Chapter 5

Connectivity: Lec 6

5.1 Vertex- and Edge-Connectivity
5.2 Constructing Reliable Networks
5.4 Block Decompositions
REVIEW OF TERMINOLOGY FROM §2.4:

- A **vertex-cut** in a graph G is a vertex-set U such that $G - U$ has more components than G.

- A **cut-vertex** (or **cutpoint**) is a vertex-cut consisting of a single vertex.

- An **edge-cut** in a graph G is a set of edges D such that $G - D$ has more components than G.

- A **cut-edge** (or **bridge**) is an edge-cut consisting of a single edge.

- An edge is a cut-edge if and only if it is not a cycle-edge.
5.1 VERTEX- & EDGE-CONNECTIVITY

TERMINOLOGY: Let S be a subset of vertices or edges in a connected graph G. The removal of S is said to disconnect G if the deletion subgraph $G - S$ is not connected.

MORE TERMINOLOGY

DEF: The vertex-connectivity of a connected graph G, denoted $\kappa_v(G)$, is the minimum number of vertices whose removal can either disconnect G or reduce it to a 1-vertex graph.

DEF: A graph G is k-connected if G is conn and $\kappa_v(G) \geq k$. If G has non-adjacent vertices, then G is k-connected if every vertex-cut has at least k vertices.

DEF: The edge-connectivity of a conn graph G, denoted $\kappa_e(G)$, is the min # edges whose removal can disconnect G.

DEF: A graph G is k-edge-connected if G is connected and every edge-cut has at least k edges (i.e., $\kappa_e(G') \geq k$).

Remark: Loops do not affect connectivity or edge-connectivity. Accordingly, all graphs under consideration throughout this chapter are loopless, unless otherwise specified.

© 2010 by Jonathan L. Gross
Prop 5.1.1. Let G be a graph. Then the edge-connectivity is less than or equal to the min degree. That is,

$$\kappa_e(G) \leq \delta_{min}(G)$$

Pf: Let v be a vertex of graph G, with degree $k = \delta_{min}(G)$. Then the deletion of the k edges that are incident on vertex v separates v from the other vertices of G.

$$\odot$$

Fig 5.1.1 G has $\kappa_v(G) = 2$, $\kappa_e(G) = 3$, and $\delta_{min}(G) = 4$.

© 2010 by Jonathan L. Gross
DEFINING IN §4.5 A partition-cut \(\langle X_1, X_2 \rangle \) is an edge-cut each of whose edges has one endpoint in each of the vertex bipartition sets \(X_1 \) and \(X_2 \).

Prop 5.1.2. A graph \(G \) is \(k \)-edge-connected if and only if every partition-cut contains at least \(k \) edges.

Pf: (\(\Rightarrow \)) A partition-cut is an edge-cut.

(\(\Leftarrow \)) By Prop 4.5.4, every min edge-cut is a partition-cut. \(\diamond \)

Remark: It should be clear that every edge-cut \(S \) contains a partition cut. Let \(X \) and \(Y \) be the vertex sets of the two sides of the edge-cut. Then \(S \) contains the partition cut \(\langle X, Y \rangle \).
Relationship between V-Conn & Edge-Conn

Prop 5.1.3. Let e be any edge of a k-conn graph G, for $k \geq 3$. Then the edge-deletion subgraph $G - e$ is $(k - 1)$-connected.

Pf: FOR SELF-STUDY. See text.

Cor 5.1.4. Let G be a k-conn graph and D be any set of m edges, for $m \leq k - 1$. Then the edge-del subgraph $G - D$ is $(k - m)$-conn.

Pf: By iterative application of Prop 5.1.3.

Cor 5.1.5. Let G be a conn graph. Then $\kappa_e(G) \geq \kappa_v(G)$.

Pf: Let $k = \kappa_v(G)$ and S be any set of $k - 1$ edges in G. Since G is k-conn, the graph $G - S$ is 1-conn, by Cor 5.1.4. Thus, edge subset S is not an edge-cut of graph G, which implies that $\kappa_e(G) \geq k$.

Example. V-conn = 1, and E-conn = 4.
Cor 5.1.6. For any conn graph G, $\kappa_v(G) \leq \kappa_e(G) \leq \delta_{\min}(G)$.

Pf: This simply combines Prop 5.1.1 and Cor 5.1.5. ⊓⊔

Prop 5.2.6. Let G be a k-conn graph on n vertices. Then the number of edges in G is at least $\left\lceil \frac{kn}{2} \right\rceil$.

Pf: The degree of every vertex of G is at least k. Accordingly,

$$\sum_{v \in V_G} \deg(v) \geq nk$$

Thus, by Euler’s Deg-Sum Thm, we have

$$2|E_G| \geq nk$$

and, therefore,

$$|E_G| \geq \left\lceil \frac{kn}{2} \right\rceil$$

⊔
Internally Disjoint Paths: Whitney’s Thm

TERMINOLOGY: A vertex of path P is an internal vertex of P if it is neither the initial nor the final vertex of that path.

DEF: Let u and v be two vertices in a graph G. A collection of u-v paths in G is said to be internally disjoint if no two paths in the collection have an internal vertex in common.

Thm 5.1.7 [Whitney’s 2-Conn Characterization]. Let G be a graph with three or more vertices. Then G is 2-connected if and only if for each pair of vertices in G, there are two internally disjoint paths between them.

Pf: (\Leftarrow) obvious.

(\Rightarrow) Let x, y be vertices of a 2-conn graph G. We use induction on $d(x, y)$. Base case of $d(x, y) = 1$ is obvious. Now let $d(x, y) = n$. Choose w as next-to-last vertex on an x-y path of length n. Let P, Q be internally disjoint x-w paths. Let R be an x-y path that does not contain w. Figure 5.1.3(left) is for the case that vertex y does not lie on path P. Figure 5.1.3(right) is for when $y \in P$. ⋄

© 2010 by Jonathan L. Gross
Cor 5.1.8. Let G be a graph with at least three vertices. Then G is 2-connected if and only if any two vertices of G lie on a common cycle.

Pf: This follows from Theorem 5.1.7, since two vertices x and y lie on a common cycle if and only if there are two internally disjoint x-y paths.

Remark: Theorem 5.1.7 is a prelude to Whitney’s more general result for k-connected graphs, which appears in §5.3. Cor 5.1.8 is used in Chapter 7 in the proof of Kuratowski’s characterization of graph planarity.

The following theorem extends the list of characterizations of 2-connected graphs. Its proof uses reasoning similar to that used in the proof of the last two results (see Exercises).
Thm 5.1.9 [Characterization of 2-Conn Graphs]. Let G be a connected graph with at least three vertices. Then the following statements are equivalent.

1. Graph G is 2-connected.

2. For any two vertices of G, there is a cycle containing both.

3. For any vertex and any edge of G, there is a cycle containing both.

4. For any two edges of G, there is a cycle containing both.

5. For any two vertices and one edge of G, there is a path containing all three.

6. For any three distinct vertices of G, there is a path containing all three.

7. For any three distinct vertices of G, there is a path containing any two of them which does not contain the third.

\textbf{Pf:} SELF-STUDY: see text. \hfill \Diamond

\textbf{Remark:} These characterizations all look plausible, but so do some things that are not true.
CLASSROOM QUESTION

Is the following statement TRUE or FALSE?

Given three vertices in any 2-connected graph, there is a cycle that contains all three.

$K_{2,3}$.
5.2 BUILDING RELIABLE NETWORKS

In this section we examine methods for synthesizing graphs with a prescribed vertex-connectivity.

Whitney’s Synthesis of 2-Connected Graphs and 2-Edge-Connected Graphs

DEF: A path addition to a graph G is the addition to G of a path between two existing vertices of G, such that the edges and internal vertices of the path are not in G.

DEF: A cycle addition is the addition to G of a cycle that has exactly one vertex in common with G.

© 2010 by Jonathan L. Gross
DEF: A **Whitney-Robbins synthesis** of a graph G from a graph H is a sequence of graphs G_0, G_1, \ldots, G_l with $G_0 = H$ and $G_l = G$.

where the graph G_i is the result of a path or cycle addition to G_{i-1}, for $i = 1, \ldots, l$.

DEF: If each G_i is the result of a path addition *only*, then the sequence is called a **Whitney synthesis**.

\begin{figure}[h]
 \centering
 \begin{tikzpicture}
 \node at (0,0) {G_0};
 \node at (1,0) {G_1};
 \node at (2,0) {G_2};
 \node at (3,0) {G_3};
 \node at (4,0) {G_4};
 \end{tikzpicture}
 \caption{A Whitney synthesis of the cube graph Q_3.}
\end{figure}
Lemma 5.2.1. Let H be a 2-connected graph. Then the graph G that results from a path addition to H is 2-connected.

Pf: The property that every two vertices lie on a common cycle is preserved under path addition. Thus, by Corollary 5.1.8, graph G is 2-connected.

Pf: (elementary) Choose any two points x and y in the graph that results adding path P to graph G. Show that removing one vertex is insufficient to disconnect them. There are three cases, as follows:

$(x, y \in G)$ obvious
$(x, y \in P)$ obvious
$(x \in P \ y \in G)$ obvious
Theorem 5.2.2 [Whitney Synthesis Theorem]. A graph G is 2-connected if and only if G is a cycle or constructible by a Whitney synthesis from a cycle.

PROOF FOR SELF-STUDY

Pf: (\Leftarrow) Suppose that $C = G_0, G_1, \ldots, G_l = G$ is a Whitney synthesis from a cycle C. Since a cycle is 2-connected, iterative application of Lemma 5.2.1 implies that graph G_i is 2-connected for $i = 1, \ldots, l$. In particular, $G = G_l$ is 2-connected.

(\Rightarrow) Suppose that G is a 2-connected graph, and let C be any cycle in G. Consider the collection \mathcal{H} of all subgraphs of G that are Whitney synthesizable from cycle C. Since the collection \mathcal{H} is nonempty ($C \in \mathcal{H}$), there exists a subgraph $H^* \in \mathcal{H}$ with the maximum number of edges.

Suppose that $H^* \neq G$. Then, the connectedness of G implies that there exists an edge $e = vw \in E_G - E_{H^*}$ whose endpoint v lies in H^*. Since G is 2-connected, every edge is a cycle-edge, from which it follows that there exists a cycle containing edge e. Moreover, since endpoint v is not a cut-vertex, there must be at least one such cycle, say C_v, that meets subgraph H^* at a vertex other than v. Let z be the first vertex on C_v at which the cycle returns to H^* (see Figure 5.2.2). Then the portion of C_v from v to z that includes edge e is a path addition to H^*. Thus, H^* is extendible by a path addition, contradicting the maximality of H^*. Therefore, $H^* = G$.

\Diamond

© 2010 by Jonathan L. Gross
Using a similar strategy, we now establish Robbins’ analogous characterization of 2-edge-connected graphs.

Lemma 5.2.3. Let H be a 2-edge-connected (i.e., bridgeless) graph. Then the graph that results from a path or cycle addition to H is 2-edge-connected.

Pf: The property that every edge is a cycle-edge is preserved under both path and cycle addition. \(\diamond\)
Thm 5.2.4 [Whitney-Robbins Synthesis Theorem]. A graph G is 2-edge-connected if and only if G is a cycle or is Whitney-Robbins synthesizable from a cycle.

Pf: (\Leftarrow) Suppose that

$$C = G_0, \ G_1, \ldots, G_l = G$$

is a Whitney-Robbins synthesis from a cycle C. Since a cycle is 2-edge-connected, iterative application of Lemma 5.2.3 implies that G is 2-edge-connected.

OTHER DIRECTION OF THIS PROOF (NEXT PAGE) MAINLY FOR SELF-STUDY

Robbins proved that every 2-edge-connected graph could be oriented so that all vertices are mutually accessible.

Remark: Driving in lower Manhattan or in Brooklyn near Gowanus or the BQE may seem to be a counter-example. This is, in fact, what inspired Robbins to prove his traffic theorem.
FOR SELF-STUDY

(⇒) Suppose that G is a 2-edge-connected graph, and let C be any cycle in G. Among all subgraphs of G that are Whitney-Robbins syntheses from cycle C, let H^* be one with the maximum number of edges.

Suppose that $H^* \neq G$. As in the proof of Theorem 5.2.2, there exists an edge $e = vw \in E_G - E_{H^*}$ whose endpoint v lies in H^*. Moreover, edge e must be part of some cycle C_e (because G is 2-edge-connected). Again, let z be the first vertex at which the cycle returns to subgraph H^*. Because v can be a cut-vertex, there are now two possibilities, as shown in Figure 5.2.3. Thus, H^* is extendible by a path addition or a cycle addition, contradicting the maximality of H^*. Therefore, $H^* = G$.

![Figure 5.2.3](image.png)

Fig 5.2.3 A path or cycle addition to H^*.

© 2010 by Jonathan L. Gross
Tutte’s Synthesis of 3-Connected Graphs

REVIEW FROM §2.4: The \textit{n-spoke wheel} (or \textit{n-wheel}) W_n is the join $K_1 + C_n$ of a single vertex and an n-cycle. (The n-cycle forms the rim of the wheel, and the additional vertex is its hub.)

Example 5.2.1: The 5-spoke wheel W_5 is shown in Figure 5.2.4. It has six vertices.

Fig 5.2.4 The 5-spoke wheel W_5.

© 2010 by Jonathan L. Gross
Theorem 5.2.5 [Tutte Synthesis Theorem]. A graph is 3-connected if and only if it is a wheel or can be obtained from a wheel by a sequence of operations of the following two types.

1. Adding an edge between two non-adjacent vertices.

2. Replacing a vertex v with degree at least 4 by two new vertices v^1 and v^2, joined by a new edge; each vertex that was adjacent to v in G is joined by an edge to exactly one of v^1 and v^2 so that $\deg(v^1) \geq 3$ and $\deg(v^2) \geq 3$.

Pf: See text. \diamond ([Tu61])

Example 5.2.2: As an illustration of Tutte’s synthesis, the cube graph Q_3 is synthesized from the 4-spoke wheel W_4 in four steps. All but the second step are operations of type 2.

\begin{figure}
\centering
\begin{tikzpicture}
 \node (u) at (0,0) [circle,fill,inner sep=2pt] {}; \node (u1) at (1,0) [circle,fill,inner sep=2pt] {}; \node (u2) at (1,1) [circle,fill,inner sep=2pt] {}; \node (v) at (2,0) [circle,fill,inner sep=2pt] {}; \node (v1) at (1,0) [circle,fill,inner sep=2pt] {}; \node (v2) at (0,0) [circle,fill,inner sep=2pt] {}; \node (w) at (0,1) [circle,fill,inner sep=2pt] {}; \node (w1) at (2,1) [circle,fill,inner sep=2pt] {}; \node (w2) at (2,0) [circle,fill,inner sep=2pt] {};
 \draw (u) -- (u1); \draw (u1) -- (u2); \draw (u2) -- (u); \draw (u1) -- (v); \draw (u2) -- (v); \draw (v) -- (v1); \draw (v1) -- (v2); \draw (v2) -- (v); \draw (v1) -- (w); \draw (v2) -- (w);
\end{tikzpicture}
\end{figure}

Fig 5.2.5 A 4-step Tutte synthesis of the cube graph Q_3.

© 2010 by Jonathan L. Gross
5.4 BLOCK DECOMPOSITIONS

DEF: A **block** of a loopless graph is a maximal connected subgraph H such that no vertex of H is a cut-vertex of H.

Thus, if a block has at least three vertices, then it is a maximal 2-connected subgraph. The only other types of blocks (in a loopless graph) are isolated vertices or dipoles (2-vertex graphs with a single edge or a multi-edge).

Remark: The blocks of a graph G are the blocks of the components of G and can therefore be identified one component of G at a time. Also, self-loops (or their absence) have no effect on the connectivity of a graph. For these reasons we assume throughout this section (except for the final subsection) that all graphs under consideration are loopless and connected.
Example 5.4.1: The graph in Fig 5.4.1 has four blocks; they are the subgraphs induced on the vertex subsets
\[\{t, u, w, v\}, \{w, x\}, \{x, y, z\}, \text{ and } \{y, s\} \]

\[\text{Fig 5.4.1 A graph with four blocks.} \]

Remark: By definition, a block \(H \) of a graph \(G \) has no cut-vertices (of \(H \)), but block \(H \) may contain vertices that are cut-vertices of \(G \). For instance, in the above figure, the vertices \(w, x, \) and \(y \) are cut vertices of \(G \).

The complete graphs \(K_n \) have no cut-vertices. The next result concerns the other extreme.
Prop 5.4.1. Every nontrivial connected graph G contains two or more vertices that are not cut-vertices.

Pf: Choose two 1-valent vertices of a spanning tree of G.

Prop 5.4.2. Two different blocks of a graph can have at most one vertex in common.

Pf: Let B_1 and B_2 be two different blocks of a graph G, and suppose that x and y are vertices in $B_1 \cap B_2$. Since the vertex-deletion subgraph $B_1 - x$ is a connected subgraph of B_1, there is a path in $B_1 - x$ between any given vertex $w_1 \in B_1 - x$ and vertex y. Similarly, there is a path in $B_2 - x$ from vertex y to any given vertex $w_2 \in B_2 - x$ (see Fig 5.4.2).

![Diagram](https://via.placeholder.com/150)

Fig 5.4.2 Two blocks have at most one common vertex.

The concatenation of these two paths is a w_1-w_2 walk in the vertex-deletion subgraph $(B_1 \cup B_2) - x$, which shows that x is not a cut-vertex of the subgraph $B_1 \cup B_2$.

CONTINUED ON NEXT PAGE
The same argument shows that no other vertex in \(B_1 \cap B_2 \)
is a cut-vertex of \(B_1 \cup B_2 \). Moreover, none of the vertices that
are in exactly one of the \(B_i \)'s is a cut-vertex of \(B_1 \cup B_2 \), since
such a vertex would be a cut-vertex of that block \(B_i \). Thus,
the subgraph \(B_1 \cup B_2 \) has no cut-vertices, which contradicts
the maximality of blocks \(B_1 \) and \(B_2 \). ◇
The following assertions are immediate consequences of Proposition 5.4.2.

Cor 5.4.3. The edge-sets of the blocks of a graph G partition the edge-set E_G.

(Exercises)

Cor 5.4.4. Let x be a vertex in a graph. Then x is a cut-vertex of G iff x is in two different blocks.

(Exercises)

Cor 5.4.5. Let B_1 and B_2 be distinct blocks of a connected graph G. Let y_1 and y_2 be vertices in B_1 and B_2, respectively, such that neither is a cut-vertex of G. Then vertex y_1 is not adjacent to vertex y_2.

(Exercises)
DEF: The **block graph** of a graph G, denoted $BL(G)$, is the graph whose vertices correspond to the blocks of G, such that two vertices of $BL(G)$ are joined by a single edge whenever the corresponding blocks have a vertex in common.

Example 5.4.2: Figure 5.4.3 shows a graph G and its block graph $BL(G)$.

![Graph and Block Graph](image)

Fig 5.4.3 A graph and its block graph.

DEF: A **leaf block** of a graph G is a block that contains exactly one cut-vertex of G.

The following result is used in §9.1 to prove *Brooks’s Theorem* concerning the **chromatic number** of graph.

Proposition 5.4.6. Let G be a connected graph with at least one cut-vertex. Then G has at least two leaf blocks. \(\Diamond\)

(Exercises)
Finding the Blocks of a Graph

In §4.4, depth-first search was used to find the cut-vertices of a connected graph (Algo 4.4.3). The following algorithm, which uses Algo 4.4.3 as a subroutine, finds the blocks of a connected graph. Recall from §4.4 that $\text{low}(w)$ is the smallest $\text{dfn}\ number$ among all vertices in the depth-first tree that are joined to some descendant of vertex w by a non-tree edge.

Algo 5.4.1: Block-Finding

Input: a connected graph G.
Output: the vertex-sets B_1, B_2, \ldots, B_l of the blocks of G.

Apply Algo 4.4.3 to find the set K of cutpts of graph G.
Initialize the block counter $i := 0$.
For each cutpt v in set K (in order of decr $\text{dfn}\ number$)
 For each child w of v in depth-first search tree T
 If $\text{low}(w) \geq \text{dfn}\ number(v)$
 Let T^w be the subtree of T rooted at w.
 $i := i + 1$
 $B_i := V_{T^w} \cup \{v\}$
 $T := T - V_{T^w}$
Return sets B_1, B_2, \ldots, B_i.
Block Decomp of Graphs With Self-Loops

In a graph with self-loops, each self-loop and its endpoint are regarded as a distinct block, isomorphic to the bouquet B_1. The other blocks of such a graph are exactly the same as if the self-loops were not present. This extended concept of block decomposition preserves the property that the blocks partition the edge-set.

Example 5.4.3: The block decomposition of the graph G shown in Figure 5.4.4 contains five blocks, three of which are self-loops.

![Graph G and its blocks](image)

Fig 5.4.4 A graph G and its five blocks.
5.5.6 How many vertices must be removed from the graph below to separate vertex s from vertex t?