
GRAPH THEORY – LECTURE 4: TREES

Abstract. §3.1 presents some standard characterizations and properties of trees. §3.2 presents several
different types of trees. §3.7 develops a counting method based on a bijection between labeled trees and
numeric strings. §3.8 showns how binary trees can be counted by the Catalan recursion.

Outline

3.1 Characterizations and Properties of Trees
3.2 Rooted Trees, Ordered Trees, and Binary Trees
3.7 Counting Labeled Trees: Prüfer Encoding
3.8 Counting Binary Trees: Catalan Recursion

1

2 GRAPH THEORY – LECTURE 4: TREES

1. Characterizations of Trees

Review from §1.5 tree = connected graph with no cycles.

Def 1.1. In an undirected tree, a leaf is a vertex of degree 1.

1.1. Basic Properties of Trees.

Proposition 1.1. Every tree with at least one edge has at least two
leaves.

Proof. Let P = 〈v1, v2, . . . , vm〉 be a path of maximum length in a tree T .
Etc. �

v v1
m

3

2v

v
w

v v1
m

3

2v

v

w

Figure 1.1: The two cases in the proof of Prop 1.1.

GRAPH THEORY – LECTURE 4: TREES 3

Corollary 1.2. If the minimum degree of a graph is at least 2, then that
graph must contain a cycle.

Proposition 1.3. Every tree on n vertices has exactly n− 1 edges.

Proof. By induction using Prop 1.1. �

Review from §2.3 An acyclic graph is called a forest.

Review from §2.4 The number of components of a graph G is de-
noted c(G).

Corollary 1.4. A forest G on n vertices has n− c(G) edges.

Proof. Apply Prop 1.3 to each of the components of G. �

Corollary 1.5. Any graph G on n vertices has at least n− c(G) edges.

4 GRAPH THEORY – LECTURE 4: TREES

Six Different Characterizations of a Tree

Trees have many possible characterizations, and each contributes to the
structural understanding of graphs in a different way. The following theorem
establishes some of the most useful characterizations.

Theorem 1.8. Let T be a graph with n vertices. Then the following
statements are equivalent.

(1) T is a tree.
(2) T contains no cycles and has n− 1 edges.
(3) T is connected and has n− 1 edges.
(4) T is connected, and every edge is a cut-edge.
(5) Any two vertices of T are connected by exactly one path.
(6) T contains no cycles, and for any new edge e, the graph T + e has

exactly one cycle.

Proof. See text. �

GRAPH THEORY – LECTURE 4: TREES 5

The Center of a Tree

Review from §1.4 and §2.3
• The eccentricity of a vertex v in a graph G, denoted ecc(v), is the

distance from v to a vertex farthest from v. That is,

ecc(v) = max
x∈VG

{d(v, x)}

• A central vertex of a graph is a vertex with minimum eccentricity.

• The center of a graph G, denoted Z(G), is the subgraph induced
on the set of central vertices of G.

In an arbitrary graph G, the center Z(G) can be anything from a single
vertex to all of G.

6 GRAPH THEORY – LECTURE 4: TREES

However, C. Jordan showed in 1869 that the center of a tree has only
two possible cases. We begin with some preliminary results concerning the
eccentricity of vertices in a tree.

Lemma 1.9. Let T be a tree with at least three vertices.

• (a) If v is a leaf of T and w is its neighbor, then

ecc(w) = ecc(v)− 1

• (b) If u is a central vertex of T , then

deg(u) ≥ 2

Proof. (a) Since T has at least three vertices,

deg(w) ≥ 2

Then there exists a vertex z 6= v such that

d(w, z) = ecc(w)

zv w

Figure 1.-2:

But z is also a vertex farthest from v, and hence

ecc(v) = d(v, z) = d(w, z) + 1 = ecc(w) + 1

(b) By Part (a), a vertex of degree 1 cannot have minimum eccentricity in
tree T , and hence, cannot be a central vertex of T . �

GRAPH THEORY – LECTURE 4: TREES 7

Lemma 1.10. Let v and w be two vertices in a tree T such that w is
of maximum distance from v (i.e., ecc(v) = d(v, w)). Then w is a leaf.

Proof. Let P be the unique v-w path in tree T . If deg(w) ≥ 2, then w
would have a neighbor z whose distance from v would equal d(v, w) + 1,
contradicting the premise that w is at maximum distance. �

z
w

v

T
P

Figure 1.-3:

8 GRAPH THEORY – LECTURE 4: TREES

Lemma 1.11. Let T be a tree with at least three vertices, and let T ∗

be the subtree of T obtained by deleting from T all its leaves. If v is a
vertex of T ∗, then

eccT (v) = eccT ∗(v) + 1

Proof. Let w be a vertex of T such that

eccT (v) = d(v, w)

By Lemma 1.10, vertex w is a leaf of tree T and hence, w 6∈ VT ∗ (as illustrated
in Figure 1.3). It follows that the neighbor of w, say z, is a vertex of T ∗ that
is farthest from v among all vertices in T ∗, that is, eccT ∗(v) = d(v, z). Thus,

eccT (v) = d(v, w) = d(v, z) + 1 = eccT ∗(v) + 1

�

T

T*

v

w

z

Figure 1.3:

GRAPH THEORY – LECTURE 4: TREES 9

Proposition 1.12. Let T be a tree with at least three vertices, and let
T ∗ be the subtree of T obtained by deleting from T all its leaves. Then

Z(T) = Z(T ∗)

Proof. From the two preceding lemmas, we see that deleting all the leaves
decreases the eccentricity of every remaining vertex by 1. It follows that the
resulting tree has the same center. �

Corollary 1.13 (Jordan, 1869). Let T be an n-vertex tree. Then the
center Z(G) is either a single vertex or a single edge.

Proof. The assertion is trivially true for n = 1 and n = 2. The result follows
by induction, using Proposition 1.12. �

10 GRAPH THEORY – LECTURE 4: TREES

Tree Isomorphisms and Automorphisms

Example 1.1. The two graphs in Fig 1.4 have the same degree sequence,
but they can be readily seen to be non-isom in several ways. For instance,
the center of the left graph is a single vertex, but the center of the right graph
is a single edge. Also, the two graphs have unequal diameters.

Figure 1.4: Why are these trees non-isomorphic?

GRAPH THEORY – LECTURE 4: TREES 11

Example 1.2. The graph shown in Figure 1.5 below does not have a non-
trivial automorphism because the three leaves are all different distances from
the center, and hence, an automorphism must map each of them to itself.

Figure 1.5: A tree that has no non-trivial automorphisms.

Remark 1.1. There is a linear-time algorithm for testing the isomorphism
of two trees (see [AhHoUl74, p84]).

12 GRAPH THEORY – LECTURE 4: TREES

2. Rooted, Ordered, Binary Trees

Rooted Trees

Def 2.1. A directed tree is a directed graph whose underlying graph is
a tree.

Def 2.2. A rooted tree is a tree with a designated vertex called the root.
Each edge is implicitly directed away from the root.

r

r

Figure 2.1: Two common ways of drawing a rooted tree.

GRAPH THEORY – LECTURE 4: TREES 13

Rooted Tree Terminology

Designating a root imposes a hierarchy on the vertices of a rooted tree,
according to their distance from that root.

Def 2.3. In a rooted tree, the depth or level of a vertex v is its distance
from the root, i.e., the length of the unique path from the root to v. Thus,
the root has depth 0.

Def 2.4. The height of a rooted tree is the length of a longest path from
the root (or the greatest depth in the tree).

Def 2.5. If vertex v immediately precedes vertex w on the path from the
root to w, then v is parent of w and w is child of v.

Def 2.6. Vertices having the same parent are called siblings.

Def 2.7. A vertex w is called a descendant of a vertex v (and v is called
an ancestor of w), if v is on the unique path from the root to w. If, in
addition, w 6= v, then w is a proper descendant of v (and v is a proper
ancestor of w).

14 GRAPH THEORY – LECTURE 4: TREES

Def 2.8. A leaf in a rooted tree is any vertex having no children.

Def 2.9. An internal vertex in a rooted tree is any vertex that has at
least one child. The root is internal, unless the tree is trivial (i.e., a single
vertex).

Example 2.2. The height of this tree is 3. Also,

• r, a, b, c, and d are the internal vertices;
• vertices e, f, g, h, i, and j are the leaves;
• vertices g, h, and i are siblings;
• vertex a is an ancestor of j; and
• j is a descendant of a.

r

a

d e

b
c

j

g h if

Figure 2.6:

GRAPH THEORY – LECTURE 4: TREES 15

Many applications impose an upper bound on the number of children that
a given vertex can have.

Def 2.10. An m-ary tree (m ≥ 2) is a rooted tree in which every vertex
has m or fewer children.

Def 2.11. A complete m-ary tree is an m-ary tree in which every
internal vertex has exactly m children and all leaves have the same depth.

Example 2.3. Fig 2.7 shows two ternary (3-ary) trees; the one on the left
is complete; the other one is not.

r r

Figure 2.7: Two 3-ary trees: one complete, one incomplete.

16 GRAPH THEORY – LECTURE 4: TREES

Isomorphism of Rooted Trees

Def 2.12. Two rooted trees are said to be isomorphic as rooted trees
if there is a graph isomorphism between them that maps root to root.

Example 2.4. There are more isomorphism types of rooted trees than there
are of trees.

Figure 2.8: Isom trees need not be isom as rooted trees.

GRAPH THEORY – LECTURE 4: TREES 17

Ordered Trees

Def 2.13. An ordered tree is a rooted tree in which the children of each
vertex are assigned a fixed ordering.

Def 2.14. In a standard plane drawing of an ordered tree,

• the root is at the top,
• the vertices at each level are horizontally aligned, and
• the left-to-right order of the vertices agrees with their prescribed order.

Remark 2.1. In an ordered tree, the prescribed local ordering of the chil-
dren of each vertex extends to several possible global orderings of the vertices
of the tree. One of them, the level order, is equivalent to reading the vertex
names top-to-bottom, left-to-right in a standard plane drawing. Level order
and three other global orderings, pre-order, post-order, and in-order, are
explored in §3.3.

Example 2.6. The ordered tree on the left stores the expression a ∗ b− c,
whereas the one on the right stores c− a ∗ b.

-

*

a b

c

-

c *

a b

Figure 2.10: Two trees: isom as rooted, not as ordered.

18 GRAPH THEORY – LECTURE 4: TREES

Binary Trees

Def 2.15. A binary tree is an ordered 2-ary tree in which each child is
designated either a left-child or a right-child.

Figure 2.11: A binary tree of height 4.

Def 2.16. The left (right) subtree of a vertex v in a binary tree is the
binary subtree spanning the left (right)-child of v and all of its descendants.

GRAPH THEORY – LECTURE 4: TREES 19

The mandatory designation of left-child or right-child means that two dif-
ferent binary trees may be indistinguishable when regarded as ordered trees.

Figure 2.12: One ordered tree yielding four binary trees.

Theorem 2.1. The complete binary tree of height h has 2h+1−1 vertices.

Corollary 2.2. Every binary tree of height h has at most 2h+1− 1 ver-
tices.

Figure 2.13: Complete binary tree of ht 3 has 15 vertices.

20 GRAPH THEORY – LECTURE 4: TREES

7.Counting Labeled Trees

The number of n-vertex labeled trees is nn−2, for n ≥ 2, and is known as
Cayley’s Formula.

1 2

34

1 2

34

Figure 7.1: Two different labeled trees, isom as unlabeled.

Sometimes, labeled graphs are merely graphs with labels. At other times,
they are a class of graph objects whose isomorphisms must preserve the
labels.

Cayley’s formula counts the number of classes of n-vertex trees
under the equivalence relation of label-preserving isomorphism.

GRAPH THEORY – LECTURE 4: TREES 21

SUPPLEMENT: EXAMPLES OF COUNTING TREES

WITH CAYLEY’S FORMULA

EXAMPLE:

T

3
= 3

3!2
= 3

2 1 3 1 2 3 1 3 2

EXAMPLE:

T

4
= 4

4!2
= 16

12 4

12+4=16

EXAMPLE:

T

5
= 5

5!2
= 125

60 5

60+5+60=125
60

22 GRAPH THEORY – LECTURE 4: TREES

Prüfer Encoding

Def 7.1. A Prüfer sequence of length n− 2, for n ≥ 2, is any sequence
of integers between 1 and n, with repetitions allowed.

Table 7.1: Prüfer Encoding

Algorithm: Prüfer Encoding
Input: an n-vertex tree with std 1-based vertex-labels.
Output: a Prüfer sequence of length n− 2.

Initialize T to be the given tree.
For i = 1 to n− 2

Let v be the 1-valent vertex with the smallest label.
Let si be the label of the only neighbor of v.
T := T − v.

Return sequence 〈s1, s2, . . . , sn−2〉.

GRAPH THEORY – LECTURE 4: TREES 23

Example 7.1.

Figure 7.2: A labeled tree, to be encoded into a Prüfer sequence S.

S = (7, S = (7, 4,
Figure 7.3: First two iterations of the Prüfer encoding.

S = (7, 4, 4, S = (7, 4, 4, 7, S = (7, 4, 4, 7, 5)
Figure 7.4: Last three iterations of the Prüfer encoding.

24 GRAPH THEORY – LECTURE 4: TREES

Notice for the above example that the degree of each vertex is one more
than the number of times that its label appears in the Prüfer sequence. The
next result shows this is true in general. In the proof, l(u) denotes the label
on vertex u.

Proposition 7.1. Let dk be the # occurrences of the label k in a Prüfer
encoding sequence for a labeled tree T . Then the degree of vertex k in
the tree T equals dk + 1.

Proof. See text. �

Prüfer Decoding

Table 7.2: Prüfer Decoding

Algorithm: Prüfer Decoding
Input: a Prüfer sequence of length n− 2.
Output: an n-vertex tree with std 1-based vertex-labels.

Initialize list P as the Prüfer input sequence.
Initialize list L as 1, . . . , n.
Initialize forest F as n isolated vertices, labeled 1 to n.
For i = 1 to n− 2

Let k be the smallest # in list L that is not in list P .
Let j be the first number in list P .
Add an edge joining the vertices labeled k and j.
Remove k from list L.
Remove the first occurrence of j from list P .

Add an edge joining the vertices labeled with the two remaining
numbers in list L.
Return F with its vertex-labeling.

GRAPH THEORY – LECTURE 4: TREES 25

Example 7.2. Decoding for the input seq 7, 4, 4, 7, 5.

L = 1, 2, 3, 4, 5, 6, 7 P = 7, 4, 4, 7, 5

L = 2, 3, 4, 5, 6, 7 P = 4, 4, 7, 5

L = 3, 4, 5, 6, 7 P = 4, 7, 5

L = 4, 5, 6, 7 P = 7, 5

26 GRAPH THEORY – LECTURE 4: TREES

L = 5, 6, 7 P = 5

L = 5, 7

Theorem 7.4 (Cayley’s Tree Formula). The number of different
trees on n labeled vertices is nn−2.

Proof. Details in text. �

Remark 7.1. A slightly different view of Cayley’s Tree Formula is that it
gives us the number of different spanning trees of the complete graph Kn.
The next chapter is devoted to spanning trees.

GRAPH THEORY – LECTURE 4: TREES 27

8. Counting Binary Trees

Let bn denote the number of binary trees on n vertices. Then

bn = b0bn−1 + b1bn−2 + · · · + bn−1b0

This recurrence relation is known as the Catalan recursion, and the
quantity bn is called the nthCatalan number.

Example 8.1. Applying the Catalan recursion to the cases n = 2 and
n = 3 yields b2 = 2 and b3 = 5. Figure 8.1 shows the five different binary
trees on 3 vertices.

Figure 8.1: The five different binary trees on 3 vertices.

With the aid of generating functions, it is possible to derive the following
closed formula for bn.

Theorem 8.1. The number bn of different binary trees on n vertices is
given by

bn =
1

n + 1

(
2n

n

)

28 GRAPH THEORY – LECTURE 4: TREES

9. Supplementary Exercises

Exercise 3 What are the minimum and maximum number of vertex
orbits in an n-vertex tree?

Exercise 16 Prove that there is no 5-vertex rigid tree.

Exercise 17 Prove that there is no 6-vertex rigid tree.

