
GRAPH THEORY – LECTURE 5:
SPANNING TREES

Abstract. Several different problem-solving algorithms involve growing a spanning tree, one edge and
one vertex at a time. All these techniques are refinements and extensions of the same basic tree-growing
scheme given in §4.1. §4.2 presents depth-first and breadth-first search. §4.3 introduces two algorithmic
computations, finding a minimum-weight spanning tree and finding a shortest path.

Outline

4.1 Tree Growing
4.2 Depth-First and Breadth-First Search
4.3 Minimum Spanning Trees and Shortest Paths
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1. Tree-Growing

Def 1.1. For a given tree T in a graph G, the edges and vertices of T are
called tree edges and tree vertices, and the edges and vertices of G that
are not in T are called non-tree edges and non-tree vertices.

Def 1.2. A frontier edge for a given tree T in a graph is a non-tree edge
with one endpoint in T , called its tree endpoint, and one endpoint not in
T , its non-tree endpoint.
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Figure 1.1. A tree with frontier edges a, b, c, and d.

Proposition 1.1. Let T be a tree in a graph G, and let e be a frontier
edge for T . Then the subgraph of G formed by adding edge e to tree T
is a tree.
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Choosing a Frontier Edge

Def 1.3. Let T be a tree subgraph of a graph G, and let S be the set of
frontier edges for T . The function nextEdge(G,S) (usually deterministic)
chooses and returns as its value the frontier edge in S that is to be added to
tree T .

Def 1.4. After a frontier edge is added to the current tree, the procedure
updateFrontier(G,S) removes from S those edges that are no longer
frontier edges and adds to S those that have become frontier edges. (See Fig
1.2 below.)

Table 1.1. The generic tree-growing algorithm.

Algorithm: Tree-Growing(G, v)
Input: a connected graph G, a starting vertex v ∈ VG, and a
selection-function nextEdge.
Output: an ordered spanning tree T of G with root v.

Initialize tree T as vertex v.
Initialize S as the set of proper edges incident on v.
While S 6= ∅

Let e = nextEdge(G, S).
Let w be the non-tree endpoint of edge e.
Add edge e and vertex w to tree T .
updateFrontier(G, S).

Return tree T .
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nextEdge(S)=c add edge c  to the tree and apply  update(S)

Figure 1.2. Result after adding edge c to the tree; note deletion of edge d from the
frontier.
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Discovery Order of the Vertices

Def 1.5. The discovery order is a listing of the vertices of graph G in
the order in which they are added (discovered) as spanning tree T is grown.

Proposition 1.2. The output tree T produced by a Tree-Growing is an
ordered tree w.r.t. the discovery order of its vertices.
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Figure 1.3. Output from two instances of Tree-Growing.

Example 1.1. Both output trees of Fig 1.3 start at v. The right-figs are
the left-figs redrawn to display the spanning trees as ordered trees. Notice
that the left-to-right order of the children of each vertex is consistent with
the discovery order, as asserted by Prop 1.2.
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Two Kinds of Non-Tree Edges

The non-tree edges that appear in both output trees in Figure 1.3 above,
or any other output tree, fall into two categories.

Def 1.6. Two vertices in a rooted tree are related if one is a descendant
of the other.

Def 1.7. For a given output tree grown by Tree-Growing, a skip-edge is a
non-tree edge whose endpoints are related; a cross-edge is a non-tree edge
whose endpoints are not related.

Example 1.1, continued: For the output
tree at the right, which is reproduced from the
top half of Figure 1.3, there are three skip-edges
(04, 05, 26) and two cross-edges (56, 67). For the
other output tree, there are four skip-edges and
one cross-edge.
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DFS and BFS as Tree-Growing

Preview of §4.2: The depth-first and breadth-first searches use opposite
versions of nextEdge.

• depth-first : nextEdge selects a frontier edge whose tree endpoint
was most recently discovered.
• breadth-first : nextEdge selects a frontier edge whose tree endpoint

was discovered earliest (least recently).

Resolving Ties for Next-Frontier-Edge

Typically, ties are resolved by some default priority that is likely to be part
of the implementation of the data structures involved. We will often rely on
the somewhat artificial lexicographic (alphabetical) order of the edge names
and/or vertex names to resolve ties in choosing the next frontier edge.
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Tree-Growing in a Non-Connected Graph

Review from §2.3 The component of a vertex v in a graph G,
denoted CG(v), is the subgraph of G induced on the set of vertices that are
reachable from v.

Proposition 1.3. Let tree T be the output of Tree-Growing (Algorithm
1.1) on a graph G (not necessarily connected), starting at a vertex
v ∈ VG. Then tree T spans the component CG(v).

Proof. The result follows by induction, using Prop 1.1. �

big

Corollary 1.4. A graph G is connected iff the output tree produced from
Tree-Growing in G is a spanning tree of G.
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Tree-Growing in a Digraph

Def 1.8. A frontier arc for a rooted tree T in a digraph is an arc whose
tail is in T and whose head is not in T .

In contrast with undirected graphs, the number of vertices in the output
tree for a digraph depends on the choice of a starting vertex, as the next
example shows.

Example 1.4. In Fig 1.4, the number of vertices in the output tree ranges
between 1 and 5, depending on the starting vertex.

u x y z v

Figure 1.4. Output tree depends on the starting vertex.
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Def 1.9. For tree-growing in digraphs, the non-tree edges (arcs) fall into
three categories:

• A back-arc is directed from a vertex to one of its ancestors.

• A forward-arc is directed from a vertex to one of its descendants.

• A cross-arc is directed from a vertex to another vertex that is unre-
lated.

Def 1.10. There are two kinds of cross-arcs: a left-to-right cross-arc
is directed from smaller discovery number to larger one; a right-to-left
cross-arc is the opposite.
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Forest-Growing

Def 1.11. A full spanning forest of a graph G is a spanning forest
consisting of a collection of trees, such that each tree is a spanning tree of a
different component of G.

Table 1.2. Forest-growing and component-counting.

Algorithm: Forest-Growing
Input: a graph G
Output: a full spanning forest F for G and the number c(G).

Initialize forest F as the empty graph.

Initialize component counter t := 1

While forest F does not yet span graph G
Let v = nextV ertex(VG − VF ).
By Tree-Growing, obtain spanning tree Tt of CG(v).
Add tree Tt to forest F .
t := t + 1

Return forest F and component count c(G) = t.
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Figure 1.5. Growing a 2-component spanning forest.
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2. DF and BF Search

Def 2.1. The output trees produced by the depth-first and breadth-first
searches of a graph are called the depth-first tree (or dfs-tree) and the
breadth-first tree (or bfs-tree).

As previewed in §4.1, depth-first search and breadth-first search use two
opposite priority rules for the function nextEdge.

Depth-First Search

Def 2.2. Let S be the current set of frontier edges. The function dfs-
nextEdge is defined as follows: dfs-nextEdge(G, S) selects and returns as
its value the frontier edge whose tree-endpoint has the largest
discovery number.

Table 2.1. Depth-first search.

Algorithm: Depth-First Search
Input: a connected graph G, a starting vertex v ∈ VG.
Output: an ordered spanning tree T of G with root v.

Initialize tree T as vertex v.
Initialize S as the set of proper edges incident on v.
While S 6= ∅

Let e = dfs-nextEdge(G, S).
Let w be the non-tree endpoint of edge e.
Add edge e and vertex w to tree T .
updateFrontier(G, S).

Return tree T .
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Def 2.3. The discovery number of each vertex w for a dfs is called the
dfnumber of w and is denoted dfnumber(w).

Example 2.1. Fig 2.1 shows dfnumbers in parentheses, and the tree edges
are drawn in bold. Notice that there are no cross-edges. More specifically, for
each non-tree edge, the endpoint with the smaller dfnumber is an ancestor
of the other endpoint. The next proposition shows that this is always the
case for a depth-first search of an undirected graph.

u(1)

w(2)

x(3)

y(5)

t(4)

z(6)

v(0)
t(4)

x(3)
w(2)

y(5) z(6)

v(0)

u(1)

Figure 2.1. Dfs using lexicographic order for ties.
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Proposition 2.1. Depth-first search trees have no cross-edges.

Proof. Let T be the output tree produced by a dfs, and let e be a non-tree
edge with endpoints x and y, such that

dfnumber(x) < dfnumber(y)

At the point when the search discovers the vertex x, the edge e becomes a
frontier edge.

Since edge e never becomes a tree edge, the df-search must discover vertex
y before it backtracks to vertex x for the last time. Thus, y is in the subtree
(of the dfs-tree T ) that is rooted at x. Hence, vertex y is a descendant of
vertex x. �
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Depth-First Search in a Digraph

The depth-first search in a digraph is Algorithm 2.1 with the function dfs-
nextArc replacing dfs-nextEdge. Also, we do not assume that the input
digraph is strongly connected, so the dfs-tree produced will not necessarily
be a spanning tree.

Def 2.4. The function dfs-nextArc selects and returns as its value the
frontier arc whose tree-endpoint has the largest dfnumber.

Proposition 2.2. When a depth-first search is executed on a digraph,
the only kind of non-tree arc that cannot occur is a left-to-right cross
arc.

Proof. See Exercises. �
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Breadth-First Search

In the breadth-first search, the search “fans out” from the starting vertex
and grows the tree by selecting frontier edges incident on vertices as close to
the starting vertex as possible.

Algorithm 2.2 below uses the following version of the function nextEdge.

Def 2.5. Let S be the current set of frontier edges. The function bfs-
nextEdge is defined as follows: bfs-nextEdge(G, S) selects and returns
as its value the frontier edge whose tree-endpoint has the smallest discovery
number.

Table 2.2. Breadth-first search.

Algorithm: Breadth-First Search
Input: a connected graph G, a starting vertex v ∈ VG.
Output: an ordered spanning tree T of G with root v.

Initialize tree T as vertex v.
Initialize S as the set of proper edges incident on v.
While S 6= ∅

Let e = bfs-nextEdge(G, S).
Let w be the non-tree (undiscovered) endpt of e.
Add edge e and vertex w to tree T .
updateFrontier(G, S).

Return tree T .
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Example 2.2. Fig 2.2 below compares the results of dfs and bfs by dis-
playing typical possibilities for their partial output trees after 11 iterations,
starting at vertex v.
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Figure 2.2. Dfs and bfs after 11 iterations.
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Example 2.3. Fig 2.3 shows the result of a bfs applied to the graph from
Example 2.1, again starting at vertex v. Observe that the non-tree edges are
all cross-edges, which is opposite from a dfs tree. Also notice that the bfs
tree is a shortest-path tree (§3.2). Both these properties hold in general, as
asserted by the next two propositions.
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Figure 2.3. Bfs using lexicographic order for ties.
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Proposition 2.3. When breadth-first search is applied to an undirected
graph, the endpoints of each non-tree edge are either at the same level
or at consecutive levels.

Proof. The result uses an argument analogous to the one given in the proof
of Prop 2.1. �

Proposition 2.4. Any bfs-tree produced by Algo 2.2 is a shortest-path
tree for the input graph. (See Exercises.)

Remark 2.1. Whereas the stack (LIFO) is the appropriate data structure
to store the frontier edges in a dfs, the queue (FIFO) is most appropriate for
the bfs.
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3. MST and Shortest Paths

Finding the MST: Prim’s Algorithm

Min-Spanning-Tree Problem : In a conn weighted graph, find a span-
ning tree whose total edge-weight is a minimum. (By Cayley’s formula (§3.7),
the number of different spanning trees of an n-vertex graph could be as many
as nn−2.)

Def 3.1. Let S be the current set of frontier edges. The function Prim-
nextEdge (G, S) selects and returns as its value the frontier edge with
smallest edge-weight.

Table 3.1. Prim’s minimum spanning-tree.

Algorithm: Prim Minimum Spanning-Tree
Input: a weighted conn graph G and starting vertex v.
Output: a minimum spanning tree T .

Initialize tree T as vertex v.
Initialize S as the set of proper edges incident on v.
While S 6= ∅

Let e = Prim-nextEdge (G, S).
Let w be the non-tree endpoint of edge e.
Add edge e and vertex w to tree T .
updateFrontier(G, S).

Return tree T .
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Example 3.1. Fig 3.1 shows the MST yielded by Prim’s algorithm for a
graph, starting at vertex v. The discovery numbers appear in parentheses.

v(0)

a(2) b(4)

d(5)
e(1)

c(6)

f(7)g(3) 5

5

4

4

 7

8

8
7

9

8
9

11

Figure 3.1. MST produced by Prim’s algorithm.
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The correctness of Prim’s algorithm is an immediate consequence of the
next proposition.

Proposition 3.1. Let Tk be the Prim tree after k iterations of Prim-
next-edge on a conn graph G, for 0 ≤ k ≤ |VG|−1. Then Tk is a subtree
of an MST of G.

Proof. The assertion is trivially true for k = 0.

By way of induction, assume for some k, with 0 ≤ k ≤ |VG| − 2, that Tk is
a subtree of an MST T of G. We consider the tree Tk+1.

The algorithm grew Tk+1 during the (k + 1)st iteration by adding to Tk a
frontier edge e of smallest weight. Let u and v be the endpoints of edge e,
such that endpoint u is in tree Tk and endpoint v is not.

f
u

v
e

Figure 3.2. The tree Tk is in bold.



GRAPH THEORY – LECTURE 5: SPANNING TREES 23

If the MST T contains edge e, then Tk+1 is a subtree of T .

Alternatively, if e is not an edge in tree T , then e is part of the unique cycle
contained in T + e. Consider the path in T from u to v that proceeds in the
“long way around the cycle”.

On this path, let f be the first edge that joins a vertex in Tk to a vertex not in
Tk. The situation is illustrated in Fig 3.3; the black vertices and bold edges
make up Prim tree Tk, the spanning tree T consists of everything except
edge e, and Prim tree Tk+1 = (Tk ∪ v) + e.

f
u

v
e

Figure 3.3. The tree Tk is in bold.

Since f was a frontier edge at the beginning of the (k+1)st iteration, we have

w(e) ≤ w(f ) (since the Prim algorithm chose e). The tree T̂ = T + e − f

clearly spans G, and Tk+1 is a subtree of T̂ (since f was not part of Tk).
Finally,

w(T̂ ) = w(T ) + w(e)− w(f ) ≤ w(T )

which shows that T̂ is an MST of G. �
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f
u

v
e

Figure 3.4.

Corollary 3.2. When Prim’s algorithm is applied to a connected graph,
it produces a minimum spanning tree.

Proof. Prop 3.1 implies that the Prim tree resulting from the final iteration
is a minimum spanning tree. �
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The Steiner-Tree Problem

If instead of requiring that the minimum-weight tree span the given graph
G, i.e., that it contain every vertex of G, we require that it include an
arbitrarily prescribed subset U of the vertices, we get the Steiner-tree
problem.

Observe that if U = VG, then the Steiner-tree problem reduces to the
minimum-spanning tree problem.

Example 3.2. Figure 3.5 shows a weighted graph and a Steiner tree (with
bold edges) for the vertex subset U = {x, y, z}.
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Figure 3.5. Steiner tree for U = {x, y, z}.

Remark 3.1. The Steiner-tree problem often arises in network-design and
wiring-layout problems. It does not lend itself to the tree-growing strategy
that we used for the minimum-spanning tree problem. A version of the
Steiner-tree problem is discussed in §8.6 in the context of graph drawings.
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Shortest Path: Dijkstra’s Algorithm

Shortest-Path Problem: In a conn (non-negatively) weighted graph, find
a path from s to t whose total edge-weight is minimum, i.e., a shortest s-t
path.

Remark 3.2. If all edge-weights are equal, then the problem can be solved
by breadth-first search (Algo 2.2).

Def 3.2. Let S be the current set of frontier edges. The process Dijkstra-
nextEdge(G, S) selects and returns as its value the frontier edge whose
non-tree endpoint is closest to starting vertex s.

Table 3.2. Dijkstra’s Shortest Path

Algorithm: Dijkstra Shortest Path
Input: a weighted conn graph G and starting vertex s.
Output: a shortest-path tree T with root s.

Initialize tree T as vertex s.
Initialize S as the set of proper edges incident on s.
While S 6= ∅

Let e := Dijkstra-nextEdge (G, S).
Let w be the non-tree endpoint of edge e.
Add edge e and vertex w to tree T .
updateFrontier (G, S).

Return tree T .

Notation: For each tree vertex x, let dist[x] denote the distance from
vertex s to x.



GRAPH THEORY – LECTURE 5: SPANNING TREES 27

Example 3.3. Fig 3.6 shows the shortest-path tree produced by Dijkstra
for a graph, starting at vertex s. In the parentheses at each vertex v, the
discovery number appears first and dist[v] appears second.
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v(discovery #, dist[v ])

Figure 3.6. A Dijkstra shortest-path tree.
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Calculating Distances as the Tree Grows

Notation: For each frontier edge e in the weighted graph, w(e) denotes its
edge-weight.

Notice that each tree edge q in Figure 3.6 has the following property: if x is
the endpoint with the smaller discovery number and y is the other endpoint,
then

dist[y] = dist[x] + w(q)

Thus, when q was the frontier edge selected by the procedure Dijkstra-
nextEdge, the value of dist[x] + w(q) must have been a minimum over all
frontier edges in that iteration.

This suggests the following definition, which enables the function Dijkstra-
nextEdge to be efficiently calculated. It is also used in the proof of correct-
ness of Dijkstra’s algorithm (Theorem 3.3 below).
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Def 3.3. Let e be a frontier edge of the Dijkstra tree grown so far, and let
x be the tree endpoint of e. The P-value of edge e, denoted P (e), is given
by

P (e) = dist[x] + w(e)

Thus, Dijkstra-nextEdge(G, S) selects and returns as its value the edge
e∗ such that P (e∗) = min

e∈S
{P (e)}. (As usual, if there is more than one

such edge, then Dijkstra-nextEdge(G, S) selects the one determined by
the default priority.)

Correctness of Dijkstra’s Algorithm

The following theorem establishes the correctness of Dijkstra’s algorithm.
Its proof is similar to the one used to show the correctness of Prim’s algo-
rithm.

Theorem 3.3. On a conected graph G, let tree Tj be the Dijkstra tree
after j iterations of Dijkstra’s algorithm, where 0 ≤ j ≤ |VG| − 1. Then
for each v in Tj, the unique s-v path in Tj is a shortest s-v path in G.

Proof. Similar to Prim. See text. �
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7. Supplementary Exercises

Exercise 2 In how many different spanning trees of the complete graph
Kn does a given edge e lie?

Hint (not in text): The sum of # edges over all spanning trees is (n−1)·nn−2.
Divide by the # edges in Kn. Sol: 2nn−3.

Exercise 4 Draw an example of a connected, simple graph G with a
spanning tree T indicated by thickened edges, such that no matter what
root or local ordering is selected, T could not possibly be either the BFS-tree
or the DFS-tree. Explain briefly why not.

Hint (not in text): Try the tree of deg seq 11123 in K5.


