
Scalable Emulation ofScalable Emulation of
Heterogeneous SystemsHeterogeneous Systems

Emilio G. CotaEmilio G. Cota

PhD Dissertation Defense
March 14, 2019

Columbia UniversityColumbia University

1 . 1

Moore's LawMoore's Law

Data: CPUDB, Intel ARK, Wikipedia: https://en.wikipedia.org/wiki/Transistor_count 1 . 2

Moore's LawMoore's Law

isn't deadisn't dead
but might be
slowing down

Data: CPUDB, Intel ARK, Wikipedia: https://en.wikipedia.org/wiki/Transistor_count 1 . 2

Plot from 2018 Turing Lecture by Hennessy & Patterson
Data based on models in Esmaeilzadeh et al., "Dark Silicon and the End of Multicore Scaling", ISCA'11

Dennard Scaling Dennard Scaling is is deaddead

power density increasing since the mid-00'spower density increasing since the mid-00's

1 . 3

1 . 4

End of
Dennard
scaling

1 . 4

End of
Dennard
scaling

~50% improv./year

<=10%/year

1 . 4

End of
Dennard
scaling

~50% improv./year

<=10%/year

1 . 4

End of
Dennard
scaling

~50% improv./year

<=10%/year

DVFS

"The Multicore
Scaling Era"

1 . 4

End of
Dennard
scaling

~50% improv./year

<=10%/year

DVFS

Speedup = (1−p)+

n
p

1

..but multicores can only take us so far
due to Amdahl's law:

and even if p == 1, multicore scaling will stop
due to growing power density:
growing portions of chips will have to remain
powered o� (a.k.a. "dark silicon")

"The Multicore
Scaling Era"

1 . 4

Post-Dennard Scaling EraPost-Dennard Scaling Era

AcceleratorsAccelerators
Give up generality for
greater e�iciency

embrace dark silicon: add
many accelerators; not all
will be on at the same time

Energy ef�ciency is the key metricEnergy ef�ciency is the key metric

1 . 5

Who can afford non-generality?Who can afford non-generality?

Accelerators are expensive to develop and
deploy, particularly ASICs

Example: Bitcoin acceleratorsExample: Bitcoin accelerators

Investment can only be amortized for
high-demand application domains

Taylor, "The Evolution of Bitcoin Hardware", IEEE Computer 2017 1 . 6

Who can afford non-generality?Who can afford non-generality?

Accelerators are expensive to develop and
deploy, particularly ASICs

Example: Bitcoin acceleratorsExample: Bitcoin accelerators

Example: TPU for neural networksExample: TPU for neural networks

Investment can only be amortized for
high-demand application domains

Taylor, "The Evolution of Bitcoin Hardware", IEEE Computer 2017

Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA'17

1 . 6

Today's systems are increasinglyToday's systems are increasingly

HeterogeneousHeterogeneous
Heterogeneous systemsHeterogeneous systems

integrate general-purposeintegrate general-purpose
cores with acceleratorscores with accelerators

With further transistor scaling,
increasing portions of the chip
will be devoted to accelerators

Example: Apple A12 7nm SoC ("Iphone X/XS")
Sources: techinsights.com "Apple iPhone XS Max Teardown", anandtech.com 1 . 7

Heterogeneous Systems'Heterogeneous Systems'

ChallengesChallenges
Accelerator designAccelerator design

System-level evaluationSystem-level evaluation

High-level synthesis tools enable
productive design space exploration

Simulators for heterogeneous systems are limited by a
lack of fast, scalable emulators

Accelerator IntegrationAccelerator Integration
Unused accelerators incur a large opportunity cost

1 . 8

Heterogeneous systems'Heterogeneous systems'

Emulation RequirementsEmulation Requirements
Accelerator modelingAccelerator modeling

Portable, cross-ISAPortable, cross-ISA

From RTL and/or high-level synthesis descriptions

Accelerators might require ISA innovations

Full-systemFull-system
Accelerators might a�ect the hardware-so�ware
interface, e.g. virtual memory or I/O

PerformancePerformance
Leverage multi-core hosts while maintaining correctness

Architecture
OS Compiler

1 . 9

"Fast, scalable machine emulation is feasible and useful for
evaluating the design and integration of heterogeneous systems"

T
h

es
is

T
h

es
is

1 . 10

"Fast, scalable machine emulation is feasible and useful for
evaluating the design and integration of heterogeneous systems"

T
h

es
is

T
h

es
is

C
o

n
tr

ib
u

ti
o

n
s

C
o

n
tr

ib
u

ti
o

n
s Cross-ISA Emulation Cross-ISA Emulation

Design of a scalable, full-system, cross-ISA emulator
Handling of guest-host ISA di�erences in atomic instructions

Fast, correct cross-ISA FP emulation leveraging the host FPU
Fast, cross-ISA instrumentation layer
Scalable emulation also during heavy code generation

Pico
[CGO'17]

Qelt
[VEE'19]

1 . 10

"Fast, scalable machine emulation is feasible and useful for
evaluating the design and integration of heterogeneous systems"

T
h

es
is

T
h

es
is

C
o

n
tr

ib
u

ti
o

n
s

C
o

n
tr

ib
u

ti
o

n
s Cross-ISA Emulation Cross-ISA Emulation

Design of a scalable, full-system, cross-ISA emulator
Handling of guest-host ISA di�erences in atomic instructions

Accelerator Integration Accelerator Integration

Quantitative comparison of accelerator couplings
Technique to lower the opportunity cost of accelerator
integration by reusing acc. memories to extend the LLC

Fast, correct cross-ISA FP emulation leveraging the host FPU
Fast, cross-ISA instrumentation layer
Scalable emulation also during heavy code generation

Pico
[CGO'17]

Qelt
[VEE'19]

[DAC'15]

1 . 10

ROCA
[CAL'14, ICS'16]

Pico: Cross-ISA MachinePico: Cross-ISA Machine
EmulationEmulation

Cota, Bonzini, Bennée, Carloni. "Cross-ISA Machine Emulation for Multicores", CGO, 2017

goal: e�icient, correct, multicore-on-multicore
cross-ISA emulation

2 . 1

1-Minute Emulation Tutorial1-Minute Emulation Tutorial
Main task:

Fetch -> Decode -> Execute
How? Two options:

2 . 2

1-Minute Emulation Tutorial1-Minute Emulation Tutorial
Main task:

Fetch -> Decode -> Execute
How? Two options:

uint8_t *ip;
uint8_t opcode;

while (true)

 // Read the next token from the instruction stream
 opcode = *ip;

 // Advance to the next byte in the stream
 ip++;

 // Decide what to do
 switch (opcode) {
 case PZT_ADD_32:
 ...
 break;
 case PZT_SUB_32:
 ...
 break;
 ...
 }
}

1. Interpretation

2 . 2

1-Minute Emulation Tutorial1-Minute Emulation Tutorial
Main task:

Fetch -> Decode -> Execute
How? Two options:

uint8_t *ip;
uint8_t opcode;

while (true)

 // Read the next token from the instruction stream
 opcode = *ip;

 // Advance to the next byte in the stream
 ip++;

 // Decide what to do
 switch (opcode) {
 case PZT_ADD_32:
 ...
 break;
 case PZT_SUB_32:
 ...
 break;
 ...
 }
}

1. Interpretation 2. Dynamic Binary Translation (DBT)

Faster than interpretation
More complex
 e.g., external "helpers" are needed to
deal with complex emulation

"DBT dispatch loop"

2 . 2

Pico makes QEMU* a scalable emulatorPico makes QEMU* a scalable emulator

Open source: https://www.qemu.org
Widely used in both industry and academia
Supports many ISAs through DBT via TCG, its Intermediate Representation (IR):

[*] Bellard. "QEMU, a fast and portable dynamic translator", ATC, 2005
2 . 3

Pico makes QEMU* a scalable emulatorPico makes QEMU* a scalable emulator

Open source: https://www.qemu.org
Widely used in both industry and academia
Supports many ISAs through DBT via TCG, its Intermediate Representation (IR):

Our contributions are not QEMU-specific
They are applicable to dynamic binary translators at large

[*] Bellard. "QEMU, a fast and portable dynamic translator", ATC, 2005
2 . 3

Challenges in scalable cross-ISA emulationChallenges in scalable cross-ISA emulation
 (1) Scalability of the DBT engine

(2) ISA disparities between guest & host:
(2.1) Memory consistency mismatches
(2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional

2 . 4

Challenges in scalable cross-ISA emulationChallenges in scalable cross-ISA emulation
 (1) Scalability of the DBT engine

(2) ISA disparities between guest & host:

[A] J. H. Ding et al. PQEMU: A parallel system emulator based on QEMU. ICPADS, 2011
[B] Z. Wang et al. COREMU: A scalable and portable parallel full-system emulator. PPoPP, 2011
[C] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, 2015

(2.1) Memory consistency mismatches
(2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional

Related Work:
PQEMU [A] and COREMU [B] do not address (2)
ArMOR [C] solves (2.1)

2 . 4

Challenges in scalable cross-ISA emulationChallenges in scalable cross-ISA emulation
 (1) Scalability of the DBT engine

(2) ISA disparities between guest & host:

[A] J. H. Ding et al. PQEMU: A parallel system emulator based on QEMU. ICPADS, 2011
[B] Z. Wang et al. COREMU: A scalable and portable parallel full-system emulator. PPoPP, 2011
[C] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, 2015

(2.1) Memory consistency mismatches
(2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional

Related Work:
PQEMU [A] and COREMU [B] do not address (2)
ArMOR [C] solves (2.1)

Pico's contributions: (1) & (2.2)Pico's contributions: (1) & (2.2)

2 . 4

Pico's ArchitecturePico's Architecture

One host thread per guest CPU
Instead of emulating guest CPUs one at a time

Key data structure: translation block cache
2 . 5

Translation Block (TB) CacheTranslation Block (TB) Cache

Bu�ers TBs to amortize translation cost
Shared by all vCPUs to minimize code
duplication

see [*] for a private vs. shared cache

comparison

[*] Bruening, Kiriansky, Garnett, Banerji. "Thread-shared so�ware code caches", CGO, 2006 2 . 6

Translation Block (TB) CacheTranslation Block (TB) Cache

Bu�ers TBs to amortize translation cost
Shared by all vCPUs to minimize code
duplication

see [*] for a private vs. shared cache

comparison

To scale for most workloads, we needTo scale for most workloads, we need
concurrent code concurrent code executionexecution

[*] Bruening, Kiriansky, Garnett, Banerji. "Thread-shared so�ware code caches", CGO, 2006 2 . 6

QEMU's Translation Block CacheQEMU's Translation Block Cache

2 . 7

QEMU's Translation Block CacheQEMU's Translation Block Cache

Problems in QEMU's TB hash table

2 . 7

QEMU's Translation Block CacheQEMU's Translation Block Cache

Long hash chains: slow lookups
Fixed number of buckets
hash=h(phys_addr) leads to uneven chain lengths

Problems in QEMU's TB hash table

2 . 7

QEMU's Translation Block CacheQEMU's Translation Block Cache

Long hash chains: slow lookups
Fixed number of buckets
hash=h(phys_addr) leads to uneven chain lengths

No support for concurrent lookups

Problems in QEMU's TB hash table

2 . 7

hash=h(phys_addr, phys_PC, cpu_flags): uniform chain distribution
e.g. longest chain down from 550 to 40 TBs when booting ARM Linux

QHT: A resizable, scalable hash table
scales for both reads & writes

Keeps QEMU's global lock for code translation
Translation is rare, but more on this later!

Pico's Translation Block CachePico's Translation Block Cache

2 . 8

Parallel PerformanceParallel Performance
(x86-on-x86)(x86-on-x86)

Speedup normalized over native's single-
threaded perf
Dashed: Ideal scaling
QEMU-user not shown: does not scale at all

2 . 9

Parallel PerformanceParallel Performance
(x86-on-x86)(x86-on-x86)

Speedup normalized over native's single-
threaded perf
Dashed: Ideal scaling
QEMU-user not shown: does not scale at all
Pico scales better than Native

PARSEC known not to scale to many cores*
DBT slowdown delays scalability collapse

[*] Southern, Renau. "Deconstructing PARSEC scalability", WDDD, 2015
2 . 9

Parallel PerformanceParallel Performance
(x86-on-x86)(x86-on-x86)

Speedup normalized over native's single-
threaded perf
Dashed: Ideal scaling
QEMU-user not shown: does not scale at all
Pico scales better than Native

PARSEC known not to scale to many cores*
DBT slowdown delays scalability collapse

[*] Southern, Renau. "Deconstructing PARSEC scalability", WDDD, 2015
2 . 9

Parallel PerformanceParallel Performance
(x86-on-x86)(x86-on-x86)

Speedup normalized over native's single-
threaded perf
Dashed: Ideal scaling
QEMU-user not shown: does not scale at all
Pico scales better than Native

PARSEC known not to scale to many cores*
DBT slowdown delays scalability collapse

Similar trends for server workloads

[*] Southern, Renau. "Deconstructing PARSEC scalability", WDDD, 2015
2 . 9

Atomic OperationsAtomic Operations
Two families:

/* runs as a single atomic instruction */
bool CAS(type *ptr, type old, type new) {
 if (*ptr != old) {
 return false;
 }
 ptr = new;
 return true;
}

Compare-and-Swap (CAS) Load Locked-Store Conditional (LL/SC)
/*
 * store_exclusive() returns 1 if addr has
 * been written to since load_exclusive()
 */
do {
 val = load_exclusive(addr);
 val += 1; /* do something */
} while (store_exclusive(addr, val);

ldl_l/stl_c lwarx/stwcx ldrex/strex ldaxr/strlxr ll/sc lr/sc

Alpha:
POWER:
ARM:
aarch64:
MIPS:
RISC-V:

x86/IA-64: cmpxchg

2 . 10

Atomic OperationsAtomic Operations
Two families:

/* runs as a single atomic instruction */
bool CAS(type *ptr, type old, type new) {
 if (*ptr != old) {
 return false;
 }
 ptr = new;
 return true;
}

Compare-and-Swap (CAS) Load Locked-Store Conditional (LL/SC)
/*
 * store_exclusive() returns 1 if addr has
 * been written to since load_exclusive()
 */
do {
 val = load_exclusive(addr);
 val += 1; /* do something */
} while (store_exclusive(addr, val);

ldl_l/stl_c lwarx/stwcx ldrex/strex ldaxr/strlxr ll/sc lr/sc

Challenge: How to correctly emulate atomics in a parallel
environment, without hurting scalability?

Alpha:
POWER:
ARM:
aarch64:
MIPS:
RISC-V:

x86/IA-64: cmpxchg

2 . 10

CAS on CAS host: TrivialCAS on CAS host: Trivial

CAS on LL/SC: TrivialCAS on LL/SC: Trivial

Challenge: How to correctly emulate atomics in a parallel
environment, without hurting scalability?

2 . 11

CAS on CAS host: TrivialCAS on CAS host: Trivial

CAS on LL/SC: TrivialCAS on LL/SC: Trivial

LL/SC on LL/SC: Not trivialLL/SC on LL/SC: Not trivial
Only a few simple instructions are allowed between LL and SC

Challenge: How to correctly emulate atomics in a parallel
environment, without hurting scalability?

2 . 11

CAS on CAS host: TrivialCAS on CAS host: Trivial

CAS on LL/SC: TrivialCAS on LL/SC: Trivial

LL/SC on LL/SC: Not trivialLL/SC on LL/SC: Not trivial
Only a few simple instructions are allowed between LL and SC

LL/SC on CAS: Not trivialLL/SC on CAS: Not trivial
Solving this solves LL/SC on LL/SC, because LL/SC is stronger than CAS
However, there's the ABA problem

Challenge: How to correctly emulate atomics in a parallel
environment, without hurting scalability?

2 . 11

ABA ProblemABA Problem
tim

e

cpu0 cpu1

do {
 val = load_exclusive(addr); /* reads A */
 ...
 ...
} while (store_exclusive(addr, newval);

atomic_set(addr, B);
atomic_set(addr, A);

Init: *addr = A;

SC fails, regardless of the contents of *addr

2 . 12

ABA ProblemABA Problem

cpu0 cpu1

do {
 val = atomic_read(addr); /* reads A */
 ...
 ...
} while (CAS(addr, val, newval);

atomic_set(addr, B);
atomic_set(addr, A);

tim
e

cpu0 cpu1

do {
 val = load_exclusive(addr); /* reads A */
 ...
 ...
} while (store_exclusive(addr, newval);

atomic_set(addr, B);
atomic_set(addr, A);

Init: *addr = A;

SC fails, regardless of the contents of *addr

CAS succeeds where SC failed!

tim
e

2 . 12

Pico's Emulation of AtomicsPico's Emulation of Atomics
3 proposed options that scale:

1. Pico-CAS: pretend ABA isn't an issue1. Pico-CAS: pretend ABA isn't an issue
Scalable & fast, yet incorrect due to ABA!

However, portable code relies on CAS only, not on LL/SC
(e.g. Linux kernel, gcc atomics)

2. Pico-ST: "store tracking"2. Pico-ST: "store tracking"
Correct, scalable & portable
Perf penalty due to instrumenting regular stores

3. Pico-HTM: Leverages hardware transactional3. Pico-HTM: Leverages hardware transactional
memory (HTM) extensionsmemory (HTM) extensions

Correct & scalable
No need to instrument regular stores

But requires HTM support on the host 2 . 13

Atomic emulation perfAtomic emulation perf
Pico-user atomic_add, multi-threaded, aarch64-on-POWER

Trade-off: correctness vs. scalability vs. portabilityTrade-off: correctness vs. scalability vs. portability

All Pico options scale as contention is reduced
QEMU cannot scale: it stops all other CPUs on every atomic

Pico-CAS is the fastest, yet is not correct
Pico-HTM performs well, but requires hardware support
Pico-ST scales, but it is slowed down by store instrumentation
HTM noise: probably due to optimized same-core SMT transactions 2 . 14

Qelt: Cross-ISA MachineQelt: Cross-ISA Machine
InstrumentationInstrumentation

Cota, Carloni. "Cross-ISA Machine Instrumentation using Fast and Scalable Dynamic Binary Translation", VEE, 2019

goal: fast, scalable instrumentation of a machine
emulator

3 . 1

How fast?How fast?

Goal: match Pin's speed when using it for simulation
Note that Pin is same-ISA, user-only

Recall our motivation:Recall our motivation:
Fast, Fast, cross-ISA, full-system cross-ISA, full-system instrumentationinstrumentation

3 . 2

How fast?How fast?

Goal: match Pin's speed when using it for simulation
Note that Pin is same-ISA, user-only

Recall our motivation:Recall our motivation:
Fast, Fast, cross-ISA, full-system cross-ISA, full-system instrumentationinstrumentation

How to get there? Need to:How to get there? Need to:

Increase emulation speed
Pico is slower than Pin, particularly for full-system and FP
workloads
Pico does not scale for workloads that translate a lot of code in
parallel, e.g. parallel compilation

Support cross-ISA instrumentation of the guest 3 . 2

Qelt's contributionsQelt's contributions
Emulation SpeedEmulation Speed

1. Correct cross-ISA FP emulation using the host FPU

2. Integration of two state-of-the-art optimizations:

indirect branch handling

dynamic sizing of the so�ware TLB

3. Make the DBT engine scale under heavy code translation

 Not just during execution, like Pico

InstrumentationInstrumentation
 4. Fast, ISA-agnostic instrumentation layer for QEMU 3 . 3

1. Cross-ISA FP Emulation1. Cross-ISA FP Emulation
Rounding, NaN propagation, exceptions, etc. have to be emulated correctly
Reading the host FPU flags is very expensive

so�-float is faster, which is why QEMU uses it

Qelt uses the host FPU for a subset of FP operations, without ever
reading the host FPU flags

Fortunately, this subset is very common
defers to so�-float otherwise

baseline (incorrect): always
uses the host FPU and never

reads excp. flags

3 . 4

1. Cross-ISA FP Emulation1. Cross-ISA FP Emulation
Common case:Common case:

A, B are normal or zero
Inexact already set
Default rounding

How common?

99.18%99.18%
of FP instructions in SPECfp06

float64 float64_mul(float64 a, float64 b, fp_status *st)
{
 float64_input_flush2(&a, &b, st);
 if (likely(float64_is_zero_or_normal(a) &&
 float64_is_zero_or_normal(b) &&
 st->exception_flags & FP_INEXACT &&
 st->round_mode == FP_ROUND_NEAREST_EVEN)) {
 if (float64_is_zero(a) || float64_is_zero(b)) {
 bool neg = float64_is_neg(a) ^ float64_is_neg(b);
 return float64_set_sign(float64_zero, neg);
 } else {
 double ha = float64_to_double(a);
 double hb = float64_to_double(b);
 double hr = ha * hb;
 if (unlikely(isinf(hr))) {
 st->float_exception_flags |= float_flag_overflow;
 } else if (unlikely(fabs(hr) <= DBL_MIN)) {
 goto soft_fp;
 }
 return double_to_float64(hr);
 }
 }
soft_fp:
 return soft_float64_mul(a, b, st);
}

.. and similarly for 32/64b + , - , , , , ==× ÷ √ 3 . 5

2. Other Optimizations2. Other Optimizations
derived from state-of-the-art DBT engines

A. Indirect branch handlingA. Indirect branch handling
We implement Hong et al.'s [A] technique to speed up indirect branches

We add a new TCG operation so that all ISA targets can benefit

[A] Hong, Hsu, Chou, Hsu, Liu, Wu. "Optimizing Control Transfer and Memory Virtualization in Full System Emulators", ACM TACO, 2015
[B] Tong, Koju, Kawahito, Moshovos. "Optimizing memory translation emulation in full system emulators", ACM TACO, 2015

3 . 6

2. Other Optimizations2. Other Optimizations
derived from state-of-the-art DBT engines

B. TLB Emulation (full-system)B. TLB Emulation (full-system)
Virtual memory is emulated with a so�ware TLB

Guest memory accesses first check a TLB array on the host

A. Indirect branch handlingA. Indirect branch handling
We implement Hong et al.'s [A] technique to speed up indirect branches

We add a new TCG operation so that all ISA targets can benefit

[A] Hong, Hsu, Chou, Hsu, Liu, Wu. "Optimizing Control Transfer and Memory Virtualization in Full System Emulators", ACM TACO, 2015
[B] Tong, Koju, Kawahito, Moshovos. "Optimizing memory translation emulation in full system emulators", ACM TACO, 2015

3 . 6

2. Other Optimizations2. Other Optimizations
derived from state-of-the-art DBT engines

B. TLB Emulation (full-system)B. TLB Emulation (full-system)
Virtual memory is emulated with a so�ware TLB

Guest memory accesses first check a TLB array on the host

Tong et al. [B] present TLB resizing based on TLB use rate at flush time

We improve on it by incorporating history to shrink less aggressively

Rationale: if a memory-hungry process was just scheduled out, it is likely that it will
be scheduled in in the near future

A. Indirect branch handlingA. Indirect branch handling
We implement Hong et al.'s [A] technique to speed up indirect branches

We add a new TCG operation so that all ISA targets can benefit

[A] Hong, Hsu, Chou, Hsu, Liu, Wu. "Optimizing Control Transfer and Memory Virtualization in Full System Emulators", ACM TACO, 2015
[B] Tong, Koju, Kawahito, Moshovos. "Optimizing memory translation emulation in full system emulators", ACM TACO, 2015

3 . 6

Ind. branch + FP improv.Ind. branch + FP improv.
user-mode x86_64-on-x86_64. Baseline: Pico (i.e. QEMU v3.1.0)

3 . 7

TLB resizingTLB resizing
full-system x86_64-on-x86_64. Baseline: Pico (i.e. QEMU v3.1.0)

+TLB history: takes
into account recent
usage of the TLB to
shrink less
aggressively,
improving
performance

3 . 8

3. Parallel code translation3. Parallel code translation
with a shared translation block (TB) cache

Monolithic TB cache (Pico)Monolithic TB cache (Pico)
Parallel TB execution (green blocks)
Serialized TB generation (red blocks) with
a global lock

3 . 9

3. Parallel code translation3. Parallel code translation
with a shared translation block (TB) cache

Monolithic TB cache (Pico)Monolithic TB cache (Pico)

Partitioned TB cache (Qelt)Partitioned TB cache (Qelt)

Parallel TB execution (green blocks)
Serialized TB generation (red blocks) with
a global lock

Parallel TB execution
Parallel TB generation (one region per vCPU)

vCPUs generate code at di�erent rates
Appropriate region sizing ensures low code cache waste 3 . 9

Parallel code translationParallel code translation
Guest VM performing parallel compilation of Linux kernel modules, x86_64-on-x86_64

Pico does not scale for this
workload due to contention on
the lock serializing code
generation

+parallel generation removes the
scalability bottleneck

Scalability is similar (or better)
to KVM's

3 . 10

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation

QEMU/Pico cannot instrument the guestQEMU/Pico cannot instrument the guest

Would like plugin code to receive callbacks on instruction-grained events
e.g. memory accesses performed by a particular instruction in a translated
block (TB), as in Pin 3 . 11

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR

3 . 12

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR
Plugins subscribe to events in a TB

They can use a decoder; Qelt only
sees opaque insns/accesses

3 . 12

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR
Plugins subscribe to events in a TB

They can use a decoder; Qelt only
sees opaque insns/accesses

Qelt then substitutes "empty"
instrumentation with the actual calls to
plugin callbacks (or removes it if not
needed)

3 . 12

4. Cross-ISA Instrumentation4. Cross-ISA Instrumentation
Instrumentation with QeltInstrumentation with Qelt

Qelt first adds "empty" instrumentation
in TCG, QEMU's IR
Plugins subscribe to events in a TB

They can use a decoder; Qelt only
sees opaque insns/accesses

Qelt then substitutes "empty"
instrumentation with the actual calls to
plugin callbacks (or removes it if not
needed)
Other features: inlining, helper instr., accelerator support (DMA, interrupts, I/O)... 3 . 12

Full-system instrumentationFull-system instrumentation
x86_64-on-x86_64 (lower is better). Baseline: KVM

Qelt faster than the state-of-the-art, even for heavy instrumentation (cachesim) 3 . 13

User-mode instrumentationUser-mode instrumentation
x86_64-on-x86_64 (lower is better). Baseline: native

Qelt has narrowed
the gap with
Pin/DRIO for no
instr., although for
FP the gap is still
significant

3 . 14

User-mode instrumentationUser-mode instrumentation
x86_64-on-x86_64 (lower is better). Baseline: native

Qelt has narrowed
the gap with
Pin/DRIO for no
instr., although for
FP the gap is still
significant

DRIO is not
designed for non-
inline instr.

3 . 14

User-mode instrumentationUser-mode instrumentation
x86_64-on-x86_64 (lower is better). Baseline: native

Qelt has narrowed
the gap with
Pin/DRIO for no
instr., although for
FP the gap is still
significant

DRIO is not
designed for non-
inline instr.

Qelt is competitive
with Pin for heavy
instrumentation
(cachesim), while
being cross-ISA

3 . 14

"Fast, scalable machine emulation is feasible and useful for
evaluating the design and integration of heterogeneous systems"

T
h

es
is

T
h

es
is

C
o

n
tr

ib
u

ti
o

n
s

C
o

n
tr

ib
u

ti
o

n
s Cross-ISA Emulation Cross-ISA Emulation

Design of a scalable, full-system, cross-ISA emulator
Handling of guest-host ISA di�erences in atomic instructions

Accelerator Integration Accelerator Integration

Quantitative comparison of accelerator couplings
Technique to lower the opportunity cost of accelerator
integration by reusing acc. memories to extend the LLC

Fast, correct cross-ISA FP emulation leveraging the host FPU
Fast, cross-ISA instrumentation layer
Scalable emulation also during heavy code generation

Pico
[CGO'17]

Qelt
[VEE'19]

[DAC'15]
ROCA

[CAL'14, ICS'16] 4

"Fast, scalable machine emulation is feasible and useful for
evaluating the design and integration of heterogeneous systems"

T
h

es
is

T
h

es
is

C
o

n
tr

ib
u

ti
o

n
s

C
o

n
tr

ib
u

ti
o

n
s Cross-ISA Emulation Cross-ISA Emulation

Design of a scalable, full-system, cross-ISA emulator
Handling of guest-host ISA di�erences in atomic instructions

Accelerator Integration Accelerator Integration

Quantitative comparison of accelerator couplings
Technique to lower the opportunity cost of accelerator
integration by reusing acc. memories to extend the LLC

Fast, correct cross-ISA FP emulation leveraging the host FPU
Fast, cross-ISA instrumentation layer
Scalable emulation also during heavy code generation

Pico
[CGO'17]

Qelt
[VEE'19]

[DAC'15]
ROCA

[CAL'14, ICS'16] 4

Accelerator Coupling inAccelerator Coupling in
Heterogeneous ArchitecturesHeterogeneous Architectures

Cota, Mantovani, Di Guglielmo, Carloni. "An Analysis of Accelerator Coupling in Heterogeneous Architectures", DAC, 2015

goal: to draw observations about
performance, e�iciency and programmability

of accelerators with di�erent couplings

5 . 1

✔Nil invocation overhead (via ISA extensions)
✔ No internal storage: direct access to L1 cache
✗ Limited portability: design heavily tied to CPU

✔Good design reuse: no CPU-specific knowledge
✗ High set-up costs: driver invocation and DMA
✔ Freedom to tailor private memories (PLMs), e.g.
providing di�erent banks, ports, and bit widths
✗ PLMs require large area expenses

Tightly-Coupled AcceleratorsTightly-Coupled Accelerators
TCA

Loosely-Coupled AcceleratorsLoosely-Coupled Accelerators
LCA, two flavors: DRAM-DMA, LLC-DMA

vs.vs.

Applications: Seven high-throughput kernels from the PERFECT Benchmark Suite[*]
Used High-Level Synthesis for productivity [*] http://hpc.pnl.gov/PERFECT/5 . 2

Cargo: Heterogeneous System SimulationCargo: Heterogeneous System Simulation

Full-system running Linux
Detailed event-driven L1 and L2 cache models + DRAMSim2 for DRAM
LCAs: Unmodified SystemC/RTL/Chisel/C/C++ accelerators are simulated in
parallel with the CPU simulation, synchronizing every n cycles (e.g. 100)

AcceleratorsAccelerators CPU & memoryCPU & memory

5 . 3

ResultsResults
Perf. & Ef�ciencyPerf. & Ef�ciency

LCAs best positioned to deliver high throughput
given inputs of non-trivial size

E�iciency gap between LCAs due to di�erence
in o�-chip accesses
LCAs can saturate DRAM bandwidth, e.g. sort:

5 . 4

ResultsResults
Perf. & Ef�ciencyPerf. & Ef�ciency

LCAs best positioned to deliver high throughput
given inputs of non-trivial size

E�iciency gap between LCAs due to di�erence
in o�-chip accesses
LCAs can saturate DRAM bandwidth, e.g. sort:

Why LCAs > TCAs:
Tailored, many-ported PLMs are
key to performance

L1s cannot provide this
parallelism (at most 2 ports!)

5 . 4

ROCA: Reducing the ROCA: Reducing the
Opportunity Cost ofOpportunity Cost of

Accelerator IntegrationAccelerator Integration

Cota, Mantovani, Petracca, Casu, Carloni. "Accelerator Memory Reuse in the Dark Silicon Era", Computer Architecture Letters (CAL), 2014
Cota, Mantovani, Carloni. "Exploiting Private Local Memories to Reduce the Opportunity Cost of Accelerator Integration", Intl. Conf. on Supercomputing (ICS), 2016

goal: to expose on-chip accelerator PLMs to the
LLC, thereby extracting utility from accelerators

when otherwise unused

6 . 1

Accelerators' Opportunity CostAccelerators' Opportunity Cost

An accelerator is only of utility if it applies to the
system's workload

6 . 2

Accelerators' Opportunity CostAccelerators' Opportunity Cost

An accelerator is only of utility if it applies to the
system's workload

If it doesn't, more generally-applicable alternatives
are more productive

vs.

6 . 2

Accelerators' Opportunity CostAccelerators' Opportunity Cost

An accelerator is only of utility if it applies to the
system's workload

If it doesn't, more generally-applicable alternatives
are more productive

vs. vs.

6 . 2

Accelerators' Opportunity CostAccelerators' Opportunity Cost

An accelerator is only of utility if it applies to the
system's workload

If it doesn't, more generally-applicable alternatives
are more productive

vs. vs. vs.

6 . 2

Observation #1:Observation #1: Accelerators are mostly memory Accelerators are mostly memory

“ An average of 69% of accelerator area is consumed by memory
Lyons, Hempstead, Wei, Brooks. "The Accelerator Store", TACO, 2012

#2: Average accelerator memory utilization is low#2: Average accelerator memory utilization is low
Not all accelerators on a chip are likely to run at the same time

Accelerator examples: AES, JPEG encoder, FFT, USB, CAN, TFT controller, UMTS decoder..

#3:#3: Acc. PLMs provide a de facto NUCA substrate Acc. PLMs provide a de facto NUCA substrate

6 . 3

Observation #1:Observation #1: Accelerators are mostly memory Accelerators are mostly memory

“ An average of 69% of accelerator area is consumed by memory
Lyons, Hempstead, Wei, Brooks. "The Accelerator Store", TACO, 2012

#2: Average accelerator memory utilization is low#2: Average accelerator memory utilization is low
Not all accelerators on a chip are likely to run at the same time

Accelerator examples: AES, JPEG encoder, FFT, USB, CAN, TFT controller, UMTS decoder..

ROCA'sROCA's

Goal:Goal:

No changes to coherence protocol

Minimal modifications to accelerators

To extend the LLC with acc.To extend the LLC with acc.
PLMs when otherwise notPLMs when otherwise not
in usein use

#3:#3: Acc. PLMs provide a de facto NUCA substrate Acc. PLMs provide a de facto NUCA substrate

6 . 3

Parallel Simulation with CargoParallel Simulation with Cargo

Configurations:

2M S-NUCA baseline
8MB S-NUCA (not pictured)
same-area 6M ROCA, assuming accelerators are
66% memory (below the typical 69%)

cores 16 cores, i386 ISA, in-order IPC=1
except on memory accesses, 1GHz

L1 caches Split I/D 32KB, 4-way set-associative,
1-cycle latency, LRU

L2 caches 8-cycle latency, LRU
S-NUCA: 16ways, 8 banks
ROCA: 12 ways

Coherence MESI protocol, 64-byte blocks,
standalone directory cache

DRAM 1 controller, 200-cycle latency, 3.5GB
physical

NoC 5x5 or 7x7 mesh, 128b flits, 2-cycle
router traversal, 1-cycle links, XY
router

OS Linux v2.6.34

Workloads:

Multi-programmed SPEC06 runs, not
amenable to acceleration

6 . 4

Assuming no accelerator activity,

6M ROCA can realize 70%/68% of the
performance/energy e�iciency benefits of a
same-area 8M S-NUCA

while retaining accelerators' potential
orders-of-magnitude gains

Sensitivity studies sweeping accelerator activity over
space (which accelerators are reclaimed)
time (how frequently they are reclaimed)

Key result: Accelerators with idle windows >10ms are prime candidates for ROCA
perf/e�. within 10/20% of that with 0% activity

ResultsResults

6 . 5

ConclusionsConclusions

7 . 1

ContributionsContributions
Cross-ISA EmulationCross-ISA Emulation

[CGO'17, VEE'19] Fast, scalable, cross-ISA machine emulation and
instrumentation

Performance for simulator-like instrumentation is competitive with state-
of-the-art same-ISA emulators such as Pin

 Accelerator Integration Accelerator Integration
[DAC'15] Quantitative comparison of accelerator couplings
[CAL'14, ICS'16] ROCA: Lower the opportunity cost of accelerator integration by
reusing acc. memories to extend the LLC

[CAL'14] Cota, Mantovani, Petracca, Casu, Carloni. "Accelerator Memory Reuse in the Dark Silicon Era", Computer Architecture Letters (CAL), 2014
[DAC'15] Cota, Mantovani, Di Guglielmo, Carloni. "An Analysis of Accelerator Coupling in Heterogeneous Architectures", DAC, 2015
[ICS'16] Cota, Mantovani, Carloni. "Exploiting Private Local Memories to Reduce the Opportunity Cost of Accelerator Integration", Intl. Conf. on Supercomputing (ICS), 2016
[CGO'17] Cota, Bonzini, Bennée, Carloni. "CrossISA Machine Emulation for Multicores", CGO, 2017
[VEE'19] Cota, Carloni. "CrossISA Machine Instrumentation using Fast and Scalable Dynamic Binary Translation", VEE, 2019

7 . 2

Instrumentation layer: under review by the QEMU community
Everything else: merged upstream QEMU v2.7 (Sept'16) QEMU v4.0 (April'19)

Code contributions well-received (and improved!) by the QEMU community
302 commits to date

↔

Pico + Qelt in QEMUPico + Qelt in QEMU

7 . 3

 Future Impact Future Impact
We hope other researchers and educators will adopt QEMU to drive
simulators of heterogeneous systems
Cargo is a good example

Orders of magnitude faster than existing tools such as gem5-aladdin
(~200 KIPS vs. ~10s of MIPS)
Has been used for both research and teaching at Columbia

Instrumentation layer: under review by the QEMU community
Everything else: merged upstream QEMU v2.7 (Sept'16) QEMU v4.0 (April'19)

Code contributions well-received (and improved!) by the QEMU community
302 commits to date

↔

Pico + Qelt in QEMUPico + Qelt in QEMU

7 . 3

7 . 4

Backup slidesBackup slides

8 . 1

[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared so�ware code caches. CGO, pages 28–38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631–644, 2015

Fast, concurrent lookups
Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])
Candidate #2: CLHT [13]
#3: Our proposal: QHT

Lock-free lookups, but no restrictions on the mem allocator
 Per-bucket sequential locks; retries very unlikely

Hash tableHash table
RequirementsRequirements {{

8 . 2

QEMU emulation modesQEMU emulation modes

DBT of user-space code only
System calls are run natively on the host machine
QEMU executes all translated code under a global lock

Forces serialization to safely emulate multi-threaded code

User-mode (QEMU-user)User-mode (QEMU-user)

8 . 3

QEMU emulation modesQEMU emulation modes

DBT of user-space code only
System calls are run natively on the host machine
QEMU executes all translated code under a global lock

Forces serialization to safely emulate multi-threaded code

Emulates an entire machine
Including guest OS and system devices

QEMU uses a single thread to emulate guest CPUs using DBT
No need for a global lock since no races are possible

User-mode (QEMU-user)User-mode (QEMU-user)

System-mode (QEMU-system)System-mode (QEMU-system)

8 . 3

Single-threaded perf (x86-on-x86)Single-threaded perf (x86-on-x86)

Pico-user is 20-90% faster than QEMU-user due to lockless TB
lookups
Pico-system's perf is virtually identical to QEMU-system's

8 . 4

Pico-ST: Store TrackingPico-ST: Store Tracking
Each address accessed atomically gets an entry of CPU set + lock

LL/SC emulation code operates on the CPU set atomically
Keep entries in a HT indexed by address of atomic access

8 . 5

Pico-ST: Store TrackingPico-ST: Store Tracking
Each address accessed atomically gets an entry of CPU set + lock

LL/SC emulation code operates on the CPU set atomically
Keep entries in a HT indexed by address of atomic access
Problem: regular stores must abort conflicting LL/SC pairs!

8 . 5

Pico-ST: Store TrackingPico-ST: Store Tracking
Each address accessed atomically gets an entry of CPU set + lock

LL/SC emulation code operates on the CPU set atomically
Keep entries in a HT indexed by address of atomic access
Problem: regular stores must abort conflicting LL/SC pairs!
Solution: instrument stores to check whether the address has ever been
accessed atomically

If so (rare), take the appropriate lock and clear the CPU set
Optimization: Atomics << regular stores: filter HT accesses with a sparse
bitmap

8 . 5

Pico-HTM: Leveraging HTMPico-HTM: Leveraging HTM
HTM available on recent POWER, s390 and x86_64 machines
Wrap the emulation of code between LL/SC in a transaction

Conflicting regular stores dealt with thanks to the strong
atomicity property*: "A regular store forces all conflicting transactions to abort."

[*] Blundell, Lewis, Martin. "Subtleties of transactional memory atomicity semantics", Computer Architecture Letters, 2006 8 . 6

Pico-HTM: Leveraging HTMPico-HTM: Leveraging HTM
HTM available on recent POWER, s390 and x86_64 machines
Wrap the emulation of code between LL/SC in a transaction

Conflicting regular stores dealt with thanks to the strong
atomicity property*: "A regular store forces all conflicting transactions to abort."

[*] Blundell, Lewis, Martin. "Subtleties of transactional memory atomicity semantics", Computer Architecture Letters, 2006

Fallback: Emulate the LL/SC sequence with all other CPUs stopped

8 . 6

Pico-HTM: Leveraging HTMPico-HTM: Leveraging HTM
HTM available on recent POWER, s390 and x86_64 machines
Wrap the emulation of code between LL/SC in a transaction

Conflicting regular stores dealt with thanks to the strong
atomicity property*: "A regular store forces all conflicting transactions to abort."

[*] Blundell, Lewis, Martin. "Subtleties of transactional memory atomicity semantics", Computer Architecture Letters, 2006

Fallback: Emulate the LL/SC sequence with all other CPUs stopped
Fun fact: no emulated SC ever reports failure!

8 . 6

Atomic emulation perfAtomic emulation perf
Pico-user, single thread, aarch64-on-x86

Pico-CAS & HTM: no overhead (but only HTM is correct)
Pico-ST: Virtually all overhead comes from instrumenting stores
Pico-ST-nobm: highlights the benefits of the bitmap 8 . 7

Atomic emulation perfAtomic emulation perf
Pico-user atomic_add, multi-threaded, aarch64-on-POWER

atomic_addatomic_add microbenchmark microbenchmark
All threads perform atomic increments in a loop
No false sharing: each count resides in a separate cache line
Contention set by the n_elements parameter

i.e. if n_elements = 1, all threads contend for the same line
Scheduler policy: evenly scatter threads across cores

struct count {
 u64 val;
} __aligned(64); /* avoid false sharing */

struct count *counts;

while (!test_stop) {
 int index = rand() % n_elements;
 atomic_increment(&counts[index].val);
}

8 . 8

Linux bootLinux boot
single thread

QHT & ck_hs resize to always achieve the best perf
but ck_hs does not scale w/ ~6% update rates 8 . 9

Memory ConsistencyMemory Consistency
x86-on-POWER

We applied ArMOR's [24] FSMs:

SYNC: Insert a full barrier before
every load or store
PowerA: Separate loads with
lwsync, pretending that POWER
is multi-copy atomic

, and also leveraged

SAO: Strong Access Ordering

[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388–400, 2015 8 . 10

Read-Copy-Update (RCU)Read-Copy-Update (RCU)

RCU is a way of waiting for things to finish,
without tracking every one of them

Credit: Paul McKenney

8 . 11

Read-Copy-Update (RCU)Read-Copy-Update (RCU)

RCU is a way of waiting for things to finish,
without tracking every one of them

Credit: Paul McKenney

8 . 11

Sequence LocksSequence Locks
void *qht_lookup__slowpath(struct qht_bucket *b, qht_lookup_func_t func,
 const void *userp, uint32_t hash)
{
 unsigned int version;
 void *ret;

 do {
 version = seqlock_read_begin(&b->sequence);
 ret = qht_do_lookup(b, func, userp, hash);
 } while (seqlock_read_retry(&b->sequence, version));
 return ret;
}

Reader

Writer

seq=0 seq=3

seq=1 seq=2

seq=3

Retry

Reader: Sequence number must be even, and must remain unaltered. Otherwise, retry

seq=3 seq=4

RetryRetry
seq=4

8 . 12

seq=4

CLHT malloc requirementCLHT malloc requirement
val_t val = atomic_read(&bucket->val[i]);
smp_rmb();
if (atomic_read(&bucket->key [i]) == key && atomic_read(&bucket->val[i]) == val) {
 /* found */
}

“ the memory allocator of the values must guarantee that the same
address cannot appear twice during the lifespan of an operation.

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, pages

631–644, 2015

8 . 13

Multi-copy AtomicityMulti-copy Atomicity
iriw litmus testiriw litmus test

cpu0 cpu1 cpu2 cpu3

x=1 y=1 r1=x
r2=y

r3=y
r4=x

Forbidden outcome: r1 = r3 = 1, r2 = r4 = 0
The outcome is forbidden on x86
It is observable on POWER unless the loads are separated by
a sync instruction

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. ACM
SIGPLAN Notices, volume 43, pages 68–78, 2008. 8 . 14

EvaluationEvaluation
user-mode x86_64-on-x86_64. Baseline: Pico (i.e. QEMU v3.1.0)

8 . 15

FP per-op contributionFP per-op contribution
user-mode x86-on-x86

8 . 16

Qelt InstrumentationQelt Instrumentation
Fine-grained event subscription when guest code is translated

e.g. subscription to memory reads in Pin vs Qelt:

VOID Instruction(INS ins)
{
 if (INS_IsMemoryRead(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)MemCB, ...);
}
VOID Trace(TRACE trace, VOID *v)
{
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
 for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))
 Instruction(ins);
}

static void vcpu_tb_trans(qemu_plugin_id_t id, unsigned int cpu_index, struct qemu_plugin_tb *tb)
{
 size_t n = qemu_plugin_tb_n_insns(tb);
 size_t i;

 for (i = 0; i < n; i++) {
 struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);

 qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, QEMU_PLUGIN_CB_NO_REGS, QEMU_PLUGIN_MEM_R);
 }

8 . 17

Instrumentation overheadInstrumentation overhead
user-mode, x86_64-on-x86_64

Typical overhead

Preemptive injection of
instrumentation has
negligible overhead

Direct callbacks

Better than going via
a helper (that iterates
over a list) due to
higher cache locality

8 . 18

CactusADM
an anomaly:
TLB resizing
doesn't kick

in o�en
enough (we
only do it on
TLB flushes)

8 . 19

SoftMMU overheadSoftMMU overhead
lower is better

CactusADM
an anomaly:
TLB resizing
doesn't kick

in o�en
enough (we
only do it on
TLB flushes)

8 . 20

SoftMMU using shadow page tablesSoftMMU using shadow page tables

Faravelon, Gruber, Pétrot. "Optimizing memory access performance using hardware assisted virtualization in retargetable dynamic binary translation. Euromicro Conference on Digital System Design (DSD), 2017.
[*] Belay, Bittau, Mashtizadeh, Terei, Mazieres, Kozyrakis. "Dune: Safe user-level access to privileged cpu features." OSDI, 2012

Before:
so�MMU requires

many insns

a�er:
only 2 insns thanks to
shadow page tables

Advantages:

High performance (almost 0
overhead for MMU emulation)
Minimal modifications to
QEMU compared to other
options in the literature

Disadvantages:

Requires dune*, which means
QEMU must be statically
compiled
Cannot work when target
address space => host address
space

8 . 21

cross-ISAcross-ISA
examples (1)examples (1)

x86-on-ppc64, make -j N inside a VM

aarch64-on-aarch64, Nbench FP

aarch64-on-x86, SPEC06fp

8 . 22

cross-ISA examples (2)cross-ISA examples (2)
ind. branches, x86-on-aarch64

 bench before a�er1 a�er2 a�er3 final speedup

 aes 1.12s 1.12s 1.10s 1.00s 1.12
 bigint 0.78s 0.78s 0.78s 0.78s 1
 dhrystone 0.96s 0.97s 0.49s 0.49s 1.9591837
 miniz 1.94s 1.94s 1.88s 1.86s 1.0430108
 norx 0.51s 0.51s 0.49s 0.48s 1.0625
 primes 0.85s 0.85s 0.84s 0.84s 1.0119048
 qsort 4.87s 4.88s 1.86s 1.86s 2.6182796
 sha512 0.76s 0.77s 0.64s 0.64s 1.1875

 bench before a�er1 a�er2 a�er3 final speedup

 aes 2.68s 2.54s 2.60s 2.34s 1.1452991
 bigint 1.61s 1.56s 1.55s 1.64s 0.98170732
 dhrystone 1.78s 1.67s 1.25s 1.24s 1.4354839
 miniz 3.53s 3.35s 3.28s 3.35s 1.0537313
 norx 1.13s 1.09s 1.07s 1.06s 1.0660377
 primes 15.37s 15.41s 15.20s 15.37s 1
 qsort 7.20s 6.71s 3.85s 3.96s 1.8181818
 sha512 1.07s 1.04s 0.90s 0.90s 1.1888889

Ind. branches, RISC-V on x86, user-mode

ind. branches, aarch64-on-x86

Ind. branches, RISC-V on x86, full-system

8 . 23

ApplicationsApplications

Seven high-throughput applications from the
PERFECT Benchmark Suite[*]
Used High-Level Synthesis for productivity

[*] http://hpc.pnl.gov/PERFECT/ 8 . 24

High-Level OperationHigh-Level Operation

8 . 25

1. core0's L1 misses on a read from 0xf00, mapped
to the L2's logical bank1

High-Level OperationHigh-Level Operation

8 . 25

1. core0's L1 misses on a read from 0xf00, mapped
to the L2's logical bank1

2. L2 bank1's tag array tracks block 0xf00 at acc2;
sends request to acc2

High-Level OperationHigh-Level Operation

8 . 25

1. core0's L1 misses on a read from 0xf00, mapped
to the L2's logical bank1

2. L2 bank1's tag array tracks block 0xf00 at acc2;
sends request to acc2

3. acc2 returns the block to bank1

High-Level OperationHigh-Level Operation

8 . 25

1. core0's L1 misses on a read from 0xf00, mapped
to the L2's logical bank1

2. L2 bank1's tag array tracks block 0xf00 at acc2;
sends request to acc2

3. acc2 returns the block to bank1
4. bank1 sends the block to core0

High-Level OperationHigh-Level Operation

8 . 25

Additional latency for hits to blocks stored in accelerators

1. core0's L1 misses on a read from 0xf00, mapped
to the L2's logical bank1

2. L2 bank1's tag array tracks block 0xf00 at acc2;
sends request to acc2

3. acc2 returns the block to bank1
4. bank1 sends the block to core0

High-Level OperationHigh-Level Operation

Return via the host bank guarantees the host bank is the only
coherence synchronization point

No changes to coherence protocol needed 8 . 25

ROCA Host BankROCA Host Bank
Enlarged tag array for accelerator
blocks

Ensures modifications to
accelerators are simple

4-way example: 2 local, 2 remote ways
8 . 26

ROCA Host BankROCA Host Bank
Enlarged tag array for accelerator
blocks

Ensures modifications to
accelerators are simple

Leverages Selective Cache Ways
[*] to adapt to accelerators'
intermittent availability

Dirty blocks are flushed to
DRAM upon accelerator
reclamation

[*] David H. Albonesi, "Selective Cache Ways: On-Demand Cache Resource Allocation", ISCA'99

4-way example: 2 local, 2 remote ways
8 . 26

Logical Bank Way AllocationLogical Bank Way Allocation

Increasing associativity helps minimize waste due to uneven memory sizing across
accelerators (Ex. 2 & 3)

Power-of-two number of sets not required (Ex. 4), but

complicates set assignment logic [*]
requires full-length tags: modulo is not bit selection anymore

[*] André Seznec, "Bank-interleaved cache or memory indexing does not require Euclidean division", IWDDD'15 8 . 27

Coalescing PLMsCoalescing PLMs

PLM manager exports same-size dual-ported SRAM banks as multi-ported
memories using MUXes
ROCA requires an additional NoC-flit-wide port, e.g. 128b

====

8 . 28

Coalescing PLMsCoalescing PLMs

SRAMs are accessed in parallel to match the NoC flit bandwidth
Bank o�sets can be computed cheaply with a LUT + simple logic
Discarding small banks and SRAM bits a useful option 8 . 29

ROCA: Area OverheadROCA: Area Overhead

Host bank's enlarged tag array
5-10% of the area of the data it tags (2b+tag per block)

Tag storage for standalone directory if it wasn't there already
Inclusive LLC would require prohibitive numbers of recalls
Typical overhead: 2.5% of LLC area when LLC = 8x priv

Additional logic: way selection, PLM coalescing logic
Negligible compared to tag-related storage

8 . 30

Sensitivity studies sweeping
accelerator activity over

space (which accelerators are
reclaimed)
time (how frequently they are
reclaimed)

Key result: Accelerators with idle
windows >10ms are prime
candidates for ROCA

perf/e�. within 10/20% of that
with 0% activity

8 . 31

