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4.1 THE INTEGERS AND DIVISION

In mathematics, specitying an axiomatic model

for a system precedes all discussion of its proper-
ties. The number system serves as a foundation for
many other mathematical systems.

Elementary school students learn algorithms for
the arithmetic operations without ever seeing a
definition of a “number” or of the operations that
these algorithms are modeling.

These coursenotes precede discussion of division by

the construction of the number system
(see Appendix A1 of Rosen, 7th Edition)
and of the usual arithmetic operations.
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41.2 Chapter 4 Number Theory

AXIOMS for the NATURAL NUMBERS

DEF: The natural numbers are a mathematical
system

(N, 0€N, s:N— N}

with a number zero 0 and a successor operation
s : N — N such that

(1) (#n) [0 = s(n)].
Zero is not the successor of any number.
(2) (Ym,n € N)[m # n = s(m) # s(n)].

Different numbers cannot have the same successor.
(3) Given a subset S C N with 0 € S
if (Vn € S)[s(n)€ S] then S =N

Given a subset S of the natural numbers, suppose
that it contains the number 0, and suppose that
whenever it contains a number, it also contains the
successor of that number. Then S = N.

Remark: Axiom (1) implies that N has at least
one other number, namely, the successor of zero.
Let’s call it one. Using Axioms (1) and (2) to-
gether, we conclude that s(1) € {0,1}. Etc.
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Section 4.1 The Integers and Division 41.3

ARITHMETIC OPERATIONS

DEF: The predecessor of a natural number n is a
number m such that s(m) = n.
NOTATION: p(n).

DEF: Addition of natural numbers.

I AL itm=20
PTT Y s(n) + p(m)  otherwise

DEF: Ordering of natural numbers.
m=0 or

n > m means { p(n) > p(m)

DEF: Multiplication of natural numbers.

o — 0 itm=20
= n+mn X p(m) otherwise

OPTIONAL:
Define exponentiation.
Define positional representation of numbers.

Verity that the usual base-ten methods for addi-
tion, subtraction, etc. produce correct answers.
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41.4 Chapter 4 Number Theory

DIVISION

DEF: Let n and d be integers with d # 0. Then

we say that d divides n if there exists a number ¢
such that n = dq. NOTATION: d\n.

DEF: The integer d is a factor of n or a divisor of
n if d\n.

DEF: A divisor d of n is proper if d # n.

DEF: The number 1 is called a trivial divisor.
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DIVISION THEOREM

Theorem 4.1.1. Let n and d be positive integers.
Then there are unique nonnegative integers q and
r < d such that n = qgd + r.

TERMINOLOGY: n = dividend, d =divisor,
g = quotient, and r = remainder.

Algo 4.1.1: Division Algorithm

Input: dividend n > 0 and divisor d > 0
Output: quotient ¢ and remainder r: 0 < r < d
q:=0;7r:=n
While n > d

q:=q+1

r.=r—d

Continue with next iteration of while-loop.

Return (quotient: d; remainder: 7)

Time-Complexity: O(n/d).

Remark: Positional representation uses only
O©(logn) digits to represent a number. This facili-
tates a faster algorithm to calculate division.
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4.1.6 Chapter 4 Number Theory

Example 4.1.1: divide 7 into 19

n d q
19 7 0
12 7 1
5 7 2
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MODULAR ARITHMETIC

DEF: Let n and m > 0 be integers. The residue of
dividing n by m is, if n > 0, the remainder, or oth-
erwise, the smallest nonnegative number obtainable
by adding an integral multiple of m.

DEF: Let n and m > 0 be integers. Then n mod m
is the residue of dividing n by m. This is called the
mod operator.

Prop 4.1.2. Let n and m > 0 be integers. Then
n — (n mod m) is a multiple of m.

19mod7 = 5
Example 4.1.2: 17mod 5 = 2
—17mod 5 = 3

DEF: Let b, ¢, and m > 0 be integers. Then b is
congruent to ¢ modulo m it m divides b — c.
NOTATION: b = ¢ mod m.

Theorem 4.1.3. Let a,b,c,d,m > 0 be integers
such that a =b mod m and ¢ =d mod m. Then

a+c=b+dmodm and ac = bd mod m

Pf: Straightforward. &
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4.1.8 Chapter 4 Number Theory

CAESAR ENCRYPTION

DEF: Monographic substitution is enciphering
based on permutation of an alphabet

T:A— A

Ciphertext is obtained from plaintext by replacing
each occurrence of each letter by its substitute.

letter A B C D E F - X Y Z
sthsst Q WE R T Y - B N M

DEF: A monographic substitution cipher is called
cyclic if the letters of the alphabet are represented
by numbers 0, 1, ..., 25 and there is a number m
such that 7(n) =m +n mod 26.

An ancient Roman parchment is discovered with

the following words:
HW WX EUXWH

What can it possibly mean?

Hint: Julius Caesar encrypted military messages
by cyclic monographic substitution.
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4.2 INTEGERS AND ALGORITHMS

We accelerate evaluation of ged’s, of arithmetic
operations, and of monomials and polynomials.

POSITIONAL REPRESENTATION of INTEGERS

Arithmetic algorithms are much more complicated
for numbers in positional notation than for num-
bers in monadic notation. However, they pay bene-
fits in execution time.

(1) Addition algorithm execution time decreases
from O(n) to O(logn).

(2) Multiplication algorithm execution time de-
creases from O(nm) to O(lognlogm).
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4.2.2 Chapter 4 Number Theory

Theorem 4.2.1. Let b > 1 and n > 0 be integers.
Let k be the maximum integer such that b* < n.
Then there is a unique set of nonnegative integers
ar,ar_1,...,a0 < b such that

n = akbk + Cbk_lbk_l + -+ Cblbl + aop

Pf: Apply the division algorithm to n and b to
obtain a quotient and remainder ag. Then apply
the division algorithm to that quotient and b to
obtain a new quotient and remainder a;. Etc. &

NUMBER BASE CONVERSION

The algorithm in the proof of Theorem 4.2.1
provides a method to convert any positive integer
from one base to another.

Example 4.2.1: Convert 121513 to base-7.
n d q r

1215 7 173 4
173 7 24 5
24 7 3 3
3 7T 0 3

Solution: 3354,
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EVALUATION OF MONOMIALS

Example 4.2.2: Calculate 13", e.g. 13!,

Usual method: 13 x 13 x 13 x --- x 13
time = O(n).

Better method:
13,13%,13%,13%, 1316 takes ©(logn) steps
13 x 132 x 13!° takes ©(logn) steps

EVALUATION OF POLYNOMIALS

Evaluate f(z) = a,2™ + ap_12" 1 + ...+ a1x + ag

Usual method of evaluation takes ©(n):
n multiplications to calculate n powers of x
n multplications by coefficients
n additions

Horner’s method (due to ):
AnpT + Gp—1
(@nT + ap—1)x + an—s  etc.

requires only n multiplications and n additions.
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4.3 PRIMES AND GCD’S

DEF: An integer p > 2 is prime if p has no non-
trivial proper divisors, and composite otherwise.

Algo 4.3.1: Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n
For d .=2ton

If d\n then exit
Continue with next iteration of for-loop.

Return (d)

Time-Complexity: O(n).
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4.3.2 Chapter 4 Number Theory

Theorem 4.3.1. Let n be a composite number.
Then n has a divisor d such that 1 < d < \/n.

Pf: Straightforward. &

Algo 4.3.2: Less Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n
For d :=2 to \/n
If d\n then exit
Continue with next iteration of for-loop.

Return (d)

Time-Complexity: O(y/n).

Example 4.3.1: Primality Test 731.

Upper Limit: |/731] = 27, since 729 = 27°.
—(2\731): leaves 3,5,7,9,11,...,25,27 13 cases
~(3,5,7,9,11,13,15\731): however, 17\731
AHA: 731 = 17 x 43.

N.B. To accelerate testing, divide only by primes 2,
3,5, 7,11, 13, 17.
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MERSENNE PRIMES

Prop 4.3.2. If m,n > 1 then 2™" — 1 is not prime.

Pf: omin=1) 4 ... 49m 41
(times) X 2™ —1
_om(n=1) _ ... _9m _1

2mn —1

Example 4.3.2:

20 —1=2%2_1
= (2> +1)(2°-1)=9-7=63
:22-3_1
= (222 4221 1 1)(22 - 1) =21-3 =63

Mersenne studied the CONVERSE of Prop 4.3.2:

Is 2P — 1 prime when p is prime?
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4.3.4 Chapter 4 Number Theory

DEF: A Mersenne prime is a prime number of
the form 2P — 1, where p is prime.

Example 4.3.3: primality of 2P — 1 vsa

prime p 2P — 1 Mersenne?
2 22 -1=3 yes (1)
3 22 —1=7 yes (2)
5 2° —1 =31 yes (3)
7 27 —1 =127 yes (4)
11 211 —1=2047 =23 -89 no
11213 | yes (23)
19937 219937 _ 1 yes (24)
3021377 23021377 _ 1 yes (37)
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Fundamental Theorem of Arithmetic

Theorem 4.3.3. Every positive integer can be
written uniquely as the product of nondecreasing
primes.

Pf: Proving this lemma is an Exercise for §5.1:
if a prime number p divides a product mn of
integers, then it must divide either m or n. &

Example 4.3.4: 720 = 2%325! is written as a
prime power factorization.
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GREATEST COMMON DIVISORS

DEF: The greatest common divisor of two in-
tegers m,n, not both zero, is the largest positive
integer d that divides both of them.

NOTATION: ged(m, n).

Algo 4.3.3: Naive GCD Algorithm

Input: integers m < n not both zero
Output: ged(m,n)
g: =1
For d :=1tom
If d\m and d\n then g:=d
Continue with next iteration of for-loop.

Return (g)

Time-Complexity: Q(m).
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Algo 4.3.4: Primepower GCD Algorithm

Input: integers m < n not both zero
Output: ged(m,n)

(1) Factor m = p{*p3? -+ - p%" into prime powers.

(2) Factor n = plil pg2 .- p% into prime powers.

min(aq,b min(as,b min(a, b,
(3) g:=p" (a1 1)p2 (a2 2).”pr ( )

Return (g)

Time-Complexity:
depends on time needed for factoring

DEF: The least common multiple of two posi-
tive integers m, n is the smallest positive integer d
divisible by both m and n.

NOTATION: lem(m, n).

Theorem 4.3.4. Let m and n be positive inte-
gers. Then

mn = ged(m,n) lem(m, n)

Pf: The Primepower LCM Algorithm uses max
instead of min. &
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RELATIVE PRIMALITY

DEF: Two integers m and n, not both zero, are
relatively prime if gcd (m,n) = 1.

NOTATION: m L n.

Proposition 4.3.5. Two numbers are relatively
prime if no prime has positive exponent in both
their prime power factorizations.

Pf: Immediate from the definition above. &

Remark: Proposition 4.3.5 is what motivates the
notation m L n. Envision the integer n expressed
as a tuple in which the kth entry is the exponent
(possibly zero) of the kth prime in the prime power
factorization of n.

The dot product of two such representations is zero
iff the numbers represented are relatively prime.
This is analogous to orthogonality of vectors.
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EUCLIDEAN ALGORITHM

Lemma 4.3.6. Let d\m and d\n.
Then d\m —n and d\m + n.

Pt: Suppose that m = dp and n = dg.
Then m—n=d(p—¢q) and m+n=d(p+q). <

Corollary 4.3.7. gcd (m,n) = ged (m —n,n).
Pt: In three steps.

Al. ged (m,n) is a common div of m — n and n,
and ged (m — n,n) is a common div of m and n.

Pt. Both parts by Lemma 4.3.6.

A2. ged (m,n) < ged(m —n,n)
and ged (m —n,n) < ged(m, n).

Pf. Both parts by Al and def of ged (“greatest”).
A3. ged (m,n) = ged (m —n,n).

Pf. Immediate from A2. & Cor 4.3.7
Cor 4.3.8. gcd (m,n) = ged (n,m mod n).

Pf: The number m mod n is obtained from m by

subtracting a multiple of n. Iteratively
apply Cor 4.3.7. &
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4.3.10 Chapter 4 Number Theory

Algo 4.3.5: Euclidean Algorithm

Input: positive integers m > 0,n > 0
Output: ged (n, m)
If m =0 then return(n)

else return ged (m,n mod m)

Time-Complexity: O(log(min(n,m))).
Much better than Naive GCD algorithm.

Example 4.3.5: FEuclidean Algorithm

ecd (210,111) = ged (111,210 mod 111) =
ecd (111,99) = ged (99,111 mod 99) =
ecd (99,12) = ged (12,99 mod 12) =
ged (12,3) = ged (3,12 mod 3) =
ecd (3,0) = 3
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Example 4.3.6: FEuclidean Algorithm

ecd (42,26) = ged (26,42 mod 26) =

ecd (26,16) = ged (16,26 mod 16) =

ecd (16,10) = ged (10,16 mod 10) =
gcd (10,6) = ged (6,10 mod 6) =
ged (6,4) = ged (4,6 mod 4) =
ged (4,2) = ged (2,4 mod 2) =
ged (2,0) = 2
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4.4 MORE NUMBER THEORY

EXTENDED EUCLIDEAN ALGORITHM

Given two integers a and b, the extended
Fuclidean algorithm produces numbers s and

t such that sa + tb = ged(a,b). We describe it by
example.

Example 4.4.1: FEuclidean Algorithm

312 = 2-1114+90
111 = 1-90+ 21
90 = 4-21+6
21 = 3-6+3
= 2-3+0 now start back-substitution

3 =21—3-6
= 21-3-[90—4-21] =13-21 — 3-90
= 13-[111—90] —3-90 = 13- 111 — 16 - 90
— 13-111 — 16 - [312 — 2 - 111]
= 45-111 — 16 - 312 = 4995 — 4992 = 3
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EXPONENTIATION MOD a PRIME

Problem: Evaluate ¥ mod p, with p prime.

FACT 1: z* mod n = (2 mod n)* mod n.
Pf: Ifx = ¢n + (x modn), then

k

2* mod n = (¢gn + (z mod n))* mod n

do a binomial expansion
= Bn + (x mod n)* mod n

= (z mod n)* mod n ¢
Example 4.4.2: 123 mod 5 = 1728 mod 5 = 3
12° mod 5 =2° mod 5 =3

FACT 2. Fermat’s Little Theorem

Let p be prime. Then 2?~! = 1 mod p.
Pf: See Exercise 17 of §2.6. &

Example 4.4.3: 2°mod 7=64 mod 7 =1
7* mod 5 = 2401 mod 5 =1
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Example 4.4.4: Calculate 162 mod 7.

Using fast monomial evaluation, this looks like lgn
mults and 1 division. Not bad, unless you want the
answer by hand computation.

Pure Algebra to the Rescue

16%Y mod 7 =2*" mod 7 by FACT 1

=2 mod 7 by FACT 2
=4
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