To Do

- Start on HW 2 (cannot be done at last moment)
 This (and previous) lecture should have all information needed
- Start thinking about partners for HW 3 and HW 4
 - Remember though, that HW2 is done individually
 - Your submission of HW 2 must include partner for HW 3

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar Forms

- (Optional) Labeling trick for control points and intermediate deCasteljau points that makes thing intuitive
 - E.g. quadratic Bezier curve $F(u)$
 - Define auxiliary function $f(u_1,u_2)$ [number of args = degree]
 - Points on curve simply have $u_1=u_2$ so that $F(u)=f(u,u)$
 - And we can label control points and deCasteljau points not on curve with appropriate values of (u_1,u_2)

- Geometric interpretation: Quadratic
 - Points on curve simply have $u_1=u_2$ so that $F(u)=f(u,u)$
 - $f(u_1,u_2)$ is symmetric $f(0,1) = f(1,0)$
 - Only interpolate linearly between points with one arg different
 - $f(u_1,u_2) = (1-u) f(0,0) + u f(0,1)$ Here, interpolate $f(0,0)$ and $f(0,1)$ if 1=0,1

$f(0,0)=F(0)$ $f(1,1)=F(1)$ $f(0,1)=f(1,0)$

Geometric interpretation: Quadratic
Polar Forms: Cubic Bezier Curve

Why Polar Forms?
- Simple mnemonic: which points to interpolate and how in deCasteljau algorithm
- Easy to see how to subdivide Bezier curve (next) which is useful for drawing recursively
- Generalizes to arbitrary spline curves (just label control points correctly instead of 00 01 11 for Bezier)
- Easy for many analyses (beyond scope of course)

Subdividing Bezier Curves
Drawing: Subdivide into halves (u = ½) Demo: hw2.exe
- Recursively draw each piece
- At some tolerance, draw control polygon
- Trivial for Bezier curves (from deCasteljau algorithm): hence widely used for drawing

Why specific labels/ control points on left/right?
- How do they follow from deCasteljau?

Geometric Interpretation: Cubic

Geometrically
Summary for HW 2
- Bezier2 (Bezier discussed last time)
- Given arbitrary degree Bezier curve, recursively subdivide for some levels, then draw control polygon `hw2.exe`
- Generate deCasteljau diagram; recursively call a routine with left edge and right edge of this diagram
- You are given some code structure; you essentially just need to compute appropriate control points for left, right edges

DeCasteljau: Recursive Subdivision
Input: Control points \(P_i \) with \(0 \leq i \leq n \) where \(n \) is the degree
Output: \(L_i \) for left and \(R_i \) for right control points in recursion.
```
1 for (level = n; level > 0; level--) {
2 if (level == n) \{ /\ Initial control points
3 \ for (i = 0; i < level; i++) \{
4 \ p^{level}_{i} = \frac{1}{2} \cdot \left( p^{level+1}_{i} + p^{level+1}_{i+1} \right) ;
5 \} \}
6 \ for (i = 0; i < level; i++) \{
7 \ L_i = p^{level}_{i} ; \ R_i = p^{level}_{i} ;
8 \} \ DeCasteljau (from last lecture) for midpoint
9 \ Followed by recursive calls using left, right parts
```

Outline of Unit
- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Bezier: Disadvantages
- Single piece, no local control (move a control point, whole curve changes) `hw2.exe`
- Complex shapes: can be very high degree, difficult
- In practice, combine many Bezier curve segments
 - But only position continuous at join since Bezier curves interpolate end-points (which match at segment boundaries)
 - Unpleasant derivative (slope) discontinuities at end-points
 - Can you see why this is an issue?

B-Splines
- Cubic B-splines have \(C^2 \) continuity, local control
- 4 segments / control point, 4 control points/segment
- Knots where two segments join: Knotvector
- Knotvector uniform/non-uniform (we only consider uniform cubic B-splines, not general NURBS)

```
Knot: \( C^2 \) continuity
```

Demo: `hw2.exe`
Polar Forms: Cubic B-spline Curve

- Labeling little different from in Bezier curve
- No interpolation of end-points like in Bezier
- Advantage of polar forms: easy to generalize

Uniform knot vector:
-2, -1, 0, 1, 2, 3

Labels correspond to this

deCasteljau: Cubic B-Splines

- Easy to generalize using polar-form labels
- Impossible remember without

Explicit Formula (derive as exercise)

\[F(u) = [a^3, a^2, a] \mathbf{M} \]

\[\mathbf{M} = \frac{1}{6} \begin{bmatrix} 1 & 3 & -3 & 1 \\ -3 & -6 & 3 & 0 \\ 3 & 0 & 3 & 0 \\ -1 & 4 & -1 & 0 \end{bmatrix} \]

\[\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ -3 & -6 & 3 & 0 \\ 3 & 0 & 3 & 0 \\ -1 & 4 & -1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} \]

Summary of HW 2

- BSpline Demo `hw2.exe`
- Arbitrary number of control points / segments
- Do nothing till 4 control points (see demo)
- Number of segments = # cpts - 3
- Segment A will have control pts A, A+1, A+2, A+3
- Evaluate Bspline for each segment using 4 control points (at some number of locations, connect lines)
- Use either deCasteljau algorithm (like Bezier) or explicit form [matrix formula on previous slide]
- Questions?