
containing no letters except Z’s and no letters except G’s
are, respectively

1+z and 1+4g
Since the word SYZYGY contains three Y’s, the OGF for

counting combinations containing no letters except Y’s is

l+y+y* +y°

which signifies that there is one choice with no Y’s, one
choice with one Y, one with two Y’s, and one with three
Y’s. In the product

1+s)1+2)(14+9)(l+y+y° +y°)

of these four generating functions, the terms of degree d
provide an itemization of the ways to select d letters from
SYZYGY. For instance, the seven terms of degree 2 are

sz sg sy 29 2y 9y Y
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It follows that if each of the indeterminates s, z, ¢g, and y
is replaced by a single indeterminate, say =,

(14 2)*(1 + x4 2 + 27)
then the coefficient of z¢ in the expansion
1 + 4z 4+ 72* + 82> + Tz* + 42° + 2F

is the number of ways to select d letters from SYZYGY.
The general principle is articulated by the following propo-
sition.

Prop 1.7.1. Let G(z) and H(z) be the OGFs for count-
ing unordered selections from two disjoint multisets S and
T. Then G(z)H(z) is the OGF for counting unordered se-

lections from the union SUT.

Proof: This is a direct application of the Rule of Sum
and Rule of Product. &

Direct Counting with EGFs

Exponential generating functions are readily applica-
ble to counting ordered selections. We continue the anal-
ysis of Example 1.7.1.

Example 1.7.1, cont.: An ordered selection of letters
from SYZYGY may contain at most one S. Thus, an ex-
ponential generating function for the number of possible
combinations containing no letters that are not S’s is

1+ s
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Similarly, exponential generating functions for ordered se-
lections containing no letters except Z’s and no letters ex-
cept G’s are, respectively

1+z and 1+4g

Since the word SYZYGY contains three Y’s, the expo-
nential generating function for counting ordered selections
containing no letters except Y’s is

2 3
Y Y
l+y+ o + 31
which signifies that there is one way with no Y’s, one way
with one Y, one with two Y’s, and one with three Y’s. In

the product

of these four generating functions, the terms of degree d
provide an itemization of the ways to select d letters from
SYZYGY. Suppose that the multivariate indeterminate
monomial of a term of degree d is given the denominator
of d!. For instance, this would give the transformation

zgy> X 41 zgy> B 4 zgy>
2! oot 4 \211 4!
in which the multinomial coeflicient (2 411 1) is the number

of ways to order the selection ZGYY represented by the
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monomial zgy?. It follows that if each of the indetermi-
nates s, z, g, and y is replaced by a single indeterminate,
say x,

5 2 2
(14 z) 1—|—:13—|—§—|-§

then the coefficient of z¢ in the expansion

2 3 4 ) 6

1+ 4% 4132 4342 4+ 2 41208 4 1202
TAp T ey Tty ey T U 0y

is the # of ordered selections of d letters from SYZYGY.

The general principle is as follows.

Prop 1.7.2. Let é(z) and ﬁ(z) be the EGFs for counting
ordered selections from two disjoint multisets S and T
Then é(z)ﬁ(z) is the EGF for counting ordered selections
from the union S UT.

Proof: This is a another direct application of the Rule
of Sum and Rule of Product. &

Analyzing a Generating Function

To use generating functions effectively, either for di-
rect counting or for solving recurrences, one needs to be
able to analyze generating functions so as to recover a
closed-form function for the list of entries. We now indi-
cate briefly how this might be done, deferring most of the
details to Chapter 2.
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Example 1.7.2: When a closed-form generating func-
tion is a quotient of polynomials, such as

z
1 — 324222

(1.7.1)

one way to extract the entries of the sequence is by long
division of polynomaials.

z—|—3z2—|—7z3—|—15z4—|—---

1—3z—|—2z2 )z

z—32% 4+ 22°
322 — 223
322 —92% +62*
723 — 624

This yields the coeflicients of smaller powers z™, but not a
closed form. Factoring the denominator of the expression
(1.7.1) and splitting the fraction into two parts, like this

z 1 1

(1—2)(1—22) 1 -2z 1—z

= (142z+2°22+2°2% 4+ -+)
— (l4+z+22+22+--)

o0

=) (2" —1)z"

n=0

is the standard way to recover a closed-form. See §2.3.
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Remark: Example 1.7.2 uses the familiar algebraic iden-
tity
1

_— 1—|—ay—|_a2y2_|_...
1 —ay

which can be justified either by long division or by multi-
plying 1 — ay and 1 4 ay + a’y® + - - -.

Rational Functions

DEF: A quotient of two polynomials in z (each with finitely
many terms) is called a rational function in z. If the
degree of the numerator is less than the degree of the de-
nominator, then it is called a proper rational function.

Long division of the denominator into the numerator
transforms a generating function G (z) represented as a
rational function

bo—l—blz—l—---—l—bszs
cot+crz4 -4 2t

G(z) =

into its power series

G(2) = go+g1z+goz” + -

as in Example 1.7.2. Moreover, it will be shown in Chapter
2 how to use factoring of the denominator, as in Example
1.7.2, to represent the values of the sequence by a closed
function. For the time being, we consider another case of
this phenomenon.
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Example 1.7.3: Here is an additional illustration of the
effect of factoring the denominator and splitting the frac-
tion into a sum of fractions with linear polynomials as
denominators
z—1 —2 1
G = =
) = TTh g6 T 1o8: 12
= 2(14+32+32"+--) + (1 +22+2°2"+--)

= ) (2" -2-3")z"

n=0

Taylor Series

The fact that a rational function can be reconverted
into a power series motivates the use of the terminology
generating function, because a rational function may be
regarded as generating its coefficients by the process of
long division. Another sense in which a function G(z) can
generate the coefficients of a power series is by application
of a Taylor series expansion at z = 0.

2 3

G(z) = G(0)+G’(0)%+G"(0)%+G~'(O)Z_!+...

that assigns to the infinitely differentiable function G(z)
the power series

G(2) = go + ;12 + g22° + -+
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where

Using Taylor series permits an interpretation of a wide
range of infinitely differentiable functions as generating
functions.

Example 1.7.4: For the function G(z) = —In(1 — 2),
the value of the nt* derivative at z = 0 is

(n—1)!

G(")(O) = — = (n—1)! forn>1
(1_Z)n z=0
and, thus
2 3
G(z):O—I—O'——I—l'——|—2'——|— Z—z

That is, the function —In(1 — z) is the OGF for the se-

quence (x, = %>

Addition and Scalar Multiplication

There is a correspondence between various operations
on sequences (a,) and (b,,) and some operations on their
associated generating functions

A(z) = f:ajzj and B(z Zb o
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DEF: The sum of two sequences (a,) and (b,) is the
sequence

ap + by, a1 +by, az+ b,

This corresponds to the sum of their generating functions,
i.e., to the generating function

Pﬂg

(A+ B)(z (aj +b5)z

J=0

DEF: Multiplying the sequence {a,} by the scalar c
yields the sequence

cap, cai, cas,

This corresponds to the generating function

cA(z) = Z ca;z’
j=0
that results from multiplying the generating function A(z)
by that scalar.

Example 1.7.5: Since the ordinary generating functions

1 1
and B(z) =
1 -5z 1 -7z
generate the sequences (a,, = 5") and (b, = 7"), respec-
tively, it follows that the ordinary generating function
2 3 5 — 29z
B)43B2) = 1 =5, Y107 T Goson—ta)

generates the sequence (2-5" +3 - 7™).

A(z) =
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Products and Convolutions

The following two examples illustrate how one might
use products of OGFs in direct computations.

Example 1.7.6: Consider counting the number p,, of
ways to make n¢ postage from 3¢ and 5¢ stamps. If one
had nothing but 3¢ stamps, the OGF would be

Zan:c”:1_|_g;3_|_g;6_|_a;9_|_...:

n=0

1
1 — a3

since there is exactly one way from 3¢ stamps alone to
make each multiple of 3, and no way to make any other
postage. Similarly, if one had nothing but 5¢ stamps, the

OGF would be

1
1 —yd

anyn — 1_|_y5_|_y10_|_y15_|_.” _
n=0

In the product of these two OGF's, the number of terms
of degree n would be the number of ways of making n¢
postage. For instance, the terms of degree 23 (i.e., the
terms whose exponents have 23 as their sum) are

$18y5 and 5133y20

It follows that if z is substituted for = and y, then the
coefficient of 223 is the number of ways. Thus, the OGF
is

1 1 o0 00 n
1 -2 1-25 Dopud" =) ") ajbay
n=0 n=0 0
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That is, the only way to get n¢ postage is to find an a; = 1
and a b,,_; = 1. The sequence (p,,) is not monotonic. For
instance,

pia =1 pis =2 pig =1

COMPUTATIONAL NOTE: In trying to obtain actual val-
ues for such a sequence, it is useful to have the aid of a
computational engine such as Mathematica.

DEF: The convolution of the sequences (u,,) and (v,)
is the sequence

UpVo, UpV1 + UIVo, UpV + UIV1 + U2V,

Example 1.7.6, cont.: Thus, the sequence (p,,) is the
convolution of the sequences (a,,) and (b,,).

Example 1.7.7: Four distinguishable six-sided dice are
rolled, each marked with the numbers 1, 2, 3, 4, 5, 6. Then
the generating function for the number of ways that sum
of the outcomes could be n is the coefficient of 2" in the
expansion of

(2 + 22 + 23 4 24 4 25 4 L0

Proposition 1.7.3. The product of the generating func-
tions

o0

U(z) = iunz" and V(z) = Z’Unz"
n=0

n=0
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is the generating function

U(z)V(z) = Z z" Z UjVp—

for the convolution of the sequences (u,,) and (v,,). O

Example 1.7.8: The rational functions

1 1
and
1 — 2z 1— 3z

generate the sequences (u, = 2") and (v, = 3™), respec-
tively. Their product is the generating function

1 =2 N 3
(1-22)(1-32) 1-2z 1-3z
— Zzn(3n+l_2n—|—l)
n=0

— 14+524+1922 +692°% + ...

The convolution of the sequences (u,, = 2") and (v,, = 3")
is the sequence whose n'® element (counting from the 0"
element) is

203n_|_213n—1_|__|_2n30
Thus, the convolution sequence begins
1, 5, 19, 69,

in affirmation of Proposition 1.7.3.
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Sums and Generating Functions

Prop 1.7.3 has a slue of useful consequences. An im-
mediate consequence is that it provides a method for going
from a counting sequence to its sequence of partial sums.

Theorem 1.7.4. Let B(z) be the OGF for a sequence
(b,,). Then the OGF for the sequence

<2n:bj | n:O,l,...>
§=0

of partial sums is

B(z)
1 —2z
Proof: We observe that the total coeflicient of 2" in
B(z
1:2 = (bo+brz+b2> +-) (14+2z+2"+--)

equals the sum Z?:o b;, as per the following calculation:

bo—l—blz—l—bgz2+bgz3—|—---
X l4+z4+224+22 4.

bo+blz—|—bgz2—|—bgz3—|—---
b()Z —|— blz2 —|— 6223 —|— 6324 —|— s
b()Z2 —|— 6123 —|— 6224 —|— 6325 —|— s

b()—|—(bl—|—bo)Z—|—(bg—|—bl—|—bo)Zz—|—“°

This is just a special case of Proposition 1.7.3. &
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1 - ~1
Corollary 1.7.5. —— = Z (n T ) z"
(1—2) —
Proof: By induction on r.

BASIS:  For r = 1, we have

1 —~ . = (n+1-1Y\ ,
(1—2) :;Z _;( 1 -1 )Z

”) is 1.

since the value of each of the coefficients (0

IND HYP: Next, suppose for some r > 1 that

T i(njjgz)”"

n=0

IND STEP: Then

1 1 1
(1—2z)" l—2z (1—2z)r—1

1 ~~ [(n4+r—2 n :
— 1_ZZ( 5 )z (ind hyp)

n=0

=Y (J jfi ) ) (Thm 1.7.4)

n=0 7=0
— Z T Z_ ) Z(] + 7 —2)=2  (factor j-sum)

n=0 T =0

o n _1)yr=t _ _9\yr=1
— Z - (ntr—1) (r—2) (Cor 1.5.2)

(r —2)! r—1
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a g (r inz)! - +(: - 11))70_1
_ é (”j: 1)Zn o

Table 1.7.1 OGYF's for some sequences.

sequence closed form
1
Lo 1
—z
1
17 _17 17 _17 1_|_
z
1
1, 0, 1, 0, T
1, 0, 0, 1, 0, O !
? ? ? ? ? ? (1_23)
1
17 a? a27 a37 1
—az
0, a, 2a?, 3a°, ] ©
—az
1
L, 2 3, 4 i
1
m-+1 m-+2 m-—+3
e N N0 R e
o b 2 e’
11 _
O, 1, 99 3 ln(l Z)
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1
Example 1.7.9: The rational function ——— gener-

(1—2)

ates the sequence

1
(”+ ): 1, 2, 3, 4
1
1

Example 1.7.10: The rational function m gener-

ates the sequence

2
(”+ ): 1, 3, 6, 10,

2
1 ~[(n+r—1 n n
Corollary 1.7.6. m = nz_%( N )a z
Proof: Substitute az for z in Corollary 1.7.5. &
: , 1
Example 1.7.11: The rational function —— gen-
(1 —22)2
erates the sequence
1
("Jlr ) oM. 1, 4, 12, 32,
: . 1
Example 1.7.12: The rational function —  gen-
(1 —22)3

erates the sequence

2
(”;r )2": 1, 6, 24, 80,
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1.8 SYNTHESIZING OGF’S

Synthesizing an OGEF for a given sequence is a skill,
like analyzing them, that is fundamental to solving count-
ing problems with them. The approach is to recognize
fundamental patterns in the sequence and to perceive how
these patterns were combined.

Example 1.8.1: In the sequence

—4, 2, 5, 2, —6, 2, 7, 2--- (1.8.1)

1, 2, 3, 4, 5, 6 --- (1.8.2)

and
2, 2, 2, 2, --- (1.8.3)

[t seems that sequence (1.8.2) acquired negative signs on
its even elements, that the entries preceding the entry 4
were truncated, and that it was then interwoven with se-
quence (1.8.3) by strict alternation.

Example 1.8.1 serves as a running example for this section.
Our objective is to construct its generating function.
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Substitution

Prop 1.8.1 Substitution Rule. If G(z) is an OGF for
the sequence (g, ), then G(bz) is an OGF for the sequence

<bn9n>-

Proof: Z gn(b2)" = Z b" gnz". &
n=0 n=0
Example 1.8.1, cont.: By Example 1.7.9, the OGF for
the sequence (1.8.2): 1, 2, 3, 4, ... is
1
(1—2)°

Substitute (—1)z for z, according to Proposition 1.8.1, to

obtain the OGF |

(14 2)?

for the sequence

1, -2, 3, —4, 5 —6 --- (1.8.4)

Shifting Right and Left

DEF: Shifting the sequence (a,) to the right by k
places yields the sequence

k zeroes
_A

O, O, ceey O, ap, a1, A2, ...
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The corresponding generating function is

o0

zkA(z) = Z ajzj"'k

j=0

DEF: Nullifying the ;™' element of the sequence (a,,)
means replacing a; by 0. The corresponding generating
function is

A(z) — a’ 2’

DEF: Shifting the sequence (a,,) to the left by k places
yields the sequence

Ay Ok+1y Ak+2, - - -

The corresponding generating function is

k—1 . s%) .
7k [A(z) — ijo asz] — Zj:k ajzj_k

The terms ag, a1, ..., ap_1 are nullified, so that they do
not end up as non-zero coefficients of negative powers of
Z.

Example 1.8.1, cont.: Shifting sequence (1.8.4) to the
left by three places yields the sequence

-4, 5, —6 7, =8, 9,--. (1.8.5)
which corresponds to the OGF
—4 — 3z

—1 2—32 = —
. ) 1+ 2)
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Spacing Out

DEF: Spacing a sequence (a,) by k units yields the
sequence

E 0's E 0's E 0's
e N e N e N
ap, O, ,O, ai, O, ,O, as, O, ,O,

The corresponding generating function is

A(zk"'l)

Example 1.8.1, cont.: Spacing sequence (1.8.5) by 1
place yields the sequence

_47 07 57 07 _67 07 77 07 _87 07 97 e
(1.8.6)

which corresponds to the OGF
—4 — 32 . —4-37
(1+2)%|, .- (14 22)2
Isolating a Subsequence
DEF: Isolating the subsequence n = k mod m of

the sequence (a,,) yields the sequence in which all terms
are nullified, except those whose index is congruent to
k mod m.
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For modulus m = 2, the corresponding generating func-
tion is

A(z) + A(—=2) 0
2

Al2) ZA(=2) ey g
2

Example 1.8.1, cont.: Since the rational function i

generates a sequence of 1’s, the generating function for the
sequence (1.8.3) is

1 —2z

[solating the 1 mod 2 subsequence from sequence (1.8.3)
yields the sequence

0, 2, 0, 2, --- (1.8.7)

which corresponds to the OGF

1 2 2 2z

2\1—2 142/ 1-22
which might also have been obtained by spacing sequence
(1.8.3) out by 1 unit and shifting right 1 place. Sequence

(1.8.1) is the sum of sequences (1.8.6) and (1.8.7). Thus,
its OGF' is the sum of their OGF’s, i.e.,

—4 — 372 2z 229 + 324 4+ 423+ 2242214

127 "1-=2 = =1+
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Differentiation

DEF: The derivative of the generating function

G(z) = Zgnz”
n=0

is the generating function

G'(z) = annz”_l — Z(n—l—l)gn_H z"
n=1 n=0

Example 1.8.2: Consider the generating function

1 — n _n
G(z) = 9. 22 z
n=0

Then taking its derivative yields the equation

which is consistent with Corollary 1.7.6.

75
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1.9 ASYMPTOTIC ESTIMATES

The growth rate of a function is customarily reckoned
via comparison to benchmarks. The focus is on the long
term.

DEF: Let f(n) be a function such that f(n) # 0 for suffi-
ciently large n. The sequence z,, is asymptotic to f(n)
if

lim —% = 1

im =

n— 00 f(n)
It is often reasonably straightforward to guess or to find a
well-understood function f(n) such that the ratio

Ln

f(n)

converges.

Example 1.9.1: How large is the Catalan number ¢, ?
From the expansion

oo ] (2n> 1 (2

n+1\n n—l—lo n!
B 1 on 2n—1 (n+1)
- n+1 n n—1 1

one sees that the Catalan number ¢, is a product of the

—L1_ and the values of n other factors, whose values

value of ]
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form an increasing sequence from 2 to n+1. One surmises
that

2" (n+1)" —1
n — 1 "
T < ¢y < ) (n+1)

which is a very wide range of possibilities, since the lower
and upper bounds are far apart. Narrowing that gap is a
primary need toward improved understanding of the be-
havior of the Catalan sequence.

Ratio Method

Ratio Method: Some information about the asymptotic
behavior of a sequence x,, lies in the ratio

Ln

Ln—1
of successive terms. We calculate the limit of that ratio.

Example 1.9.1, cont.: The ratio of successive entries
of the Catalan sequence is

Cn 1 2n 1 (2n—2
choi1 n+1\n n\n—1
1 (2n)2 /1 (2n—2)2=L
n+1 n!

1 (2n)2
n+1 (2n-— 2)&
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1 (2n)(2n — 1)

n+1 . n
- o An = 2 (1.9.1)
Cr—1 n+1 o
) Cn, . 4n — 2
= lim lim
n—0o0 Cp_1 n—oo N + 1
4 4
lim nt — lim = 4—-0
. C’I’L
= lim 4 (1.9.2)

n— 00 CTL—l

Cn

Since the ratio is everywhere less than its asymptotic

Cn—1
upper limit of 4, and since ¢; = 1 < 4, it is possible to

narrow the estimating range of ¢,, to

2™ 1 2n n
< ¢, = < 4
n+1 n+1\n

(1.9.3)
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Tightening Bounds on Estimates

Concrete Substitution: Concrete early values of a se-
quence can often be used to improve asymptotic upper
and lower bounds.

Example 1.9.1, cont.: Sharpening the lower bound of
(1.9.3) for the Catalan number ¢,, including eliminating
the denominator of n + 1, can begin with an observation

regarding the ratio —==— after n = 5.

n—1

4n—2 > 3n+3 for n > 5
4n — 2 >3n—|—3 _ 3

n+1 = n+1
Recalling (1.9.1), we have

Cn

=N

IV

3 (1.9.4)

Cn—1
Using (1.9.4) and the fact that
Cy Cg Cn

Cn:C4.—.—. e o s e
Ccy Cp c, — 1

we 1nfer that

chn > cg-3""% = 14.3"74
14 1

= ¢, = 8—13" > 63" forn>4 (1.9.5)

The inequality (1.9.5) also holds for ¢g, ¢1, c2, and cs.
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Recalling the inequality (1.9.3), it follows that

1
G 3" < e, < 4" forn >0 (1.9.6)

We shall now show that the coefficient of % can be
removed from the lower bound of (1.9.6) for sufficiently
large values of n. Since the ratio

Cn

Cn—1

7

is increasing monotonically to 4, it eventually exceeds 7,

say, for all n > P. Since % > 1, there is a number () such

that

7\ _ 3F

(—) > — forall¢g > @Q — P
2 cp

which implies that

. _CP.(CP+1.CP—|—2..”.C_Q>.(CQ-|—1.CQ—|—2..”. Cn)
1
cp CP+1 CQ—1 CQ CR+1 Cn—1

()

> 3l . 3@ . gn-0

= ¢, > 3" (1.9.7)
Combining (1.9.6) and (1.9.7) yields the desired result

3" < e < 4" forn > Q (1.9.8)
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Remark: In fact, this lower bound is further improvable.

Since the ratio
Cn

Cn—1
is increasing monotonically to 4, it eventually surpasses
4 — € for any € > 0, say, for all n > N (¢). It follows, by an
argument similar to that used in the derivation of (1.9.6),
that

(4= <e¢p < 4" for n > N (e)

The coefficient could be removed, once again, as in the
derivation of (1.9.8), to yield the asymptotic estimate

(4—e)" < ¢, < 4"
which is adequate for present purposes.

The following proposition formulates the method used
in Example 1.9.1 as a general principle.

Proposition 1.9.1. Let x,, be a sequence such that
'CE'I'L
limp,yoe—— = K >0

n—1

Then, for € > 0 and sufficiently large values of n,
(K—¢)" <¢, < (K+¢€)" (1.9.9)
If the ratio —*»— is bounded above by K, then (1.9.9) can

Ln—1

be sharpened to

(K—¢)" <c¢, < zoK" (1.9.10)
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If bounded below by K, then (1.9.9) can be sharpened to
o K" <e¢, < (K+¢€)" (1.9.11)

Proof: Details from Example 1.9.1 are readily trans-
formed into a proof. This is left to the Exercises. &

Asymptotic Dominance

DEF: If there is a positive number ¢ such that
f(n) < cg(n) foralln>N

then we may write

f(n) € O(g(n))

and say “f(n) is in big-oh of g(n)”. The numbers ¢ and
N are called witnesses to the relationship.

TERMINOLOGY NOTE: Although O(g(n)) is defined here as
the class of functions that are eventually dominated by a
multiple of g(n), the usage “f is big-oh of ¢” (omitting the
preposition “in”) is quite common. The rationale is that
membership in the class may be regarded as an adjectival

property.
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Example 1.9.2: One way to prove that 7Tn? € O(n?) is
to choose the witnesses N =7 and ¢ = 1. Then

m? < 1-n° forn>7
Another proof uses the witnesses N =1 and ¢ = 7. Then

™m? < 7-n° forn>1

In general, there tends to be a tradeoff in the size of the
witnesses NV and c¢. Choosing a larger value of witness ¢
may enable one to choose a smaller value of witness n.

Example 1.9.3: To prove that n®> & O(7n?), we observe
that for any witness ¢, and for any number n > 8c,

n®> > (8c)n* > Tc-n?



