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Most combinatorics problems have one of three fun-
damental objectives:

e counting or calculating a sum,

e constructing a configuration involving two or more
discrete sets (usually two) — subject to a list of con-
straints,

e optimization, i.e., either finding the extreme values
of a function or designing something with an optimal
characteristic of some kind.

Chapter 0 begins with examples of problems of each type.
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0.1 OBJECTIVES

We illustrate the three basic types of problems:
counting
constructing a configuration

optimization.

Combinatorial Enumeration
Prototype discrete measurement: sum the values of a
function over a finite or countable set.

Analogy: calculate the area of a region in the plane
between the z-axis and a curve.

Example 0.1.1: Evaluate this sum:
1+
2+ 1+
34+24+ 1+

n+ n-—-1) + --- +1

For n = 12, this sum corresponds to an English holiday
song,” and the value of the sum is 364.

* The Twelve Days of Christmas.
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Since the sum of the j** row is

JA G-+ 1=

the value of the original sum equals

G+ 1))
2

=1

This latter sum rather neatly fits a standard form of what
is called the finite calculus (see, especially, §3.4). It can
be evaluated as follows:

n

3 (G+1)j (n+2)(n+1)n

: 2 6
71=1

For instance, for n = 12, the value is 364.

Generalization: sum the values of an arbitrary polynomial
over a range of consecutive integers. (Stirling numbers are

used.)

Such summation problems arise frequently in the analysis
of algorithms, in which the time to execute the body of a
loop might be roughly proportional to a polynomial-valued
function.



Section 0.1 Objectives 5

Incidence Structures

An incidence structure is a combinatorial configura-
tion that involves two or more discrete sets. Most com-
monly, there are exactly two sets:

a set P of points and a set L of lines

and an ncidence function v : P x L — Zs.

Example 0.1.3: An abstract model for what is called a
simple graph is an incidence structure in which every line
has exactly two points and in which no two lines have the
same two points.

P ={1, 2 3, 4, 5}
L = {12, 14, 15, 23, 25, 45}

In a spatial model, the more intuitive model for a graph,
each point of the graph is called a vertex, and each line of
the graph is called an edge.

1 2 1 4

4 5 5
Fig 0.1.1 Two drawings of a simple graph.
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Both for intrinsic interest and for their value in ap-
plications, graph theorists often solve problems of an enu-
merative character.

Example 0.1.4: Arthur Cayley encountered the prob-
lem of counting the number of different hydrocarbon iso-
mers with the chemical formula

CnH2n—|—2

The two isomers for n = 4, called butane and isobutane,
are illustrated in Figure 0.1.2. Graph enumeration is the
principal concern of Chapter 9.

H H H
N R S St
R
H—C—H
|

Fig 0.1.2 Butane and isobutane.
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Optimization

DEF: combinatorial optimization:

any discrete problem concerned with finding a maxi-
mum or a minimum.

Elsewhere, it may have a restricted meaning:

finding the maximum value of a function on a region
of a FEuclidean space.

Example 0.1.5: For instance, if one is selecting subsets
of size k from a set of size n, one may wish to know the
value of k for which the number of different subsets is
greatest.

In extremal graph theory, one determines the max
number of edges that a simple n-vertex graph G may have
before some property necessarily holds.

Example 0.1.6: For instance, what is the maximum
number of edges a simple n-vertex graph G may have be-
fore there must be a set of three mutually adjacent ver-
tices? The following solution of this problem, due to Paul
Turan, appears in §8.4.

Bel = | %]
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0.2 ORDER AND SELECTION

Counting orderings and selections occurs
throughout combinatorics.

DEF: An ordering of a set S of n objects is a bijection
from the set

{1,2,....,n}

to the set S. It serves as a formal model for an arrange-
ment of the n objects into a row.

DEF: An (unordered) selection from a set S is a subset

of S.

Example 0.2.1: In how many ways is it possible to ar-
range two of the letters

A B C D FE
and two of the digits

0 1 2 3

into a row of four characters, such that no two digits are
adjacent? For instance, the arrangement C'3A2 meets that
requirement.

SOL: There are 10 possible selections of two of the five
letters and 6 possible selections of two of the four digits.
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Thus, there are 60 possible selections of a combination
of four symbols that meets the given requirement. An
arrangements of four such symbols into a row meets the
requirement if it has any of the three forms

LDLD DLDL and DLLD

where D is a digit and L is a letter. Since there are four
ways that two distinct letters and two distinct digits could
be placed within one of the three forms, it follows that
there are

12 (=4 x 3)

ways that each of the 60 suitable selections of four symbols
could be arranged so as to meet the requirement. Thus,
the answer to the stated problem is 720 (= 60 x 12).

Sequences and Generating Functions

A generalization of Example 0.2.1 supposes that x,, is
the number of ways to form an arrangement of four sym-
bols when there are n letters, but still only four digits. We
have just calculated that x5 = 720. By similar analysis,

ZE():O, 513120, 5132:72, 5133:216, 5134:432, 5135:720,
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We can encode a counting sequence
dgo 91 92
Multiply its entries by powers of z and sum:
g + 0z + g2+ -
For this general version of Example 0.2.1, we would obtain

0 + 0247222 + 2162° + 4322* 4 ...
= 722% + 2162° + 4322* + --.

The resulting infinite polynomial may have a closed form,
called a generating function.

Example 0.2.2: The closed form

1 — 2z

is equivalent to the infinite polynomial
1+ 2z + 42 + 82° + ...

In this context, the issue of convergence is rarely relevant.

Generating functions are the main topic of §1.7. It is
described there how they are used to solve various kinds
of counting problems.
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Recurrences

A sequence can be specified by giving some initial
values and a recurrence that says how each later entry can
be calculated from earlier entries.

Example 0.2.3: Famously, the recurrence

fo =0 f1 =1 initial values
Jn = Jno1+ fu—2 for n > 2

gives the Fibonacci sequence:

n_|

fo |

o1 2 3 4 5 6 7 8 9-.--
0 1 1

2 3 5 8 13 21 34 .---

Generating functions are used in Chapter 2 to derive the
formula

fo = 2 ((”f)n— (1_2ﬁ>n>

A closed formula for that sequence for a recurrence is
called a solution to the recurrence, in the same sense that a
differentiable function might be a solution to a differential

equation.
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Combination Coefficients

The number of possible subsets of size k£ within a set
of size n (“n-choose-k”) is denoted

n
k
and called a combination coefficient. Its value

(D TR (nn!_ B (0.2.1)

is derived in §0.4. Its alternative name of binomial coeffi-
cient is justified in Chapter 1.

Example 0.2.4: The sequence of combination coeffi-

000

has the generating function

5132

1—a)

To verify this observation, one may expand the denomina-
tor and divide it into the numerator, using long division
of polynomials, which is described in more detail in §1.7.



Section 0.3 Rules for Counting 13

0.3 RULES FOR COUNTING

Having meaningful names for concepts, even for very
simple concepts, makes it possible to say what method is
being used.

NOTATION: The cardinality of a set U is denoted |U|. The

most common binary operations on two sets U and V are

denoted
UuUV for union

UNYV for intersection

U —V for difference, and

U x V for cartesian product

Rules of Sum and Product

C. L. (Dave) Liu [Liul968| gave popularity to now-
standard names of two principles that relate elementary
arithmetic operations to the counting of set unions and
set products.

DEF: Rule of Sum: Let U and V be disjoint sets. Then

TuV] = [U[+|V]

DEF: Rule of Product: Let U and V be sets. Then

Ux V] = [U]-]V]
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Example 0.3.2: Three dice colored blue, red, and yel-
low are rolled. In how many ways can the outcome be
different numbers on the three dice?

SOL: There are 6 possibilities for the blue die, leaving 5
for the red die, and then 4 for the yellow die. Thus, the
total number of possibilities is

6-5-4

Rule of Quotient

Another simple rule sometimes applies to counting
the cells in a set partition.

DEF: A partition of a set U is a collection of mutually
exclusive subsets

U, ..., Up
called cells of the partition, whose union is U.

DEF: Rule of Quotient: Let P be a partition of a set
U into cells, each of the same cardinality k. Then the
number of cells equals the quotient

|
k
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Example 0.3.3: Fig 0.3.1 shows 20 objects partitioned
into cells of four each. By Rule of Quotient, # cells is

20

I

4
o0 o0 o0 o0 o0
o0 o0 o0 [ N o0

Fig 0.3.1 Partitioning a set of 20 objects into cells

of size 4.

N.B. The Rule of Quotient does not apply when the cells
of the partition are of different sizes.

Example 0.3.4: Fill each square of a 3 x 3 tic-tac-toe
board with an “X” or an “O”, or a blank. The total
number of possible configurations is 3°. It is natural to
regard two such configurations as equivalent if one could
be obtained from the other by a rotation or a reflection.
The equivalence classes are not all of the same size. For
instance, Figure 0.3.2 illustrates an equivalence class of
size four.

X|X|O O|X|X 0] X X 0
X X X X
O|X|X X|X]|0 X o) o) X

Fig 0.3.2 Four equivalent tic-tac-toe configurations.
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On the other hand, the configurations that are all blank,
all “X”, or all “O” are in equivalence classes of size one.
There are also some equivalence classes of sizes two and
eight. Thus, the Rule of Quotient cannot be applied.

Counting equivalence classes that are defined by sym-
metries is frequently with the aid of Burnside-Pdlya count-
ing. This method of counting is developed in Chapter 9.

Reals to Integers

Three standard functions for converting a real number
into a nearby integer are convenient when one wants to
apply integer methods.

DEF: The floor of a real number x is the largest integer
that is not larger than z. It is denoted |z].

DEF: The ceiling of a real number z is the smallest
integer that is not smaller than x. It is denoted [z].

DEF: The nearest integer to a real number z is round (x)

(|z| ifz—|z] < 3

_ x| ifx—|z| = % and |z | is even;
[z] ifz—|z] > 3;

| [z] ifz—|z] = % and [z is even



Section 0.3 Rules for Counting 17

Pigeonhole Principle

NN ALV

RARATNY

VARVASNVY
VIV

<|<I<I<
<|<I<I<
<|<I<I<
<|<I<I<
<|<l<I<
<|<l<I<

Fig 0.3.3 Flock of pigeons neatly fills the
pigeonholes.

DEF: Pigeonhole Principle: Let f : U — V be a func-
tion with finite domain and finite codomain. Let any two
of the following three conditions hold:

1. f is one-to-one.
2. f is onto.
3. [U| = V]|
Then the third condition also holds.

Example 0.3.7: In any collection of 13 people, there
must be two of them who were born in the same month.
In this elementary example, the people are the pigeons,
and the months are the pigeonholes.
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Evaluating Sums

This formula of infinitessimal calculus

b
/b . flfr—I_l
' dr =
r=a r+1],_

is used for integrating a monomial (i.e., a polynomial with
only one term). The next definition facilitates an analo-
gous formula for finite sums.

a

DEF: The ' falling power of a real number z is the
product

r factors

> .
7 )

zt = z(z—1) --- (x—r+1) forr € N

Remark: For nonnegative integers n and r < n,

nt = (ni—'r)' (0.3.1)

Example 0.3.11: Here are some falling power evalua-
tions.

3 = z(zx—1)(z—-2) = 3 — 3x% 4+ 22
62 = 6-5-4 = 120

2\* 2 -3 -8 48
5 5 5 5 125
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The formula for summing a falling-power monomial is

b l{r+1 b+1
> kr = (0.3.2)
k=a r+1 k=a

Example 0.3.12: For exponent » = 2 and limits of sum-
mation ¢ = 3 and b = 5, Formula (0.3.2) yields

)
> k2 = 324424 52
k=3

= 6+ 12 + 20 = 38

L3 |° 62 3
31, 3 3
= 40 — 2 = 38

Summations of ordinary powers can be achieved via a pre-
liminary conversion to falling powers. For instance,

22 = 22 + 2L and 2% = 22 + 322 + L

The coefficients used in the conversion, which are called
Stirling numbers. See §1.6 and Chapter 5.
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Empty Sums and Empty Products

In manipulating expressions with iterated sums and
products, such as

E ZIJj or | | ZIJj

:BjES :EjES

we sometimes encounter a sum or product over the empty
set ().

DEF: A sum over an empty set of numbers is called an
empty sum. Its value is taken to be 0, the additive iden-
tity of the number system.

DEF: A product over an empty set of numbers is called an
empty product. Its value is taken to be 1, the multi-
plicative identity of the number system.

Multisets

One of the many applications of the Rule of Quotient
is to counting arrangements of multisets. Informally, a
multiset is often described as a “set in which the same
element may occur more than once”.

DEF: A multiset is a pair (5, ¢) in which S is a set and
. : S — Z7 is a function that assigns to each element s € S
a number ((s) called its multiplicity. (The Greek letter
iota is a mnemonic for instances.)
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Example 0.3.13: The letters of SYZYGY
form a multiset in which Y occurs three times. Each of
the other three letters occurs once. If the six letters were
all different, then the number of ways of arranging them
into a row of six would be 6! = 720.

We may model this by artificially attaching distinct sub-
scripts to each of the copies of the letter Y, so that they
become Y7, Y5, and Ys;. We regard two arrangements of
the six elements of the resulting set as equivalent if the
positions of the letters GG, S, and Z are the same in both
arrangements.

There are then 6 = 3! equivalent arrangements in each
equivalence class. By the Rule of Quotient, the number of
equivalence classes is

6!
— = 120
3!

More generally, the Rule of Quotient implies that the
number of ways to arrange the elements of a finite multiset

(S, 1) is
(ZSES L(8)>!
HSES(L(S)!)

DEF: The cardinality of a multiset (.9, () is taken to be

the sum
> us)

seS

of the multiplicities of its elements. It is denoted |(.S,¢)|.
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0.4 COUNTING SELECTIONS

An ordered selection assigns an order to the elements
of the selected subset.

Ordered Selections

DEF: An ordered selection of k objects from a set of n
objects is a function from the set

{1,2, ..., k}
to the set S.

Prop 0.4.1. Let P(n,k) be the number of possible or-
dered selections of k objects from a set S of n objects.

Then
P(n,k) = nt (0.4.1)

Proof: By induction on k.

BASIS: For £ = 0, the only possible ordered selection is
the empty list. Thus,

P(n,0) = 1 = n?

IND HYP: Assume that P(n,k) = n%, for some k > 0.
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IND STEP: After the first £ objects have already been

selected from S, the number of remaining objects from
which to choose the k + 15% object is n — k. Thus,

P(n,k+1) = P(n,k)-(n—k) (Rule of Product)

= nk. (n—k) (ind hyp)
=nn—-1)---(n—k+1)-(n—k)
— pktl ¢

Unordered Selections

To evaluate (Z), which counts unordered selections,

we regard the unordered selections as equivalence classes
of ordered selections, in which two ordered selections of &
objects are considered to be equivalent if they contain the
exact same k objects.

Prop 0.4.2. The # of unordered selections of k objects
from a set of n objects is given by

(D - Z_I'C_ &l (nn!_ A (0.4.2)

Proof: By Prop 0.4.1, the number of ordered selections
of k objects from S is n%. Since the number of orderings of
k objects is k!, there are k! ordered selections correspond-
ing to each unordered selection. The conclusion follows
from the Rule of Quotient. &
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Selections with Repetitions

Couting ordered selections from a set S with unlimited
repetition allowed is easy.

DEF: An ordered selection with unlimited repetition
of k£ objects from a set S of size n is a finite sequence

L1y, L2y ooy Tk
of k£ objects, each of which is an element of S.

Prop 0.4.3. The number of ordered selections of k ob-

jects from a set S of n objects is n*.

Proof: This is easily proved by an induction argument,
involving the Rule of Product. &

Counting unordered selection with unlimited repeti-
tions allowed seems difficult, if approached directly.

DEF: An unordered selection with unlimited rep of
k objects from a set S of size n is a multiset (S, ¢) of size
k, with domain S.

Example 0.4.1: Consider unordered selections, with

unlimited rep allowed, of four objects from the set

{1, 2, 3, 4}. There are these four selections containing
only one distinct digit

1111 2222 3333 4444
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these 18 with two different digits

1112 1113 1114 2221
3331 3332 3334 4441
1122 1133 1144 2233

these 12 with three different digits

1123 1124 1134 2213
3312 3314 3324 4412

2223
4442
2244

2214
4413

and only one with four different digits

1234

for a total of 35 possibilities.

2224
4443
3344

2234
4423

25

To simplify the task of counting unordered selections with

unlimited repetitions, we represent multisets as binary

strings.

DEF: The bitcode for a multiset (5,) of cardinality k,

with domain {1, 2, ..., n}, is defined recursively:

e If n =1, then the bitcode is a string of £ 0-bits.

e For n > 1, the bitcode for (S, ¢) is the bitcode for the
submultiset (S — {n},t), followed by a 1-bit, followed

by a suffix of ¢(n) 0-bits.
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Example 0.4.1, cont.: For the domain {1, 2, 3, 4}, the
bitcode for the multiset

{1,1,3,4}

1s 0011010.

Remark: In reconstructing a multiset from its bitcode,
we may regard the 1-bits as separating the bitstring into n
substrings of 0-bits, some of which may be nullstrings. The
lengths of the n consecutive substrings of 0-bits are the
multiplicities on the corresponding integers in the domain.
This may be depicted as in Figure 0.4.1.

00| |0|0

Fig 0.4.1 A representation of the bitstring 0011010.

Prop 0.4.4. The correspondence between the set of mul-
tisets of cardinality k with domain {1, 2, ..., n} and the
set of bitstrings of length n + k — 1 with exactly n — 1
1-bits is a bijection.

Proof: One possible proof of this proposition is that
the encoding of multisets as bitcodes is clearly invertible,
which could be established by generalizing the inversion
in Example 0.4.1. Another alternative is by induction. <
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Cor 0.4.5. The number of different multisets of cardinal-
ity k with domain {1, 2, ..., n} is

n+k—1
n—1

Proof: By Prop 0.4.2, the number of bitstrings of length
n+ k — 1 with exactly n — 1 1-bits is

n+k—1
n—1

It follows from the Pigeonhole Principle, in view of Prop
0.4.4, that the number of different multisets of cardinality
k with domain {1, 2, ..., n} is the same as the number of
bitstrings of length n + £ — 1 with exactly n — 1 1-bits. <

Example 0.4.1, cont.: By Cor 0.4.5, the number of
multisets of cardinality four with domain {1, 2, 3, 4} is

() = () =

Thus, Corollary 0.4.5 can greatly reduce the effort needed
to count multisets with repetitions.
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Example 0.4.2: Consider counting the number of pos-
sible outcomes of rolling three cubic dice, with the six
sides of each die marked with 1 to 6 spots. Any two out-
comes with the exact same number of instances of each of
the six numbers of spots are regarded as equivalent. How
many different possible outcomes are there? According to
Corollary 0.4.5, the answer is

(57) =) =

Distributions into Labeled Cells

DEF: A multicombination from a set S of n objects is a
distribution of the elements of .S into k labeled cells

By By ... Bg

(sometimes) called bozes. Although this does not distin-
guish the order of the objects with a cell, the cells are
distinct.

DEF: The multicombination coefficient

n
/r‘l /”‘2 o« o e /r‘k

is the number of ways to distribute a set of n objects into
k labeled cells
B1 By ... By

of respective sizes ri, ro, ..., TL.
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Proposition 0.4.6. The values of the multicombination
coefficients are given by the rule

" -~ n (0.4.3)
reory e 1R ) rilrel ey o

Proof: The number of ways to select r; for box B is

(7)

The number of ways to subsequently select r9 for box B,
from the remaining n — r1 objects is

n—mTm
r2
And so on. By the Rule of Product, it follows that the
number of ways to complete the distribution is

n n—ri n—mry—Tr9— - —TL_1
1 T2 T

B n! (n—rq)!
ol (n =) ol (n =1y — 1)
.(n—T‘l—T‘g—“'—T‘k_l)!
Tk'O'
n!
oyl ey

by repeated application of the factorial formula (0.4.2) for
binomial coeflicients. &
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Example 0.4.3: The distributions of {A, B, C, D} into
boxes of sizes r1 = 2, ro = 1, and r3 = 1 are given by this
array

AB|C|D AC|B|D AD|B|C

BC|A|D BDJA|C CDJA|B

AB|D|C AC|D|B AD|C|B

BC|D|A BDI|C|A CD|B|A

We could calculate the total number of distributions with
a single multicombination coeflicient

4 41
= = 12
211 211111

TERMINOLOGY: Another name for the multicombination

coeflicient
n
/r‘l /”‘2 o o o /r‘k

is the multinomial coefficient, since it is provably the
coefficient of the term

1 .72 Tk
xl xz o o xk
in the expansion of the exponentiated multinomial

(1 + a2+ A ap)"
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Distributions into Unlabeled Cells

The difference between distributions into labeled and
into unlabeled cells is best explained with concrete ex-
amples. The main idea is the cells of the same size are
regarded as interchangeable.

Example 0.4.4: Of four faculty in a small department,
two will be advisors to the juniors and two to the seniors.
According to Prop 0.4.6, the number of such distributions
is

4!

oro1 O

If these faculty are designated A, B, C, and D, the six
possible distributions are

juniors seniors

1. AB CD
2. AC BD
3. AD BC
4. CD AB
5. BD AC
6. BC AD

However, if we discard the labels juniors and seniors then
there are only three ways that the four faculty are grouped
into pairs. The distributions 1 and 4 would be indistin-

guishable, as would distributions 2 and 5 and distributions
3 and 6.
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The following proposition gives the formula for count-
ing distributions into unlabeled cells.

Proposition 0.4.7. Let S be a set of n objects. Suppose
that these objects are to be distributed into b; boxes of
size rj, for y =1,...,k, with

k
E bjrj = n
J=1

The number of ways to do this is

n! 1
(Tl!)bl (7“2!)62 s (Tk!)bk bi!lby! -+ byl

(0.4.4)

Proof: This follows from Proposition 0.4.6 and the Rule
of Quotient. &
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Partitions of a Set

PREVIEW OF §1.6:

o A partition of a set into k cells can be characterized
as a distribution of that set into k unlabeled boxes
with none left empty.

e The Stirling subset number { } is the number of
ways to partition a set with n objects into k cells.

Formula (0.4.4) enables us to calculate the number of par-
titions of a set of n objects into cells of prespecified sizes.

Example 0.4.4, cont.: The number of partitions of a
set of four objects into two cells, both of size two, is

a1 ;
2121 21

Example 0.4.5: A set with four objects may be parti-
tioned into two cells either with sizes 3 and 1 or with cells
of sizes 2 and 2. Thus,

(- () (g -
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0.5 PERMUTATIONS

Counting configurations with symmetries, like the tic-
tac-toe boards of Example 0.3.4, requires some algebra
involving permutations, as seen in Chapter 9.

DEF: A permutation of a set S is a bijection (a one-to-
one, onto function) from S to itself.

2-Line Representation of Permutations

DEF: The 2-line representation of a permutation ©
of a set S is a 2-line array that lists the objects of S in its
top row. Below each object z is its image 7w (x) under the
permutation.

Example 0.5.1: The permutation 7 of {1, 2, ..., 9} s.t.

1l—=7 2—4 3—1 4—~8
5—~5H 6—2 7T—9 8—6 9—3

is represented by the 2-line array

o _ (1234567809
“\7 4185 2 9 6 3

which is illustrated by Figure 0.5.1.
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1 2 3 4 5 6 7 8 9
Fig 0.5.1 A permutation of the set {1, 2, ..., 9}.

DEF: The inverse of a permutation m on a set S is
the permutation 7~! that restores each object of S to its
position before the application of .

The 2-line representation of the inverse of a permu-
tation can be obtained by transposing the rows, possibly
sorting the columns according to the entry in the resulting
first row.

Example 0.5.1, cont.:

1 _ (T 4185296 3)
1 2 3 45 6 7 89

1 _ (123456789
“\36 9258147

Composition of Permutations

DEF: The composition of permutations © and 7 is the
permutation 7 o7 resulting from first applying 7 and then
applying 7. Thus, (7o 7)(z) = 7(7w(x)).
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Obtaining the 2-line representation of the composi-
tion m o T 1s a 2-step process.

1. Rearrange the columns of 7 (the perm to be applied
second) so that in each column, the top entry is the

same as the bottom entry of 7 (the perm to be applied
first).

2. The top line of the 2-line array for the composition
7 o7 is the top line of the array for m. The bottom
line for m o 7 is the bottom line for the rearranged
representation of 7.

Example 0.5.1, cont.: Suppose that
o 1 2 3 4 5 6 7 8 9
~\6 5 3 1 9 2 8 7 4

Transposing the columns of 7 facilitates the computation

o _ (1234567809
~\7 4185 29 6 3
__ (74185296 3
8 1 6 7 9 5 4 2 3

o _ (123456789
“\8 1 6 7 95 4 2 3

For instance, since m maps whatever is in position 1 to
position 7 and 7 maps whatever is in position 7 to position
8, the composition m o7 maps whatever is in position 1 to
position 8. This composition is illustrated in Figure 0.5.2.
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=i

1 2 3 4 5 6 7 8 9

Fig 0.5.2 A composition 7 o7 of permutations.

Cyclic Permutations

A cyclic permutation takes each object of the per-
muted set successively through the positions of all the
other objects.

DEF: A permutation of the form
( x n(z) w(z) -+ wP%(a) 7Tp_1(:13)>
n(z) w*(z) 7w(3) .- wP~Ha) x
is said to be cyclic of period p.

NOTATION: A cyclic permutation is commonly represented
in the cyclic form

(2 w(2) 72(2) - 7z) =)
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Example 0.5.2: The permutation

(1 2 3 4 5 6 7)
2 3 45 6 7 1
— (1 2 3 45 6 7)

is cyclic of period 7. Its cyclic form is depicted by Figure
0.5.3 as a directed cycle.

T 2 3 4 5 6 7
e

Fig 0.5.3 Cyclic perm as directed cycle.

Example 0.5.3: The permutation

(1 2 3 4 5§ 6) (1 3 2 6 4 5)
36 2 5 1 4)  \3 2 6 4 5 1
= (1 3 2 6 4 5)

is cyclic of period 6. It is depicted as a directed cycle in
Figure 0.5.4.

Fig 0.5.4 Another cyclic permutation.
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Disjoint Cycle Representation

A permutation 7 of a finite set S is a composition of
cyclic permutations on various disjoint subsets of S. Its
structure is understood in terms of the lengths of these
cycles of objects.

Prop 0.5.1. Let w be a permutation on a finite set S and
let x € S. Then the sequence

r w(z) 7wi(z) 73(z)
has an entry n/(x) s.t. w/(z) = z, and the seq is periodic
with period j, for the 1°% such j.
Proof: Since the set S is finite, the sequence must even-

tually contain some entry m/(z) that matches a previous
entry. Suppose that 7°(z) is the previous entry such that

7Tj(:13) = 7Tz(513)
Then

Pie) = 7 (@)
)
= 7T0(:13) = zx

Since j > 1 > 0, since 7/(x) is the first duplicate of a
previous entry, and since 7/ =% duplicates the initial entry
x, it follows that 7 —¢ > y, which implies that : = 0. Since
n/(x) = z, it follows that the subsequence

r w(x) w(z) w3(z) ... w71l(z)

is endlessly reiterated. &
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What now follows is a somewhat informal description

of a method for representing an arbitrary permutation 7
on a finite set .S as a composition of cyclic permutations.

Step 1: Choose an arbitrary element z; € S. Let k;
be the smallest integer s.t. 7% (zy) = z1. Let T} be the
subset

T, = {:131, (1), 7T2(:131), e Wkl_l(:cl)}

Then the restriction 7|y, of the permutation 7 to the sub-
set 17 is the cyclic permutation

7T|T1

= (:131 m(zy) 7wi(xy) ... Wkl_l(:cl)>
Example 0.5.1, cont.: For the permutation
7T:(123456789>
74 1 8 5 2 9 6 3
consider the choice x1 = 1. This leads to the subset
T = {1,709, 3}

and to the restricted permutation

7T|T1 = (1 7 9 3)
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Step 2: In general, if 77 = S, then 7 is cyclic on S, and
7w = m|p,. Otherwise, choose an arbitrary element

o €S5S -1}

Let ko be the smallest integer s.t. 7%2(z5) = z5. Let T
be the subset

T, = {:132, m(xz2), 7T2(:132), e 7Tk2_1(5132)}

Then the restriction 7|, of the permutation 7 to the sub-
set 15 is the cyclic permutation

(:132 m(zs) wi(x2) ... 7Tk2_1(5132)>

Example 0.5.1, cont.: Choosing the second element
x9 = 2 for the permutation

7T:(123456789>
74 1 8 5 2 9 6 3
leads to the subset
T, = {2, 4, 8, 6}
and to the restricted permutation
wlr, = (2 4 8 6)

We observe that subsets 17 and 15 are disjoint.
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Proposition 0.5.2. Let m be a permutation on a finite
set S and let x € S. Let

T = {Wi(:c)‘iEN}
Let y e S — T and let
T = {Wj(y)‘jGN}

Then the subsets T and T" are disjoint.

Proof: If not, then there are nonnegative numbers ¢ and
7 such that | |
m'(x) = 7 (y) (0.5.1)

Without loss of generality, assume that 5 <. Then

w7 (z) = 77 (x'(x))

which contradicts the premise that y & T'. &

Step 3: Having selected the mutually disjoint subsets
Ty, T5,..., T} in this manner, if

TnuilU.---UTd, = S

then go to Step 4, since the decomposition of 7 is com-
plete. Otherwise, choose z311 € S — (TY UTy U---UTy)
and continue as in Step 2.
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Example 0.5.1, cont.: The only remaining element in
the set {1, 2, ..., 9}, on which the perm

7T:(123456789>
74 1 8 5 2 9 6 3
acts, is the element x3 = 5, which leads to the subset
I; = {5}
and to the restricted permutation
Tl = (5)

We observe that the subsets 17, T5, and 1T5 form a partition
of the set [1:9].

Step 4: This step occurs after the set S has been parti-
tioned into subsets 17, 15, ..., 1. Represent the per-
mutation 7 in the form

T = 7lp T - 7D,

Example 0.5.1, continued: The net result of applying
these steps to the permutation

- 1 2 3 4 5 6 7 8 9
- \7 41 8 5 2 9 6 3
is the representation

m=(1 79 3)(2 4 8 6)(5)
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DEF: A disjoint cycle representation of a perm 7 on a
set S is as a composition of cyclic perms on subsets of S
that constitute a partition of S, one cyclic perm for each
subset in the partition.

The decomposition process described just above serves as
a constructive proof of the following theorem.

Thm 0.5.3. Let m be a perm of a finite set S. Then 7w
has a disjoint cycle representation. &

We conclude this subsection with an illustration that it is
straightforward to compute the disjoint cycle representa-
tion of a composition of two permutations 7w and 7 from
the disjoint cycle representations of the factors = and 7.
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Example 0.5.1, cont: The disjoint cycle forms of the
permutations

o _ (1234567809
~\7 4185 29 6 3
__ (74185296 3
“\8 1 6 7 95 4 2 3
o _ (123456789
“\8 1 6 7 95 4 2 3

are

T=(1 7 9 3)(2 4 8 6)(5)
T=1(16 2 5 9 4)(3)(7 8)
mor = (1 8 2)(3 6 5 9)(4 7)

Starting with the disjoint cycle forms

T=(1 7 9 3)(2 4 8 6)(5)
and 7 = (1 6 2 5 9 4)(3)(7 8)

the first cycle of m o 7 is computed as follows:
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That is, the first cycle of the disjoint cycle representation
of m o7 may be written as

(1 8 2)

The computation then continues

3/;\1/!;\6

6/;\2/;\5

5/;\5/;\9

9/;\3/;\3
which yields

(3 6 5 9)

as the second cycle of the permutation m o 7. It concludes
with

4 "—8 —" 7
7T =9 " —"4

which yields as the third cycle

(4 7)
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0.6 GRAPHS

One widely studied combinatorial structure is called
a graph.

DEF: A graph G = (V, E) has two finite sets V and E,
called vertices and edges, respectively. Each edge has a
set of one or two vertices associated to it, which are called
its endpoints.

Example 0.6.1: Fig 0.6.1 illustrates a graph.

V =1{u,v,w,x}
EF =1{a,b,c,d,e,f,g}

Fig 0.6.1 A graph.

TERMINOLOGY: An edge is said to join its endpoints. A
vertex joined by an edge to a vertex v is said to be a
neighbor of v. Two neighboring vertices are said to be
adjacent.
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Simple and General Graphs

DEF: A proper edge is an edge that joins two distinct
vertices. A self-loop is an edge that joins a single end-
point to itself.*

DEF: A multi-edge is a collection of two or more edges
having identical endpoints. The multiplicity of a multi-
edge is the number of edges within the multi-edge.

DEF: A simple graph is a graph with no self-loops or
multi-edges. A general graph may have self-loops
and/or multi-edges. (Thus, the graph in Figure 0.6.1 is
a general graph.)

Degree of a Vertex

DEF: The degree (or valence) of a vertex v in a graph
(7, denoted deg(v), is the number of proper edges incident
on v plus twice the number of self-loops.

Example 0.6.1, cont.: The caption of Figure 0.6.2 lists
the degrees of the graph from Figure 0.6.1.

* We use the more precise term “self-loop” instead of the more

commonly used term “loop”.
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V =1{u,v,w,x}
EF =1{a,b,c,d,e,f,g}

Fig 0.6.2 deg(u) = deg(v) = deg(x) = 4, and deg(w) = 2.

Thm 0.6.1 [Euler’s Degree-Sum Thm] The sum of
the degrees of the vertices of a graph is twice the
number of edges.

Proof: FEach edge contributes two to the degree sum. <

N.B. Chapter 9 presumes familiarity with this section and
with Chapter 7.
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0.7 NUMERIC OPERATIONS

One number-theoretic operation that occurs often in
combinatorics is the greatest common divisor. Although
our textbook examples are focused on small enough prob-
lems of this type to do the calculation by hand, consider
trying to calculate the greatest common divisor of larger
numbers, such as

32582657 and 24036583

DEF: The greatest common divisor of two integers m
and n, not both zero, mnemonically denoted

ged (m,n)
is the largest integer that divides both m and n.

DEF: The least common multiple of two integers m and
n, mnemonically denoted

lem (m,n)

is the smallest non-negative integer that is a non-zero mul-
tiple of both m and n.

When the prime factors are already known or easily
calculated, it is quite easy to calculate a greatest common
divisor by a method commonly taught in middle schools.



Section 0.7 Numeric Operations 51

It involves factoring the two numbers into products of
primes. Although this might seem easy for small numbers,
the factoring of large numbers may require considerable

effort. A method called the
Euclidean algorithm

described in Chapter 6, avoids the need to factor, and it
produces the answer in time proportional to the number
of digits of the larger number.

Another operation we use in trying to count or to
construct all the graphs of a given kind involves listing all
the ways to decompose an integer n into an iterated sum
of positive integers. Such a sum is called a

partition of the integer n

Example 0.7.1: The number 8 has five partitions into
exactly four summands, namely

5+1+1+1 4+2+1+1 3+3+1+1
3+24+24+1 2424242
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0.8 COMBINATORIAL DESIGNS

The final type of discrete structure in this book, in
Chapter 10, is called a combinatorial design.

DEF: A combinatorial design B has a non-empty do-
main of objects

X = {x1, o, ..., T, }
and a non-empty collection of subsets of objects from X.
B = {By, Bs, ..., By}

Sometimes these subsets may be called blocks.

The art of constructing combinatorial designs is in meeting
various additional requirements on the subsets B;.

DEF: In a regular block design the subsets B; all have
the same cardinality k, called the blocksize. Moreover,
each object z; occurs in the same number r of blocks,
which is called the replication number.

The following example illustrates a possible applica-
tion of such a design. In a round-robin tournament
each contestant plays each other contestant. r
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Example 0.8.1: Consider designing a round-robin play-
off for 13 contestants in a competitive game for 4 players
that ranks the players from 1% to 4™ in each round. Such
an event might plausibly have 13 rounds in which each of
the players, designated as

o1 2 3 45 6 78 9 A B C

plays four rounds and meets each other player exactly
once, as follows:

Round Players
0146
1257
2368
3479
458 A
569B

67AC

78 B0
89C'1
9A02

AB13

BC?24

13 C035

This playoff might be represented by Fig 0.8.1. Each of
12 groupings of four players is represented by a curve that
goes through the corresponding four points. (The 13h
grouping is 67AC.) Only four of these groupings are ac-
tually represented by straight lines in the drawing.

= = =
D = © 00~ Ul W
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Fig 0.8.1 Geometric representation of a block
design.

A balanced block design is a regular block design
in which each pair of points occurs in the same number of
lines. It is called incomplete if the blocksize is less than
the number of points in the domain.

Example 0.8.1, cont.: The playoff described here is a
balanced incomplete block design, if each grouping of four
players is regarded as a line.

In a kind of combinatorial design called a finite geom-
etry, the subsets of objects are called lines. There are
numerous kinds of finite geometry. A general requirement
is that each pair of points lies on at most one line.

Example 0.8.1, cont.: As it happens, the balanced
block design of Figure 0.8.1 is also a finite geometry.



