GRAPH THEORY W4203 FINAL EXAM

open book

SOLUTIONS

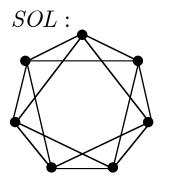
your name

PROBLEM	POSSIBLE	SCORE ¹
1	55	
2	45	
3	20	
4	30	
TOTAL	150	

NB. Partial credit is awarded for meritorious work, even if there are minor mistakes or gaps.

¹ An example of the Reasonable Person Principle: **A reasonable person expects to lose almost all of the credit for failing to explain an answer.** Neglect to supply explanations at your own risk.

1a. (10) Draw the graph circ(7:1,2), and write the cycle index polynomial for its vertex automorphism group.



$$\frac{1}{14} \Big\{ t_1^{\ 7} + 6t_7 + 7t_1t_2^{\ 3} \Big\}$$

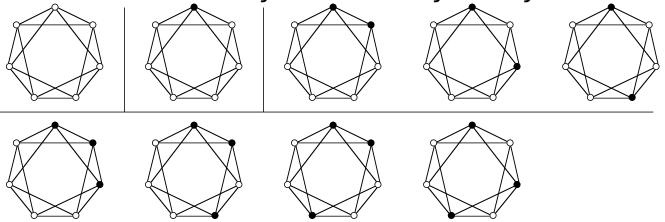
1b. (5) Calculate the number of non-equivalent vertex- (≤ 2) -colorings.

$$SOL: \frac{1}{14} \left\{ 2^7 + 6 \cdot 2 + 7 \cdot 2 \cdot 2^3 \right\} = \frac{252}{14} = 18$$

1c. (15) Calculate the Polya inventory for the vertex- (≤ 2) -colorings.

						w^3b^4	w^2b^5	wb^6	b^7
SOL :	t_{1}^{7}	1	7	21	35				
	$6t_{7}$	6	0	0	0				
	$7t_{1}t_{2}^{3}$	7	7	21	21				
	÷14	14	14	42	56	56	42	14	14
	÷14	1	1	3	4	4	3	1	1

1d. (9) For each graph-coloring type counted in parts (b) and (c), draw a representative graph. (You can use symmetry to reduce the number of cases.) *SOL* : double this list by black-white symmetry



1e. (12) Write the cycle index polynomial for its edge automorphism group.

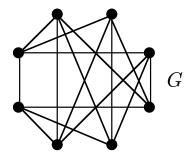
$$SOL: \frac{1}{14} \left\{ t_1^{14} + 6t_7^2 + 7t_1^2 t_2^{\ 6} \right\}$$

1f. (4) Calculate the number of non-equivalent edge- (≤ 2) -colorings.

$$SOL: \frac{1}{14} \left\{ 2^{14} + 6 \cdot 2^2 + 7 \cdot 2^2 \cdot 2^6 \right\} = \frac{18200}{14} = 1300$$

Professor J. L. Gross Graph Theory Final Exam

2. (45 pts) This problemis concerned with designinga 1-vertex voltage graphspecifying the graph G.

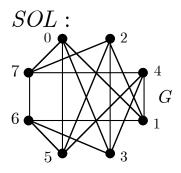


2a. (5) Draw the edge complement \overline{G} .



2b. (10) Determine a circulant graph isomorphic to \overline{G} , and label the vertices of your drawing of \overline{G} accordingly. SOL: circ(8:2,4)

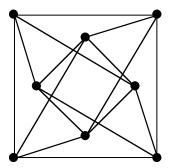
2c. (5) Transfer your vertex labelling of \overline{G} to the given drawing of G.



2d. (10) Draw a 1-vertex voltage graph for G that is consistent with your answers to (b) and (c). SOL: It follows that $G \cong circ(8:1,3)$.

1
$$3 Z_8$$

2e. (10) Decide whether the following graph is isomorphic to G. (Give a proof.)



SOL: Yes, its edge-complement is $2K_4$. Of course, this implies that $G \cong K_{4,4}$.

3a. (15) Write the faceboundary walks of the imbedding specified by the following rotation system.

$$u. \quad a + g + f - v. \quad a - b + h + w. \quad b - c + i + x. \quad c - d + g - y. \quad d - e + h - z. \quad e - f + i -$$

SOL : (a+ b+ c+ d+ e+ f+) (a- g+ c- i+ e- h-) (b- h+ d- g- f- i-)

3b. (5) In what surface is the graph imbedded? SOL: V-E+F = 6-9+3 = 0. Therefore, the torus S_1 . 4a. (15) Show algebraically that the minimum genus of the graph circ(11:1,3) is at least 1. SOL: V=11, F=22Girth \geq 4, since the equation $x + y + z = 0 \mod 11$ has no solutions with $x, y, z \in \{\pm 1, \pm 3\}$. Thus, $F \leq \frac{44}{4} = 11$. Thus, 2-2g = V-E+F \leq 11-22+11 = 0, and g \geq 1.

4b. (15) Design an imbedded voltage graph that specifies an imbedding of circ(11:1,3) in the torus.

