
Cross-ISA Machine InstrumentationCross-ISA Machine Instrumentation
using Fast and Scalableusing Fast and Scalable

Dynamic Binary TranslationDynamic Binary Translation

Emilio G. Cota
Luca P. Carloni

VEE'19
April 14, 2019
Providence, RI

Columbia University

1 . 1

MotivationMotivation
Dynamic Binary Translation (DBT) is widely used, e.g.

Computer architecture simulation
So�ware/ISA prototyping (a.k.a. emulation, virtual platforms)
Dynamic analysis (security, correctness)

1 . 2

MotivationMotivation
Dynamic Binary Translation (DBT) is widely used, e.g.

Computer architecture simulation
So�ware/ISA prototyping (a.k.a. emulation, virtual platforms)
Dynamic analysis (security, correctness)

DBT state of the artDBT state of the art

Speed Cross-ISA Full-system

DynamoRIO ✔ Fast ✘ ✘

Pin ✔ Fast ✘ ✘

QEMU (& derivatives) ✘ Slow ✔ ✔ 1 . 2

Pin/DynamoRIO are instrumentation tools
Several QEMU-derived tools add instrumentation to QEMU

e.g. DECAF, PANDA, PEMU, QVMII, QTrace, TEMU
However, they widen the perf gap with DynamoRIO/Pin

MotivationMotivation

1 . 3

Pin/DynamoRIO are instrumentation tools
Several QEMU-derived tools add instrumentation to QEMU

e.g. DECAF, PANDA, PEMU, QVMII, QTrace, TEMU
However, they widen the perf gap with DynamoRIO/Pin

MotivationMotivation

Fast, cross-ISA, full-systemFast, cross-ISA, full-system
instrumentationinstrumentation

Our goal:Our goal:

1 . 3

How fast?How fast?
Goal: match Pin's speed when using it for simulation

Note that Pin is same-ISA, user-only

Fast, cross-ISA, full-systemFast, cross-ISA, full-system
instrumentationinstrumentation

1 . 4

How fast?How fast?
Goal: match Pin's speed when using it for simulation

Note that Pin is same-ISA, user-only

Fast, cross-ISA, full-systemFast, cross-ISA, full-system
instrumentationinstrumentation

How to get there? Need to:How to get there? Need to:
Increase emulation speed and scalability

QEMU is slower than Pin, particularly for full-system and floating
point (FP) workloads
QEMU does not scale for workloads that translate a lot of code in
parallel, e.g. parallel compilation in the guest

Support fast, cross-ISA instrumentation of the guest 1 . 4

QEMU*QEMU*
Open source: https://www.qemu.org
Widely used in both industry and academia
Supports many ISAs through DBT via TCG, its Intermediate Representation (IR)

Complex instructions are emulated in "helper" functions (not pictured)

[*] Bellard. "QEMU, a fast and portable dynamic translator", ATC, 2005
1 . 5

QEMU*QEMU*
Open source: https://www.qemu.org
Widely used in both industry and academia
Supports many ISAs through DBT via TCG, its Intermediate Representation (IR)

Complex instructions are emulated in "helper" functions (not pictured)

Our contributions are not QEMU-specific
They are applicable to cross-ISA DBT tools at large

[*] Bellard. "QEMU, a fast and portable dynamic translator", ATC, 2005
1 . 5

QEMU baselineQEMU baseline

DBT of user-space code only
System calls are run natively on the host machine

Emulates an entire machine, including
guest OS + devices
QEMU uses one host thread per guest
vCPU ("multi-core on multi-core") [*]

Parallel code execution, serialized
code translation with a global lock

User-mode (QEMU-user)User-mode (QEMU-user)

System-mode (QEMU-system)System-mode (QEMU-system)

[*] Cota, Bonzini, Bennée, Carloni. "Cross-ISA Machine Emulation for Multicores", CGO, 2017 1 . 6

Qelt's contributionsQelt's contributions
Emulation SpeedEmulation Speed

1. Correct cross-ISA FP emulation using the host FPU

2. Integration of two state-of-the-art optimizations:

indirect branch handling

dynamic sizing of the so�ware TLB

3. Make the DBT engine scale under heavy code translation

 Not just during execution

InstrumentationInstrumentation
 4. Fast, ISA-agnostic instrumentation layer for QEMU 1 . 7

1. Cross-ISA FP Emulation1. Cross-ISA FP Emulation
Rounding, NaN propagation, exceptions, etc. have to be emulated correctly
Reading the host FPU flags is very expensive

so�-float is faster, which is why QEMU uses it

Qelt uses the host FPU for a subset of FP operations, without ever
reading the host FPU flags

Fortunately, this subset is very common
defers to so�-float otherwise

baseline (incorrect): always
uses the host FPU and never

reads excp. flags

1 . 8

1. Cross-ISA FP Emulation1. Cross-ISA FP Emulation
Common case:Common case:

A, B are normal or zero
Inexact already set
Default rounding

How common?

99.18%99.18%
of FP instructions in SPECfp06

float64 float64_mul(float64 a, float64 b, fp_status *st)
{
 float64_input_flush2(&a, &b, st);
 if (likely(float64_is_zero_or_normal(a) &&
 float64_is_zero_or_normal(b) &&
 st->exception_flags & FP_INEXACT &&
 st->round_mode == FP_ROUND_NEAREST_EVEN)) {
 if (float64_is_zero(a) || float64_is_zero(b)) {
 bool neg = float64_is_neg(a) ^ float64_is_neg(b);
 return float64_set_sign(float64_zero, neg);
 } else {
 double ha = float64_to_double(a);
 double hb = float64_to_double(b);
 double hr = ha * hb;
 if (unlikely(isinf(hr))) {
 st->float_exception_flags |= float_flag_overflow;
 } else if (unlikely(fabs(hr) <= DBL_MIN)) {
 goto soft_fp;
 }
 return double_to_float64(hr);
 }
 }
soft_fp:
 return soft_float64_mul(a, b, st);
}

.. and similarly for 32/64b + , - , , , , ==× ÷ √ 1 . 9

2. Other Optimizations2. Other Optimizations
derived from state-of-the-art DBT engines

A. Indirect branch handlingA. Indirect branch handling
We implement Hong et al.'s [A] technique to speed up indirect branches

We add a new TCG operation so that all ISA targets can benefit

[A] Hong, Hsu, Chou, Hsu, Liu, Wu. "Optimizing Control Transfer and Memory Virtualization in Full System Emulators", ACM TACO, 2015
[B] Tong, Koju, Kawahito, Moshovos. "Optimizing memory translation emulation in full system emulators", ACM TACO, 2015 1 . 10

2. Other Optimizations2. Other Optimizations
derived from state-of-the-art DBT engines

B. Dynamic TLB resizing (full-system)B. Dynamic TLB resizing (full-system)
Virtual memory is emulated with a so�ware TLB

A. Indirect branch handlingA. Indirect branch handling
We implement Hong et al.'s [A] technique to speed up indirect branches

We add a new TCG operation so that all ISA targets can benefit

[A] Hong, Hsu, Chou, Hsu, Liu, Wu. "Optimizing Control Transfer and Memory Virtualization in Full System Emulators", ACM TACO, 2015
[B] Tong, Koju, Kawahito, Moshovos. "Optimizing memory translation emulation in full system emulators", ACM TACO, 2015 1 . 10

2. Other Optimizations2. Other Optimizations
derived from state-of-the-art DBT engines

B. Dynamic TLB resizing (full-system)B. Dynamic TLB resizing (full-system)
Virtual memory is emulated with a so�ware TLB
Tong et al. [B] present TLB resizing based on TLB use rate at flush time

We improve on it by incorporating history to shrink less aggressively

Rationale: if a memory-hungry process was just scheduled out, it is likely that it will
be scheduled in in the near future

A. Indirect branch handlingA. Indirect branch handling
We implement Hong et al.'s [A] technique to speed up indirect branches

We add a new TCG operation so that all ISA targets can benefit

[A] Hong, Hsu, Chou, Hsu, Liu, Wu. "Optimizing Control Transfer and Memory Virtualization in Full System Emulators", ACM TACO, 2015
[B] Tong, Koju, Kawahito, Moshovos. "Optimizing memory translation emulation in full system emulators", ACM TACO, 2015 1 . 10

Indirect branch + FP improvementsIndirect branch + FP improvements
user-mode x86_64-on-x86_64. Baseline: QEMU v3.1.0

1 . 11

TLB resizingTLB resizing
full-system x86_64-on-x86_64. Baseline: QEMU v3.1.0

+TLB history: takes
into account recent
usage of the TLB to
shrink less
aggressively,
improving
performance

1 . 12

3. Parallel code translation3. Parallel code translation
with a shared translation block (TB) cache

Monolithic TB cache (QEMU)Monolithic TB cache (QEMU)
Parallel TB execution (green blocks)
Serialized TB generation (red blocks) with
a global lock

1 . 13

3. Parallel code translation3. Parallel code translation
with a shared translation block (TB) cache

Monolithic TB cache (QEMU)Monolithic TB cache (QEMU)

Partitioned TB cache (Qelt)Partitioned TB cache (Qelt)

Parallel TB execution (green blocks)
Serialized TB generation (red blocks) with
a global lock

Parallel TB execution
Parallel TB generation (one region per vCPU)

vCPUs generate code at di�erent rates
Appropriate region sizing ensures low code cache waste 1 . 13

Parallel code translationParallel code translation
Guest VM performing parallel compilation of Linux kernel modules, x86_64-on-x86_64

QEMU scales for parallel
workloads that rarely translate
code, such as PARSEC [*]

However, QEMU does not scale for
this workload due to contention
on the lock serializing code
generation

+parallel generation removes the
scalability bottleneck

Scalability is similar (or better)
to KVM's [*] Cota, Bonzini, Bennée, Carloni. "Cross-ISA Machine Emulation for Multicores", CGO, 2017 1 . 14

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation

QEMU cannot instrument the guestQEMU cannot instrument the guest

Would like plugin code to receive callbacks on instruction-grained events
e.g. memory accesses performed by a particular instruction in a translated
block (TB), as in Pin 1 . 15

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR

1 . 16

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR
Plugins subscribe to events in a TB

They can use a decoder; Qelt only
sees opaque insns/accesses

1 . 16

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR
Plugins subscribe to events in a TB

They can use a decoder; Qelt only
sees opaque insns/accesses

Qelt then substitutes "empty"
instrumentation with the actual calls to
plugin callbacks (or removes it if not
needed)

1 . 16

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR
Plugins subscribe to events in a TB

They can use a decoder; Qelt only
sees opaque insns/accesses

Qelt then substitutes "empty"
instrumentation with the actual calls to
plugin callbacks (or removes it if not
needed)
Other features (see paper): direct callbacks, inlining, helper instrumentation 1 . 16

Full-system instrumentationFull-system instrumentation
x86_64-on-x86_64 (lower is better). Baseline: KVM

Qelt faster than the state-of-the-art, even for heavy instrumentation (cachesim) 1 . 17

Full-system instrumentationFull-system instrumentation
x86_64-on-x86_64 (lower is better). Baseline: KVM

Qelt faster than the state-of-the-art, even for heavy instrumentation (cachesim) 1 . 17

Full-system instrumentationFull-system instrumentation
x86_64-on-x86_64 (lower is better). Baseline: KVM

Qelt faster than the state-of-the-art, even for heavy instrumentation (cachesim) 1 . 17

User-mode instrumentationUser-mode instrumentation
x86_64-on-x86_64 (lower is better). Baseline: native

Qelt has narrowed
the gap with
Pin/DRIO for no
instr., although for
FP the gap is still
significant

1 . 18

User-mode instrumentationUser-mode instrumentation
x86_64-on-x86_64 (lower is better). Baseline: native

Qelt has narrowed
the gap with
Pin/DRIO for no
instr., although for
FP the gap is still
significant

DRIO is not
designed for non-
inline instr.

1 . 18

User-mode instrumentationUser-mode instrumentation
x86_64-on-x86_64 (lower is better). Baseline: native

Qelt has narrowed
the gap with
Pin/DRIO for no
instr., although for
FP the gap is still
significant

DRIO is not
designed for non-
inline instr.

Qelt is competitive
with Pin for heavy
instrumentation
(cachesim), while
being cross-ISA

1 . 18

ConclusionsConclusions

Fast FP emulation leveraging the host FPU
Scalable DBT-based code generation
Fast, ISA-agnostic instrumentation layer

Performance for simulator-like instrumentation is competitive with
state-of-the-art same-ISA, user-mode emulators such as Pin

Qelt's contributionsQelt's contributions

1 . 19

Qelt's impactQelt's impact
Instrumentation layer: under review by the QEMU community
Everything else: merged upstream, to be released in QEMU v4.0 (April'19)

Contributions well-received (and improved!) by the QEMU community
We hope our work will enable further adoption of QEMU to perform cross-
ISA emulation and instrumentation

ConclusionsConclusions

Fast FP emulation leveraging the host FPU
Scalable DBT-based code generation
Fast, ISA-agnostic instrumentation layer

Performance for simulator-like instrumentation is competitive with
state-of-the-art same-ISA, user-mode emulators such as Pin

Qelt's contributionsQelt's contributions

1 . 19

1 . 20

Backup slidesBackup slides

2 . 1

FP per-op contributionFP per-op contribution
user-mode x86-on-x86

2 . 2

Qelt InstrumentationQelt Instrumentation
Fine-grained event subscription when guest code is translated

e.g. subscription to memory reads in Pin vs Qelt:

VOID Instruction(INS ins)
{
 if (INS_IsMemoryRead(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)MemCB, ...);
}
VOID Trace(TRACE trace, VOID *v)
{
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
 for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))
 Instruction(ins);
}

static void vcpu_tb_trans(qemu_plugin_id_t id, unsigned int cpu_index, struct qemu_plugin_tb *tb)
{
 size_t n = qemu_plugin_tb_n_insns(tb);
 size_t i;

 for (i = 0; i < n; i++) {
 struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);

 qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, QEMU_PLUGIN_CB_NO_REGS, QEMU_PLUGIN_MEM_R);
 }

2 . 3

Instrumentation overheadInstrumentation overhead
user-mode, x86_64-on-x86_64

Typical overhead

Preemptive injection of
instrumentation has
negligible overhead

Direct callbacks

Better than going via
a helper (that iterates
over a list) due to
higher cache locality

2 . 4

All techniques put togetherAll techniques put together
user-mode x86_64-on-x86_64. Baseline: QEMU v3.1.0

2 . 5

CactusADM:
TLB resizing
doesn't kick

in o�en
enough (we
only do it on
TLB flushes)

2 . 6

SoftMMU overheadSoftMMU overhead
lower is better

CactusADM:
TLB resizing
doesn't kick

in o�en
enough (we
only do it on
TLB flushes)

2 . 7

SoftMMU using shadow page tables [^]SoftMMU using shadow page tables [^]

[^] Faravelon, Gruber, Pétrot. "Optimizing memory access performance using hardware assisted virtualization in retargetable dynamic binary translation. Euromicro Conference on Digital System Design (DSD), 2017.
[*] Belay, Bittau, Mashtizadeh, Terei, Mazieres, Kozyrakis. "Dune: Safe user-level access to privileged cpu features." OSDI, 2012

Before:
so�MMU requires

many insns

a�er:
only 2 insns thanks to
shadow page tables

Advantages:

High performance (almost 0
overhead for MMU emulation)
Minimal modifications to
QEMU compared to other
options in the literature

Disadvantages:

Requires dune*, which means
QEMU must be statically
compiled
Cannot work when target
address space => host address
space

2 . 8

cross-ISAcross-ISA
examples (1)examples (1)

x86-on-ppc64, make -j N inside a VM

aarch64-on-aarch64, Nbench FP

aarch64-on-x86, SPEC06fp

2 . 9

cross-ISA examples (2)cross-ISA examples (2)
ind. branches, x86-on-aarch64

 bench before a�er1 a�er2 a�er3 final_speedup

 aes 1.12s 1.12s 1.10s 1.00s 1.12
 bigint 0.78s 0.78s 0.78s 0.78s 1
 dhryst 0.96s 0.97s 0.49s 0.49s 1.9591837
 miniz 1.94s 1.94s 1.88s 1.86s 1.0430108
 norx 0.51s 0.51s 0.49s 0.48s 1.0625
 primes 0.85s 0.85s 0.84s 0.84s 1.0119048
 qsort 4.87s 4.88s 1.86s 1.86s 2.6182796
 sha512 0.76s 0.77s 0.64s 0.64s 1.1875

 bench before a�er1 a�er2 a�er3 final_speedup

 aes 2.68s 2.54s 2.60s 2.34s 1.1452991
 bigint 1.61s 1.56s 1.55s 1.64s 0.98170732
 dhryst 1.78s 1.67s 1.25s 1.24s 1.4354839
 miniz 3.53s 3.35s 3.28s 3.35s 1.0537313
 norx 1.13s 1.09s 1.07s 1.06s 1.0660377
 primes 15.37s 15.41s 15.20s 15.37s 1
 qsort 7.20s 6.71s 3.85s 3.96s 1.8181818
 sha512 1.07s 1.04s 0.90s 0.90s 1.1888889

Ind. branches, RISC-V on x86, user-mode

ind. branches, aarch64-on-x86

Ind. branches, RISC-V on x86, full-system

2 . 10

