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ABSTRACT

Scalable Emulation of Heterogeneous Systems

Emilio Garcia Cota

The breakdown of Dennard’s transistor scaling has driven computing systems toward
application-speci�c accelerators, which can provide orders-of-magnitude improve-
ments in performance and energy e�ciency over general-purpose processors.

To enable the radical departures from conventional approaches that heteroge-
neous systems entail, research infrastructure must be able to model processors, mem-
ory and accelerators, as well as system-level changes—such as operating system or
instruction set architecture (ISA) innovations—that might be needed to realize the ac-
celerators’ potential. Unfortunately, existing simulation tools that can support such
system-level research are limited by the lack of fast, scalable machine emulators to
drive execution.

To �ll this need, in this dissertation we �rst present a novel machine emulator
design based on dynamic binary translation that makes the following improvements
over the state of the art: it scales on multicore hosts while remaining memory e�-
cient, correctly handles cross-ISA di�erences in atomic instruction semantics, lever-
ages the host �oating point (FP) unit to speed up FP emulation without sacri�cing
correctness, and can be e�ciently instrumented to—among other possible uses—drive
the execution of a full-system, cross-ISA simulator with support for accelerators.

We then demonstrate the utility of machine emulation for studying heteroge-
neous systems by leveraging it to make two additional contributions. First, we quan-
tify the trade-o�s in di�erent coupling models for on-chip accelerators. Second, we
present a technique to reuse the private memories of on-chip accelerators when they
are otherwise inactive to expand the system’s last-level cache, thereby reducing the
opportunity cost of the accelerators’ integration.



Table of Contents

List of Figures v

List of Tables x

List of Abbreviations xi

Chapter 1 Introduction 1

1.1 Transistor Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Rise of Multicores . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 To Specialize or Perish . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Challenges in Heterogeneous System Emulation . . . . . . . . . . . . . 6
1.5 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Background and Related Work 10

2.1 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Machine Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Cross-ISA Emulation via Dynamic Binary Translation . . . . . . 14
2.2.2 Key Emulator Structures and Concepts . . . . . . . . . . . . . . 15
2.2.3 Sources of Machine Emulation Overhead . . . . . . . . . . . . . 17

2.2.3.1 Indirect branch handling . . . . . . . . . . . . . . . . . . 18
2.2.3.2 Code Quality . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3.3 Floating Point Emulation . . . . . . . . . . . . . . . . . 19

i



2.2.3.4 Memory Management Unit (MMU) Emulation . . . . . . 20
2.3 Parallel Cross-ISA Machine Emulation . . . . . . . . . . . . . . . . . . 21
2.4 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Simulation via Instrumented Emulation . . . . . . . . . . . . . . . . . . 25

2.5.1 User-mode Simulation . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Full-System Simulation . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3 Pico: Cross-ISA Machine Emulation 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Emulator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 CPU Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Translation Block Cache . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Correct, Cross-ISA Memory Accesses . . . . . . . . . . . . . . . . . . . 36
3.3.1 Mismatches in the Memory Consistency Model . . . . . . . . . . 37
3.3.2 Compare-and-Swap (CAS) . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Load-Locked/Store-Conditional (LL/SC) . . . . . . . . . . . . . . 38

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Single-Threaded Performance . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Parallel Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Server Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.5 Mismatches in the Memory Consistency Model . . . . . . . . . . 46
3.4.6 Bus-Locked Atomics . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.7 Load-Locked/Store-Conditional (LL/SC) . . . . . . . . . . . . . . 49

3.5 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4 Qelt: Cross-ISA Machine Instrumentation 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Qelt Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ii



4.2.1 Fast FP Emulation using the Host FPU . . . . . . . . . . . . . . . 55
4.2.2 Scalable Dynamic Binary Translation . . . . . . . . . . . . . . . 58
4.2.3 Portable Cross-ISA Instrumentation . . . . . . . . . . . . . . . . 61
4.2.4 Additional DBT Optimizations . . . . . . . . . . . . . . . . . . . 66

4.2.4.1 TLB Emulation . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4.2 Indirect branches in DBT . . . . . . . . . . . . . . . . . 68

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Performance Impact of Qelt’s Techniques . . . . . . . . . . . . . 69
4.3.3 Scalable Dynamic Binary Translation . . . . . . . . . . . . . . . 71
4.3.4 Fast FP Emulation using the Host FPU . . . . . . . . . . . . . . . 72
4.3.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.6 DBI Tool Comparison . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5 Accelerator Coupling in Heterogeneous Architectures 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Accelerator Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 6 ROCA: Reducing the Opportunity Cost of Accelerator In-

tegration 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Accelerator Example: Sort . . . . . . . . . . . . . . . . . . . . . . 102
6.3 ROCA: Exposing Accelerator Memory to the NUCA Substrate . . . . . 105

6.3.1 High-Level Operation . . . . . . . . . . . . . . . . . . . . . . . . 106

iii



6.3.2 Host Bank Organization . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.3 Way Allocation in Logical Banks . . . . . . . . . . . . . . . . . . 108
6.3.4 Impact on Cache Coherence Tra�c . . . . . . . . . . . . . . . . 109
6.3.5 Coalescing and Exposing PLMs . . . . . . . . . . . . . . . . . . . 110
6.3.6 ROCA-to-Acceleration Transitions . . . . . . . . . . . . . . . . . 113

6.4 Area Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Energy and Performance Evaluation . . . . . . . . . . . . . . . . . . . . 115

6.5.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . 115
6.5.2 Evaluation Under No Accelerator Activity . . . . . . . . . . . . . 119
6.5.3 Same-Logical-Bank Accelerator Activity . . . . . . . . . . . . . . 121
6.5.4 Chip-Wide Accelerator Activity . . . . . . . . . . . . . . . . . . 123
6.5.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 7 Future Directions 127

7.1 Cross-ISA Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Scalable Simulation of Heterogeneous Systems . . . . . . . . . . . . . . 129
7.3 Emulation of Multi-ISA Machines . . . . . . . . . . . . . . . . . . . . . 129

Chapter 8 Conclusions 131

Bibliography 132

Appendix Implementation Adoption 164

Contributions to Upstream QEMU . . . . . . . . . . . . . . . . . . . . . . . 164
Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

iv



List of Figures

1.1 Microprocessor trends in the last two decades. For each set of data
points, a smoothed yearly average is also shown. Scores from SPECInt
2000, 2006 and 2017 are converted to SPECInt95 scores using a con-
version factor [74]. Data obtained from CPU DB [74], Intel ARK [2],
SPEC [4] and Wikipedia. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Cross-ISA portability is achieved in QEMU by leveraging the TCG IR. . 15
2.2 An example of portable cross-ISA DBT. An Alpha basic block is trans-

lated into an x86_64 TB using QEMU’s TCG IR. . . . . . . . . . . . . . 16

3.1 Pico’s full-system architecture. Each guest CPU is emulated by a corre-
sponding host “vCPU” thread. Guest devices are emulated by a single
“I/O” thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Translation Block lookup mechanisms in (a) QEMU and (b) Pico. Pico’s
improved hashing results in a more uniform bucket distribution. Fur-
ther, QHT has higher performance due to its dynamic resizing and con-
current lookup support. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Bootup+shutdown time of Debian “jessie” in an ARM guest running on
an Intel Haswell i7-4790K host. . . . . . . . . . . . . . . . . . . . . . . 35

3.4 QHT, CLHT and ck_hs performance comparison. . . . . . . . . . . . . 36
3.5 Instrumentation of stores in Pico-ST. Stores execute while holding the

appropriate lock i� an atomic instruction has previously been performed
on their target cache line. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v

https://en.wikipedia.org/wiki/Transistor_count


3.6 Example LL/SC pair translated with Pico-HTM. . . . . . . . . . . . . . . 41
3.7 Speedup on SKL of Pico over QEMU for single-threaded x86_64 SPEC06

workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Speedup over native on AMD for PARSEC under Pico-user. . . . . . . . 44
3.9 Speedup vs. KVM on AMD for server workloads under Pico-system. . . 46
3.10 Slowdown on P8 for Pico-user running x86_64 SPEC06 benchmarks,

with two ArMOR state machines and hardware strong-access ordering,
relative to omitting all barriers in the translated code. . . . . . . . . . . 47

3.11 Performance on AMD for x86_64 atomic_add. . . . . . . . . . . . . . . 48
3.12 Performance on P8 for Aarch64 atomic_add. . . . . . . . . . . . . . . . 49
3.13 Speedup over QEMU on SKL of di�erent implementations of LL/SC in

Pico-user runs of Aarch64 SPEC06. . . . . . . . . . . . . . . . . . . . . 50

4.1 Pseudo-code of a Qelt-accelerated double-precision multiplication. . . 57
4.2 With a monolithic code cache (a), TB execution (green TBs) can happen

in parallel, yet TB generation (red) is serialized. With partitioning (b),
each vCPU writes to a separate region, thereby enabling both parallel
code execution and translation. . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Example instrumentation �ow of Alpha-on-x86_64 emulation. We in-
ject empty instrumentation as we translate the guest TB. Once the TB
is well-de�ned, we dispatch it to plugins, which annotate it with instru-
mentation requests. Empty instrumentation is then either removed if
unneeded or replaced with the plugin’s requests. Finally, the instru-
mented IR is translated into host code. . . . . . . . . . . . . . . . . . . 62

4.4 Example Qelt plugin to count memory accesses either via a callback or
by inlining the count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Cumulative speedup of Qelt’s techniques over QEMU for user-mode
x86_64 SPEC06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Cumulative speedup of Qelt’s techniques over QEMU for full-system
x86_64 SPEC06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vi



4.7 Cumulative Qelt speedup over 1-vCPU QEMU for parallel compilation
inside an x86_64 VM. On the right, KVM scalability for the same work-
load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Cumulative speedup over QEMU of accelerating the emulation FP in-
structions with Qelt for user-mode x86_64 SPECfp06. The -zero results
show the impact of removing Qelt’s zero-input optimization. . . . . . . 72

4.9 FP microbenchmark results. Throughput is normalized over that of an
ideal native run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Impact of increasing instrumentation on user-mode x86_64 SPECint06. 74
4.11 Slowdown of user-mode x86_64 SPECint06 for helper-based and direct

callbacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.12 Slowdown over KVM execution for PANDA, QVMII and Qelt for full-

system emulation of x86_64 SPEC06. . . . . . . . . . . . . . . . . . . . 76
4.13 Slowdown over native execution for DynamoRIO, Pin andQelt for user-

mode x86_64 SPEC06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Tightly-coupled accelerator (TCA) model. The accelerator shares key
resources (register �le, MMU and L1) with the CPU. . . . . . . . . . . . 84

5.2 Loosely-coupled accelerator (LCA) model. The integrated DMA con-
troller transfers data between the accelerator’s PLM and either the LLC
or DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Typical LCA structure. Aggressive SRAMbanking enablesmulti-ported
memories for computation blocks. . . . . . . . . . . . . . . . . . . . . . 85

5.4 Ping-pong data bu�ering (below) improves throughput over single bu�er-
ing (above) by overlapping in time computation and communication. . 87

5.5 Application memory footprints. . . . . . . . . . . . . . . . . . . . . . . 88
5.6 DSE-enabled implementation of the Debayer kernel. . . . . . . . . . . . 90
5.7 Speedup over software for all accelerators. Input sizes are parameter-

ized as described in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . 92
5.8 Improvements over software for all workloads. . . . . . . . . . . . . . . 94
5.9 omnetpp IPC increase over running in isolation. . . . . . . . . . . . . 94

vii



6.1 4-core chip with 2-level cache and four accelerators. Most accelerator
area is devoted to private local memories (PLMs) that, when inactive,
are used by ROCA to expand the LLC. The memory blocks of the re-
sulting LLC are shaded in gray. . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Structure of the Sort accelerator. Ping-pong bu�ering enables simulta-
neous processing of vectors. The dashed lines denote di�erent pipeline
stages. Banks of the �ve PLMs are shaded in gray. . . . . . . . . . . . . 103

6.3 PLM Bandwidth of the Sort accelerator when sorting 4 vectors of 1024
elements. High PLM bandwidth is enabled by heavy SRAM banking. . 104

6.4 High-level operation example. Three cores share a LLC with blocks
interleaved across two logical banks, each composed of a ROCA host
bank and associated accelerators (marked with a dashed line). Requests
to a logical bank are always routed to the host bank (1-2), as well as
responses from ROCA accelerators with the requested data (3-4). . . . 106

6.5 4-way ROCA host bank. Two ways are local to the bank; the other
two are remote, i.e. their data arrays are accessed via the interconnect.
Shaded in orange are the hardware structures necessary to convert a
regular bank into a ROCA host bank. . . . . . . . . . . . . . . . . . . . 108

6.6 Way allocation examples for a ROCA logical bank with three accelera-
tors, assuming a block size of 64 bytes. . . . . . . . . . . . . . . . . . . 109

6.7 Memory ports in the Sort accelerator. The PLM manager aggregates
SRAM banks to export them as multi-ported memories. An additional
NoC-�it-wide port is exported to the ROCA controller, shaded in orange. 111

6.8 SRAM arrangement for the ROCA controller in the Sort accelerator.
Adequate pairing of dual-ported banks brings bandwidth to one NoC
�it (128b) per cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



6.9 The two simulated systems. The baseline system (left) is a 16-core 5x5
CMP with a 2MB S-NUCA LLC. We augment it with 24 ROCA-enabled
accelerators to form a 7x7 CMP with a 6MB ROCA LLC (right). Dashed
lines show the eight logical banks into which the address space is split.
MC stands for memory controller. . . . . . . . . . . . . . . . . . . . . . 116

6.10 MPKI, performance and energy e�ciency improvements over the 2MB
S-NUCA baseline for all workloads for 8MB S-NUCA and 6 MB ROCA
con�gurations. All accelerators in ROCA are inactive. . . . . . . . . . . 120

6.11 Performance and energy e�ciency improvements over 2MB S-NUCA
for 6MB ROCA with one accelerator intermittently active. Shown are
improvements for some workloads, plus the gmean for all workloads. . 121

6.12 Improvements for 6MB ROCA over 2MB S-NUCA and characterization
of peak number of blocks �ushed vs MPKI (top right), for varying ac-
celerator activity of 3 accelerators in the same logical bank. . . . . . . 122

6.13 Improvements for 6MB ROCA over 2MB S-NUCA and characterization
of peak number of blocks �ushed vs MPKI (top right), for varying ac-
celerator activity of all (24) accelerators. . . . . . . . . . . . . . . . . . 124

ix



List of Tables

2.1 Comparison of user-mode architectural simulators: emulation engine,
speed, scalability on multicore hosts, and supported ISAs. . . . . . . . . 26

2.2 Comparison of full-system architectural simulators: emulation engine,
speed, scalability on multicore hosts, and supported ISAs. . . . . . . . . 27

5.1 Accelerators’ footprint, area and aggregate PLM’s characteristics. . . . 87
5.2 System con�guration for experimental results . . . . . . . . . . . . . . 91

6.1 Characteristics of the PLMs in the Sort accelerator. Bandwidth is mea-
sured in number of accesses per cycle. . . . . . . . . . . . . . . . . . . 105

6.2 Con�guration of the simulated system. . . . . . . . . . . . . . . . . . . 117

x



List of Abbreviations

CAS compare-and-swap. 36–39, 48, 52

LL/SC load-locked/store-conditional. 37–41, 50, 52

ASIC application-speci�c integrated circuit. 5, 12, 13

CLB con�gurable logic block. 12

DBI dynamic binary instrumentation. 8, 24, 54, 55, 61, 64, 69, 77, 78, 80

DBT dynamic binary translation. 7, 8, 14–16, 18, 23, 25, 27, 29, 30, 37, 45, 127, 128,
131

DMA direct memory access. 9, 82, 85, 86, 96

DSP digital signal processing. 12

DVFS dynamic voltage and frequency scaling. 4

FFT fast Fourier transform. 10, 87, 88, 93, 95, 97

FP �oating point. 8, 19, 20, 53–58, 70, 72–74, 77, 78, 80, 128, 131, 132

FPGA �eld-programmable gate array. 5, 12, 13, 96, 104

FPU �oating point unit. 8–10, 20, 53–58, 73, 80, 131

GPU graphics processing unit. 5, 8, 11–13, 97

xi



HDL hardware description languages. 12

HLS high-level synthesis. 6, 12, 88, 89

HTM hardware transactional memory. 30, 40, 49, 50

IoT Internet of things. 7

IR intermediate representation. 15, 16, 18, 19, 61, 62, 64, 68

ISA instruction set architecture. 6–10, 13–15, 17, 19–21, 23, 24, 27, 29–31, 36, 37, 46,
48, 51, 53–55, 59, 61, 63–65, 68, 69, 72, 75, 78, 80, 82, 83, 91, 117, 127, 128, 130,
131

JIT just-in-time. 19

LCA loosely-coupled accelerator. 84–86, 91, 93–95

LLC last-level cache. 9, 82, 88, 94–96, 99–101, 106, 110, 113, 114, 116, 117, 119, 120,
122, 125, 126

MMU memory management unit. 17, 21

MRU most recently used. 35

NoC network-on-chip. 100, 111, 113, 114, 116–118, 120, 125

NUCA non-uniform cache architecture. 100, 102, 116, 126

OS operating system. 25, 91, 95, 117

PC program counter. 59

PLM private local memory. 8, 85–89, 93, 96, 99–107, 110, 112, 113, 118, 119, 121, 125,
126

RCU read-copy-update. 22, 31, 32, 35, 39, 40, 51, 59, 63

xii



RTL register-transfer level. 6, 12, 87, 89, 91

SIMD single instruction, multiple-data. 11, 20

SMT simultaneous multithreading. 42, 49

SoC system on chip. 5, 12, 82, 96

softMMU software memory management unit. 17, 18, 20, 21, 27, 66, 67, 70, 77, 128,
129

TB translation block. 16, 18, 32–34, 59–65, 68, 74, 75

TCA tightly-coupled accelerator. 83–86, 91, 93, 94

TDP thermal design power. 3

TLB translation lookaside bu�er. 17, 20, 21, 31–33, 40, 66–68, 70, 72, 132

xiii



Acknowledgments

Confía en el tiempo, que suele dar dulces salidas a muchas amargas

di�cultades.1

- Miguel de Cervantes, Novelas exemplares - La gitanilla (1613)

My �rst words of gratitude go to my advisor, Luca Carloni. He took me as a stu-
dent when I was a decidedly unproven candidate, as well as stubborn and impulsive.
With his characteristic bonhomie he deftly guided my work, �rst exposing me to the
grit that research requires, and then nurturing my ambition to eventually let me pur-
sue my own line of research, which expanded to areas outside of his main expertise.
Furthermore, he fully backed my (at times perilously quixotic) quest of not only pub-
lishing papers, but also merging the resulting source code into a mature open-source
project. Through our sharedmoments of sadness, joy, as well as countless discussions
about research, life and calcio, I have become a more e�ective researcher and a more
discerning person, and now I am fortunate to call him a friend.

Another important pillar of support during my time at Columbia has come from
other members of the System-Level Design group. Upon my arrival Marcin Szc-
zodrak, Young Jin Yoon, Michele Petracca, Nicola Concer, Francesco Leonardi and
Hung-Yi Liu provided essential guidance and mentoring. Later additions to the group
(YoungHoon Jung, Paolo Mantovani, Christian Pilato, Giuseppe Di Guglielmo, John-
nie Chan, Davide Giri, Luca Piccolboni, Jihye Kwon, Guy Eichler, Kuan-Lin Chiu)
were key contributors to the group’s fun and productive work environment, from

1Trust time; it usually provides a sweet way out of many bitter challenges.

xiv



which I greatly bene�ted. Paolo Mantovani stands out as an enduring friend and col-
laborator from the SLD group. I am indebted to him for ability to quickly dissect and
re�ne my ideas, all while not losing context of the 1,000 other projects he always had
his hands on.

Other Columbia graduate students and post-docs provided support, guidance and
friendship. Kanad Sinha, Melanie Kambadur, Lisa Wu, Eva Sitaridi, John Demme,
RobertMartin, Christo�erDall, Andrea Lottarini, YipengHuang, Jared Schmitz, Lianne
Lairmore, Joël Porquet, Tom Repetti, David Williams-King, Hiroshi Sasaki, Richard
Townsend, Martha Barker and all other friends who made it to our 1020 gatherings
were fundamental to help me cope with hard times, both personal and research-
induced. Apart from a great friend and mentor, John Demme was also key in making
me realize the importance of clear, concise writing.

Outside of Columbia, the QEMU community has been an extraordinarily fertile
source of collaboration. Paolo Bonzini, Alex Benné, Richard Henderson and many
other members of the QEMU community have given me enormous amounts of sup-
port, helping me solve challenging problems, reviewing and improving my papers
and/or source code submissions, and eventually merging many of my contributions
into upstream QEMU.

My �nal words of gratitude go to my mother, sister, brothers and nephews in
Spain as well as my family in Japan for their tireless patience and support over all
these years. Here in the US, my wife has been instrumental in keeping my sanity,
always being a source of comfort and encouragement. In no small part this work is
also hers.

xv



最愛の妻へ。 To my beloved wife.

In memory of Matthieu Cattin, a true friend and role model.

xvi



Chapter 1

Introduction

Over the last two decades, the world that we knew as the child of the Industrial
Revolution has been upended by the onset of the Information Age. The pervasive
adoption of computing has led to drastic changes to service sectorswhich have altered
our daily lives, for instance transforming the way we shop, travel, learn, interact,
eat and even mate, as well as rapid changes to manufacturing, supply chains and
international a�airs, e.g. by rede�ning warfare and making computing knowledge
and the control of its supporting technologies a geopolitical asset.

To a large extent, computing’s meteoric rise from business tool to a key com-
ponent of the economy is due to computing’s sustained exponential performance
increase since the 1960’s. This increase rode on the back of two powerful horses:
transistor scaling and advances in computer architecture. In the mid 2000’s transistor
scaling began slowing down, and since then most of the onus of delivering perfor-
mance has shifted to computer architects. As a result, computer architecture is today
a very di�erent �eld than it was only a decade ago; its focus has shifted away from
general-purpose processors to heterogeneous systems, that is, systems that, by inte-
grating general-purpose cores with specialized hardware, are capable of e�ciently
providing high performance for speci�c applications. In the remainder of this chap-
ter we cover in more depth the motivation behind the trend towards specialization,
as well as the resulting challenges that this dissertation addresses.
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1.1 Transistor Scaling

In 1965, GordonMoore predicted the in the decade to follow therewould be a doubling
of components on a chip every 12 months [182]. By 1975, Moore’s prediction had
proven so prescient that by then it was referred to as Moore’s law. That year, Moore
revised his prediction for the following decades, lowering the doubling of components
to every two years [183].

Remarkably, for the next four decades the semiconductor industry delivered on
the promise of Moore’s law. This stunning rate of progress in transistor miniaturiza-
tion and integration has been a story of engineering achievement, but ultimately it is
a story about the economics that supported that achievement. Indeed, Moore’s pre-
diction was not just that this exponential growth of chip complexity was physically
attainable; this future was also predicted to be economically feasible.

In the last few years, the economics behind transistor miniaturization have be-
come increasingly uncertain. Given the astounding capital investment that is now
required to bring up a new fabrication process, less foundries are capable of taking
on the challenge [37, 156], which results in per-transistor prices that are not lowering
with further miniaturization as they used to [120], as well as longer times between
technology jumps in order to amortize the capital investments [151].

An additional trend works against demand for smaller transistors. Below 65nm,
transistors do not follow anymore the scalingmodel predicted byDennard in 1974 [82].
Contrary to Moore’s observation, Dennard’s work derives from physics; it modeled
how device dimensions and voltage could both scale to yield smaller and faster tran-
sistors while—crucially—keeping power density constant. Unfortunately, Dennard’s
scaling model does not apply at su�ciently low voltages and gate lengths: leakage
current and quantum tunneling e�ects, whose impact was reasonably ignored in 1974,
are now limiting voltage scaling and speed improvements [34]. As a result, appetite
for smaller transistors that are less power e�cient or slower than those in previous
generations becomes harder to justify, particularly for general-purpose applications
that are power constrained such as microprocessors.

Is Moore’s law dead or at least slowing down, then? Con�icting news reports and
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Figure 1.1: Microprocessor trends in the last two decades. For each set of data points,
a smoothed yearly average is also shown. Scores from SPECInt 2000, 2006 and 2017
are converted to SPECInt95 scores using a conversion factor [74]. Data obtained from
CPU DB [74], Intel ARK [2], SPEC [4] and Wikipedia.

speculation [219, 227] advise against answering this question with any certainty.1

Consensus is, however, that “keeping up with Moore’s law is harder than ever be-
fore” [92]. Nevertheless, as we discuss next it is the breakdown of Dennard scaling,
and not the potential slowdown of Moore’s law, what has brought a sea change to
computer architecture.

1.2 The Rise of Multicores

The end of Dennard scaling in the mid 00’s was a de�ning moment for the micro-
processor industry. As shown in Figure 1.1, single-core performance (represented via
SPECint’s performance scores) stopped growing exponentially around 2004, while
at the same time thermal design power (TDP), clock frequency and operating volt-

1Avoiding potential market tremors is partly to blame for the lack of clarity from foundries on
scaling progress. Intel, for instance, stopped publishing transistor counts for their chips in 2011, which
explains the paucity of post-2011 transistor count numbers in Figure 1.1.
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age plateaued. The number of transistors on a chip continued increasing, however.
Where did those transistors go? Some of them were expended to improve single-core
performance. The majority of them, however, were used to increase the number of
cores, giving rise to the era of multicores.

If power consumption remained constant, how was it possible to increase single-
threaded performance (even if a lower rate than before) while turning on more cores?
This was achieved through the introduction of dynamic voltage and frequency scaling
(DVFS) to control and expand operating ranges at run-time, e.g. by giving maximum
frequency to a single core while clocking down or turning o� other cores, or by low-
ering all cores’ frequencies when executing parallel workloads.

Over the last decade, processors have relied on increasing core counts to provide
aggregate performance gains. For how long can multicore scaling continue? Two
fundamental limits stand in the way. First, given that power envelopes are �xed
and that post-Dennard scaling provides increasing power densities, scaling down a
design results in an exponentially larger portion of the chip having to remain turned
o� (“dark silicon”) [233]. This curtails the utility of microarchitectural improvements,
whose performance—as determined by Pollack’s rule2—can only scale with the square
root of the number of transistors used. Second, Amdahl’s law [13] caps the speedup
that can be achieved through parallelization. At best, e.g. for embarrassingly parallel
problems, the maximum achievable speedup grows linearly with the number of cores.
This improvement, while non-negligible, is far from the exponential performance
increases that were delivered under Dennard scaling.

When accounting for these limits, models show that multicore scaling, i.e. the
addition of cores to bene�t from process scaling, is only a valid short term strategy
for the post-Dennard scaling era [93, 122]. Thus, in order to sustain performance
gains, a shift from the multicore paradigm was called for.

2Pollack’s rule is due to Fred Pollack, who observed that performance scales as the square root of
design complexity. The CPU DB paper [74] corroborates Pollack’s rule by comparing the performance
of several generations of microprocessors against their transistor counts and normalized area.
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1.3 To Specialize or Perish

As a response to the end of multicore scaling, architects have turned to specialization,
giving rise to heterogeneous systems that integrate general-purpose cores with spe-
cialized accelerators. Accelerators are specialized hardware that can deliver superior
energy e�ciency and performance over general purpose processors. Among accel-
erators, application-speci�c integrated circuits (ASICs) o�er the highest degree of
specialization, which results in higher cost, complexity and—crucially—performance
and energy e�ciency over the alternatives, e.g. graphics processing units (GPUs)
or �eld-programmable gate arrays (FPGAs) [56, 147]. The use of ASICs for accelera-
tion was initially adopted at scale by designs for high-volume systems on chip (SoCs),
such as those destined for the mobile market. However, the recent mobile/cloud com-
puting bifurcation has also brought accelerators to the server room, with numerous
examples in diverse applications, e.g. convolution [198], databases [141, 242], graph
analytics [107, 191], neural networks [52, 126], speech recognition [245] and video
encoding [108].

The shift towards greater heterogeneity via ASIC accelerators is at least due to
three reasons. First, compared to the alternatives such as abandoning silicon, giv-
ing up on further miniaturization, or restricting the use of additional transistors to
under-clocked components [228], specialization can deliver order-of-magnitude im-
provements in both energy e�ciency and performance and does not require trau-
matic changes from the semiconductor industry. Second, in a future where chips
are dominated by dark silicon, specialization is a natural �t: increasing dark sili-
con should lead to commensurate increases in the number of integrated accelerators,
which can be turned on and o� at run-time to suit the workload’s needs. Third, eco-
nomic factors also play in specialization’s favor: even if Moore’s law slows down
or stops altogether, accelerators can be implemented using older technology nodes
and still yield signi�cant e�ciency and performance, at a fraction of the cost in both
fabrication masks and design complexity (e.g., through simpler design rules) [134].
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1.4 Challenges inHeterogeneous SystemEmulation

The staggering rate of progress in computer systems’ performance over time is largely
owed to quantitativemethods, which are used tomotivate as well as evaluate research
ideas [80]. In particular, simulation is the most prevalent quantitative method, since
it can capture a degree of complexity that analytical models cannot.

High-performance simulators are typically functional-�rst, that is, they employ
an instrumented emulator whose execution of a workload feeds a timing model [91].
Emulators are therefore a key component of simulators, since they determine what
workloads can be modeled and provide a lower bound to simulation time.

The emulation of heterogeneous systems poses a new set of challenges that ex-
isting emulators cannot ful�ll. These challenges are related to accelerator modeling,
full-system emulation, instruction set architecture (ISA) diversity, and the delivery of
high performance without sacri�cing correctness.

Accelerator Modeling. In heterogeneous systems, most of the performance and
energy e�ciency gains come from the use of accelerators. Thus, emulators must be
capable of modeling accelerators that interact with other components of the system,
for instance other accelerators or general-purpose cores. The modeling of acceler-
ators can occur at di�erent points in the accuracy vs. performance spectrum, e.g.
from a simple back-of-the-envelope latency model, to interacting with external en-
gines that simulate designs at register-transfer level (RTL) or written in languages
suited for high-level synthesis (HLS).

Full-system Emulation. How to e�ciently and securely integrate accelerators
within the rest of the system is an open research question. Solutions are likely to cut
across the hardware-software interface, for instance by modifying the system’s vir-
tual memory mechanism. Further, emulators are also likely to accelerate applications
that largely execute within the operating system’s kernel, such as memory allocation
and I/O-intensive applications (e.g., storage, network). Evaluating solutions to these
issues will therefore require full-system emulation.
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ISA diversity. Emulators typically run on server machines, where the x86 ISA
dominates today. The heterogeneous systems to be emulated, however, are not only
server-like. For instance, they could be mobile systems (which typically implement
the ARM ISA) or Internet of things (IoT) systems (dominated by ARM and other RISC
ISA’s such as MIPS and, increasingly, RISC-V). Thus, simulating these systems will
require cross-ISA emulation and instrumentation, since the host and target ISAs are
likely to be di�erent. Further, the open-source nature of ISAs such as RISC-V is likely
to spark ISA innovations [16] whose prototyping and evaluation will also require
cross-ISA support.

Performance and correctness. To enable productive analysis of workloads that
span across multi-cores and accelerators, emulators must provide the above features
with high performance and correctness. Thus, emulators must be able to (1) reduce
the existing single-threaded performance gap between cross-ISA and same-ISA emu-
lators, and (2) leverage multi-core hosts to perform parallel emulation of accelerators
and multi-core guests, while reconciling guest and host di�erences in memory con-
sistency model and atomic instruction semantics to maintain correctness.

1.5 Thesis

Fast, scalable machine emulation is feasible and useful for evaluating the

design and integration of heterogeneous systems. �

1.6 Contributions

To support the above thesis, we present contributions that improve the speed and
scalability of machine emulation and reduce the cost of accelerator integration.

On the emulation side, we make the following contributions:

• The design of a machine emulator based on dynamic binary translation (DBT)
that scales for multi-core guests while remaining memory e�cient via the use
of a shared code cache. [66, 67]
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• An approach to reconciling the di�erence between guest and host atomic in-
struction semantics to enable correct and scalable cross-ISA emulation ofmulti-
core guests. [66]

• A technique to improve the performance of cross-ISA DBT of �oating point
(FP) instructions by leveraging the host’s �oating point unit (FPU). [67]

• An ISA-agnostic instrumentation layer that converts a cross-ISA DBT engine
into a low-overhead cross-ISA dynamic binary instrumentation (DBI) tool. This
cross-ISA tool supports state-of-the-art DBI features such as instrumentation
injection at the granularity of individual instructions, and has comparable per-
formance to state-of-the-art, same-ISA tools when used for complex instru-
mentation workloads such as cache simulation. [67]

The feasibility of these contributions is supported by their implementation and eval-
uation. The implementation of all the above intellectual contributions has been in-
tegrated into version 4.0 of the open-source QEMU emulator3, except that of the in-
strumentation layer, which at the time of writing remains under review by the QEMU
community.

On the heterogeneous system design and integration side, we make the following
contributions:

• A quantitative comparison of di�erent approaches to the design and integra-
tion of accelerators for high-throughput applications that are irregular, i.e. not
amenable to acceleration via GPUs or vector processors. A salient conclusion
of this study is that working sets of non-trivial size are best served by loosely-
coupled accelerators that integrate private local memories (PLMs) tailored to
their needs. [69]

• A technique to exploit accelerator PLMs to reduce the opportunity cost of in-
tegrating on-chip accelerators by transparently exposing accelerator PLMs to

3http://www.qemu.org/
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the cache substrate, thereby extending the system’s last-level cache capacity
when accelerators are not in use. [68, 70]

These two contributions have been evaluated through simulation based on scalable
machine emulation, which highlights the latter’s usefulness as a vehicle for hetero-
geneous systems’ research.

1.7 Outline

We begin the rest of this dissertation by discussing background and related work in
Chapter 2.

We then describe our work on achieving fast and scalable cross-ISA emulation,
which we cover in two parts. First, Chapter 3 presents Pico, a cross-ISA emulator
based on QEMU that (1) allows us to explore the performance vs. correctness trade-
o�s in cross-ISA emulation of atomic instructions, and (2) scales for most parallel
guest workloads, i.e. those that do not show high rates of parallel code translation.
Second, Chapter 4 presents Qelt, a design that improves over Pico’s by (1) also scaling
formulti-core guests that show high rates of code translation, (2) improving cross-ISA
�oating point emulation speed by leveraging the host FPU, and (3) adding instrumen-
tation support via an ISA-agnostic layer.

Next we study the design and integration of heterogeneous systems through sim-
ulation. Chapter 5 describes a comparison of three models of accelerator coupling:
tight coupling behind a CPU, loose out-of-core coupling with direct memory access
(DMA) to the last-level cache (LLC), and loose out-of-core coupling with DMA to
DRAM. Chapter 6 presents Roca, a technique to lower the opportunity cost of ac-
celerator integration by reusing their local memories to expand a non-uniform LLC
when they are otherwise unused.

Chapter 7 considers future directions for this work. Chapter 8 concludes.
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Chapter 2

Background and Related Work

In this chapter we provide a foundation for the rest of this dissertation. We �rst cover
background material on accelerators, to then discuss the state of the art in machine
emulation and instrumentation.

2.1 Accelerators

An accelerator is “a specialized hardware unit that performs a set of tasks with higher
performance or better energy e�ciency than a general-purpose processor” [217].
Given this broad de�nition, confusion is perhaps inevitable when discussing acceler-
ators, since very disparate hardware implementations share the same name.

Shao and Brooks [217] provide a useful taxonomy of accelerators. They classify
accelerators across two dimensions: coupling and granularity.

• Granularity refers to the size of the computation that is assigned to acceler-
ators, which determines their generality. Thus, instruction-level accelerators
(e.g., an FPU or vector unit) merely extend an ISA and therefore are the most
general; kernel-level accelerators are more speci�c, since they speed up a par-
ticular algorithm or kernel such as a fast Fourier transform (FFT); application-
level accelerators, whose aim is to speed up entire applications (e.g., neural
networks [50, 52] or key-value stores [78]), are the most specialized.
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• Coupling refers to the distance between the accelerator and the general-purpose
processor. Thus, loosely coupled accelerators are connected to the processor via
the on-chip interconnect or o�-chip memory bus, and tightly coupled accelera-
tors are either part of the processor or attached to its cache. Chapter 5 presents
a quantitative comparison of the two coupling models.

Ultimately, the choice of a particular accelerator platform results from considerations
regarding �exibility, performance, area, energy e�ciency and cost. Based on those
parameters, we now discuss popular accelerator platforms, listed from more to less
�exible.

Vector processors. Processors that support the execution of instructions that op-
erate on one-dimensional arrays (vectors). Modern CPUs implement single instruc-
tion, multiple-data (SIMD) registers that are 128-bit, 256-bit, or 512-bit wide. SIMD
can be explicitly generated via compiler intrinsics, or under certain conditions emit-
ted automatically by the compiler. Algorithms that are heavy on control �ow are
not good candidates for vectorization. In some cases, however, control �ow can be
transformed into data �ow to then execute on vector units. For example, Polychro-
niou et al. [194] demonstrate this approach for database operators to deliver up to an
order-of-magnitude performance improvement over previous scalar and vectorized
implementations.

GPUs. Processors optimized for arithmetic throughput, memory bandwidth and
parallelism. Originally developed for graphics applications, GPUs are now a com-
mon accelerator for compute-intensive workloads, such as linear algebra, signal pro-
cessing, and image/video processing. GPUs o�er programming �exibility through the
abstraction of GPU internals via mature software runtimes such as OpenCL or CUDA.
GPUs can signi�cantly outperform general-purpose processors for highly-parallel ap-
plications given GPU’s superior parallelism, memory bandwidth and ability to hide
memory latency [119, 128].
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FPGAs. Integrated circuits that are based around a matrix of con�gurable logic
blocks (CLBs) connected via programmable interconnects, thereby allowing recon-
�guration. This feature makes FPGAs eminently general-purpose. Flexibility-wise,
however, FPGAs are inferior to CPUs and GPUs: reprogramming an FPGA is more
complex and time-consuming than updating software, and the development process
of FPGA is less mature, both in the user-friendliness of hardware description lan-
guagess (HDLs) and in the necessary tooling. Fortunately, recent developments on
the productivity side are promising. First, methodologies for rapid, HLS-based de-
sign space exploration of accelerators have emerged [62, 168]. Second, languages and
runtimes speci�cally tailored to FPGAs can deliver simpler design and deployment
processes than RTL currently does [17, 127, 142]. Third, the availability of FPGAs
as part of a�ordable SoCs [71] or via cloud platforms has considerably lowered the
barrier of entry for users, which is likely to result in stronger demand and therefore
faster progress on the productivity front.
Compared to GPUs, FPGAs typically have lower performance for tasks that are a good
match for GPUs due to the FPGA’s lower clock rate and lower computation density.
FPGAs, however, have higher energy e�ciency, which has made them �nd a place
in today’s power-constrained data centers [197]. Furthermore, future FPGA designs
might be able narrow the performance gap with GPUs for popular applications such
as neural networks, for instance by increasing the amount of on-chip memory and
digital signal processing (DSP) units [190].

ASICs. Integrated circuits customized to speci�c applications. ASICs can deliver
the highest performance and energy e�ciency among accelerators, albeit at the ex-
pense of �exibility (unlike FPGAs, ASICs cannot be recon�gured after fabrication)
and—crucially—cost. The latter downside is the biggest hurdle against wider ASICs
adoption. Although cheaper alternatives to the current ASICs fabrication process
have been proposed [137], cost of development and fabrication remains today the
dominant factor in determining the viability of ASIC-based accelerators [134]. As a
result, ASICs have traditionally been restricted to high-volume markets such as mo-
bile SoCs.
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Of all the factors that guide the choice of an accelerator platform, cost is ar-
guably the most important one. Thus, as demand for a particular application in-
creases, higher (and more costly) specialization is to be expected. An illustrative ex-
ample of this progression is described by Taylor [229], who summarizes the evolution
of Bitcoin-mining hardware. Initially, adoption was low and therefore CPUs were
enough to mine coins pro�tably. As the price of bitcoin raised, however, more play-
ers entered the scene which led to an accelerator “arms race” towards higher energy
e�ciency. Predictably, miners quickly moved from CPUs to GPUs, then to FPGAs,
and �nally to ASIC accelerators, with an order-of-magnitude energy e�ciency im-
provement at each transition.

With the rising importance of energy-e�cient computing, we are likely to see
similar trajectories in highly competitive markets. For instance, the recent explosion
in demand for machine learning (ML) computation has fueled an “ML arms race”, and
consequently ML accelerators have started populating the data center [126, 164, 212].

2.2 Machine Emulation

A machine emulator is a hardware or software artifact that enables one system (the
host) to behave like another system (the guest). The term “emulator” originated in
1964 at IBM, where engineers extended the ISA of the then upcoming IBM “Sys-
tem/360” computer to support the ISA of the “1401”, an older IBM machine. The
ISA extension allowed 1401 code to be emulated directly on the 360, while running
at least four times faster than on the 1401 itself [196].

Machine translators have three core components: a translator, a dispatcher and a
device emulator. The translator translates guest instructions into host instructions.
The device emulator models guest system peripherals (e.g., timers, interrupt con-
trollers, I/O devices), or executes system calls directly on the host in user-mode emu-
lation. The dispatcher controls the guest’s execution state and mediates between the
device emulator and the translator, e.g. by deciding when to execute translated code
or whether to exit execution due to a guest exception.
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In the remainder of this section we �rst cover dynamic binary translation, a key
technique for high-performance translators. We then examine the main sources of
ine�ciency in machine emulators, discuss the challenges in scaling parallel cross-
ISA emulation, review the state of instrumentation tools, and conclude by describing
how instrumentation is used for computer architecture simulation.

Most of our discussion is based on QEMU [24], a popular machine emulator and
virtualizer. QEMU’s popularity is partly due to being (1) cross-ISA and (2) portable.
That is, (1) it supports many guest-host ISA combinations, and (2) can be ported to
support additional guest/host ISAs with reasonable engineering e�ort. Although cen-
tered on QEMU1, our discussion applies to portable, cross-ISA emulators at large.

2.2.1 Cross-ISA Emulation via Dynamic Binary Translation

Dynamic binary translation (DBT) is a binary recompilation technique by which se-
quences of target (i.e. guest) code are translated and cached at run-time2 for subse-
quent execution on the host. The typical granularity of DBT applies to a basic block,
i.e. a linear sequence of instructions with a single entry point and a single exit point.
The Shade translator [60] was �rst to incorporate key optimizations for DBT engines,
such as caching, indexing and chaining of blocks of translated code. By leveraging
these optimizations DBT amortizes the cost of translation, thereby outperforming
alternatives such as using an interpreter [111].

The applications of DBT are numerous. For instance, DBT has been used in soft-
ware systems for performance optimization [18, 51, 136, 159, 223, 248], code manip-
ulation [38, 187, 214], energy e�ciency optimization [243], parallelization [144, 244],
cross-ISA execution [20, 53, 76, 79, 90], control �ow monitoring [138, 199] and virtu-
alization without hardware support [41, 42]. In Section 2.5 we cover in more detail
the application of DBT for machine emulation/simulation and instrumentation.

1Henceforth we refer to QEMU in the present tense to describe the state of QEMU prior to the
work presented in this dissertation, most of which is now part of QEMU.

2The run-time aspect is an important one for emulation. An alternative is to perform static bi-
nary translation. However, compile-time analysis is insu�cient to support dynamic linking or self-
modifying code, and makes discovering code accessed via indirect jumps problematic [86]. For this
reason, static binary translators usually rely on additional run-time analysis, typically via interpreta-
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Figure 2.1: Cross-ISA portability is achieved in QEMU by leveraging the TCG IR.

Cross-ISA DBT engines di�er from same-ISA ones in that the host and guest ISAs
are di�erent. Within cross-ISA engines, portable ones di�er from �xed cross-ISA
engines (e.g., EL [20], FX!32 [53]) in that they support more than one host ISA. This is
typically achieved by using an intermediate representation (IR) to mediate between
target and host ISAs. QEMU [24] and LLVM [152] represent the state of the art in
portable cross-ISA engines. LLVM is a language-independent optimizer and code
generator, and therefore can generate high-quality code. The downside of this high-
quality code generation is the cost it incurs, which complicates the use of LLVM in
dynamic binary translators, as we discuss in Section 2.2.3.2. In contrast, QEMU only
performs simple optimizations, which results in faster translation at the expense of
code quality. Figure 2.1 depicts the use of TCG, QEMU’s intermediate representation
(IR), to achieve cross-ISA portability.

2.2.2 Key Emulator Structures and Concepts

To better frame our discussion in the remainder of this chapter, we now de�ne some
key emulator concepts.

User-mode and full-systememulation. User-mode emulation applies DBT tech-
niques to target code, but executes system calls on the host. While user-mode emu-
lation can employ a system call translation layer, for example to run 32-bit programs
on 64-bit hosts or vice versa, it is generally limited to programs that are compiled for

tion [57].
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movi_i64 tmp3,$0x������8950
add_i64 tmp2,t12,tmp3
qemu_st_i64 t9,tmp2,leq,1

Guest Code

TCG IR

translate()

stq t9,-30384
br 0x12004d890

tcg_gen_code() Host Code
mov 0xd8(%r14),%rbp
add $0x������8950,%rbp

Figure 2.2: An example of portable cross-ISA DBT. An Alpha basic block is translated
into an x86_64 TB using QEMU’s TCG IR.

the same operating system as the host. Full-system emulation refers to the emulation
of an entire system: target hardware is emulated, which allows DBT-based virtualiza-
tion of an entire target guest. The guest’s ISA and operating system are independent
from the host’s.

Virtual CPUs (vCPUs). In user-mode, a vCPU corresponds to a guest’s thread of
execution. In full-system mode, a vCPU represents a core of the guest CPU.

Translation block (TB). As shown in Figure 2.2, a target basic block is translated
to form one or more translation blocks (TBs). Guest execution is thus emulated as a
traversal of connected TBs. Note that while most basic blocks are translated into a
single TB, the emulator can also break a basic block into several TBs, for example to
force an exit to the device emulator in order to update hardware state.

Helpers. Sometimes the IR is not rich enough to represent complex guest behavior,
or it could only do so by overly complicating target code. In such cases, helper func-
tions are used to implement this complex behavior outside of the IR, leveraging the
expressiveness of a full programming language. Helpers are oftentimes used to emu-
late instructions that interact with hardware state, such as the memory management
unit’s translation lookaside bu�er (TLB).
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Guest RAM. Fast RAMaccesses are a requirement for performance in a DBT;mem-
ory accesses are exceedingly common. Synchronization between accesses to the guest
RAM is generally handled by the program running in the guest; the emulator only
needs to provide a correct implementation of the target architecture’s memory model
(e.g., memory ordering, atomic instruction semantics). This problem is covered in de-
tail in Section 3.3.

Devices. Emulated devices, which are only present in full-system mode, are man-
aged by the device emulator. Device emulation is less of a performance concern than
binary translation, since device accesses are (1) signi�cantly more rare than RAM ac-
cesses and (2) often serialized, resulting in access times orders-of-magnitude slower
than RAM accesses. Performance aside, the goal of the device emulator is to support
the modeling of as many hardware devices as possible. QEMU is arguably the leading
tool in this aspect. For this reason, QEMU’s device emulator is used for both cross-
ISA emulation as well as full-system, same-ISA virtualization with hardware support,
e.g. by leveraging KVM [139, 73].

Software memory management unit (softMMU). The softMMU emulates the
guest’s memory management unit (MMU) in software. Among other functions, the
softMMU provides guest virtual-to-physical address mappings as well as guest-to-
host virtual address mappings. To achieve this e�ciently, a softMMU typically gen-
erates code to emulate guest memory accesses in two steps: �rst, the corresponding
host virtual address is looked up from an array that acts as a software translation
lookaside bu�er (TLB) and is therefore indexed by the guest virtual address; second,
assuming the host address was found, the access to guest RAM is performed on it.

2.2.3 Sources of Machine Emulation Overhead

In this section we discuss the main sources of ine�ciency in portable cross-ISA ma-
chine emulators. These are: indirect branch handling, quality of the generated code,
�oating point emulation, and the overhead of the softMMU.
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2.2.3.1 Indirect branch handling

The handling of indirect branches is a key component to the performance of a DBT
engine [116]. Indirect branches cannot be optimized via regular TB chaining, since
the destination TB, unlike for regular branches, is not known at translation time.
The best known solution to minimize indirect branch overhead is the use of traces
as introduced in Dynamo [18]. A trace is a sequence of hot TBs that are grouped
together to form a single-entry, multi-exit unit of execution.

Unfortunately, the applicability of trace compilation to full-system emulators is
limited; even for direct jumps, the optimization is constrained to work only across
same-page TBs, for otherwise the validity of the jump target’s virtual address cannot
be guaranteed without querying at run-time the softMMU. An approach better suited
for full-system emulators is the use of caching [213], although adapted to full-system
emulation like Embra’s speculative chaining [241]. This approach is demonstrated
on QEMU by Hong et al. [117]. They �rst add a small cache to each vCPU thread
to track cross-page and indirect branch targets, and then modify the target code to
inline cache lookups and avoid most costly exits to the dispatcher. In Section 4.2.4.2
we present a similar approach that extends QEMU’s IR to abstract the necessary cache
lookups.

2.2.3.2 Code Quality

Some DBT engines such as QEMU prioritize the speed of code generation over the
quality of the generated code. This can result in signi�cant emulation overhead, par-
ticularly for workloads that have regions of hot (i.e. frequently-executed) code. A
common solution is therefore to apply aggressive optimization to those hot regions,
which are detected via a small amount of pro�ling [53]. HQEMU [118] implements
this approach for QEMU by leveraging LLVM to compile not just hot TBs, but entire
traces of blocks (i.e. sequences of TBs, as described above). The use of traces instead
of TBs gives the compiler greater potential for optimization, while also increasing
the number of compilation jobs and size of the generated code. Thus, to minimize the
performance impact, HQEMU o�oads the compilation jobs to other helper threads
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in the host. A similar approach is followed by Böhm et al. [33] in an LLVM-based
emulator.

An alternative for generating higher-quality code is to use techniques that do
not rely on IR manipulations. HERMES [249] is a QEMU-based system that adds
an additional host-speci�c optimization pass after the TCG backend’s stage. Bansal
and Aiken [19] use peephole superoptimizers to generate translation rules, which
are used for inexpensive yet high-quality code generation. They exhaustively search
all possible rules of translation for up to several instructions in length, which for
complex ISAs can be time consuming. Wang et al. [235] propose a di�erent rule-
based approach that is also automated yet can generate rules at a faster rate. Their
systemworks by �rst analyzing source code and the corresponding binaries compiled
for both ISAs. Then, potential rules are produced and validated using equivalence
checking.

The use of expensive translation techniques can be amortizedwith persistent code
caching [39, 112, 202]. Wang et al. [236] present such a system based on QEMU. Their
framework handles complicated use cases for persistent code caching, such as guest
code generated by just-in-time (JIT) engines and relocatable guest binaries.

2.2.3.3 Floating Point Emulation

Faithful emulation of �oating point (FP) instructions is more complex than just gen-
erating the correct FP result. Correct emulation requires emulating the entire �oating
point environment. Apart from generating the right result, this includes the modeling
of hardware state that con�gures the behavior of the FP operations (e.g., rounding
mode) and keeps track of FP �ags (e.g., invalid, divide-by-zero, under/over�ow, inex-
act), optionally raising exceptions in the guest as the �ags are set.

The FP environment is de�ned in the speci�cation of each ISA. Despite the com-
pliance of many commercial ISAs with the IEEE-754 standard [7], emulation remains
non-trivial for several reasons: (1) the standard leaves details to be decided by the
implementation (e.g., under�ow tininess detection or the raising of �ags in certain
scenarios), (2) some features are not part of the standard, even though they might
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have wide adoption (e.g., �ush-to-zero and denormals-are-zeros), and (3) somewidely
used implementations are not compliant with the standard (e.g., ARM NEON [15]).

Due to this diversity, IRs (such as LLVMandTCG) do not represent FP-environment-
related features. Thus, portable cross-ISA emulators trade performance (e.g., 2× slow-
down forQEMU [24]) for portability by invoking soft-�oat3 emulation code via helpers.

We present in Section 4.2.1 an approach whose goal is to recover most—if not all—
of this performance loss by leveraging the host FPU for the vast majority of guest FP
instructions. Similarly to our work, Guo et al. [104] leverage the host FPU to emulate
guest FP instructions. They, however, employ a considerable amount of soft-�oat
operations in order to handle all possible corner cases (e.g. due to di�erent operands,
�ags and rounding modes). Our approach puts greater emphasis on performance:
it identi�es a fast path (or common case) that can be accelerated with a minimum
amount of auxiliary code, and defers all other (unlikely) cases to a slow path entirely
implemented in soft-�oat.

An orthogonal issue that a�ects FP emulation performance in cross-ISA trans-
lators is the translation of vectorized (i.e. SIMD) code, which is frequently found in
FP-heavy workloads. Recent work [99, 157, 180] has tackled this problem for portable
cross-ISA emulators, although in an incomplete fashion due to a focus on perfor-
mance and not on emulating the entirety of the guest FP environment. Only Guo
et al. [104] do perform faithful emulation of the FP environment when dynamically
translating SIMD code, which they demonstrate by emulating ARM Neon and VFP
extensions in an LLVM-based cross-ISA emulator. Most of the remaining work in this
area tackles the problem of dynamically rewriting of same-ISA vector code, for in-
stance to convert scalar loops to SIMD instructions [131, 244], or to allow vector code
compiled for older ISA speci�cations to take advantage of subsequent SIMD additions
to the ISA [106, 175].

3Soft-�oat implementations, e.g. Hauser’s soft�oat/test�oat packages [110], faithfully emulate the
guest’s FP environment by exclusively using integer instructions.
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2.2.3.4 Memory Management Unit (MMU) Emulation

E�cient, portable implementations of a softMMUwere pioneered by the Embra [241]
and Simics [165] simulators. The authors of these systems also identi�ed that the size
of the TLB in the softMMU does not have to match that of the simulated system; it can
be made larger to gain a performance improvement for memory-hungry workloads.
QEMU [24] implements a similar softMMU. Due to being open source and supporting
many di�erent target and host ISAs, since its release QEMU has served as the main
evaluation platform for further research on MMU emulation.

Tong [231] et al. present an extensive study on how QEMU’s softMMU can be
optimized. Among several enhancements, they propose dynamic resizing of the soft-
MMU, an idea that we extend in Section 4.2.4.1 with the consideration of TLB use rates
in the recent past, which yields signi�cant speedups for memory-hungry workloads
(Section 4.3.2).

Same-ISA virtualization has bene�ted from hardware support for low-overhead
MMU emulation [9, 72, 176]. Several approaches that leverage these architectural
extensions for virtualization have recently emerged to support cross-ISA MMU emu-
lation. They range from keeping shadow page tables using the host’s virtual memory
support [238], to virtualized page tables [48, 96] to deploying a hypervisor under
which to run the emulator [222]. Unfortunately, all of these approaches require the
host’s virtual address length to be greater than the guest’s. It is unclear whether this
limitation can be overcome without sacri�cing performance.

2.3 Parallel Cross-ISA Machine Emulation

The increasing core counts in machines with diverse ISAs—from embedded systems
to servers—calls for e�cient, parallel cross-ISA emulators. Unfortunately, QEMU is
not well-equipped for the task: QEMU-user spends large amounts of time sleeping
on locks and stops all CPUs every time an atomic operation executes; QEMU-system
is only parallel when used in conjunction with KVM as a device emulator, otherwise
it executes the emulated processors in a round-robin fashion in a single host thread.
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The main design choice when developing a scalable emulator is whether to equip
each guest CPU with a private translation code bu�er, or to share cached translated
code among all executing CPUs. A comparison of shared vs. private code caches was
conducted by Bruening et al. [40] using DynamoRIO as the underlying translation
system. According to the authors, a private code cache is simpler to manage due to
the absence of synchronization for most common operations. However, private code
caches have a major downside in their potentially egregious memory consumption:
while desktopworkloads typically share very little code among threads, typical server
workloads (e.g. web servers, databases) spawn hundreds of threads/processes that
execute large amounts of shared code, either due to heavy interactionswith the kernel
(e.g. processing of heavy I/O or network tra�c) or due to the high-level languages
these workloads are written in (e.g., Java) [97].

Pico’s shared code cache design (Section 3.2) ismade possible by read-copy-update
(RCU), a pattern for e�ciently accessing read-mostly data structures [174]. RCU im-
proves scalability by allowing reads to occur concurrently with updates. Whenever a
writer wants to free data, it has to wait until all readers exit their current critical sec-
tion. This way, RCU provides lifetime guarantees during a read-side critical section.
On the other hand, reads are non-repeatable. To limit the impact of non-repeatable
reads, writers create new copies of the data structures they update. As long as readers
do not repeat pointer reads, they will always see consistent data. The data, however,
may potentially be stale. This may limit the applicability of RCU, but this technique
has nevertheless seen extremely wide usage in the Linux kernel [173]. Readers, in
addition to running concurrently with writers and other readers, only incur a very
small overhead. User-space implementation of RCU typically require readers to note
whether they are running inside an RCU-protected region and, possibly, wake up
writers that are waiting for concurrent readers. However, in the common case when
no writer is waiting, an RCU reader will only access thread-private data, thereby not
causing any cache line bouncing. The implementation we used for Pico/Qelt (Chap-
ters 3 and 4) also needs a memory barrier at each end of the RCU critical sections,
though it is possible to use more complex schemes that eliminate the barrier. [84]
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Two works in the literature address the problem of adding multicore support
to QEMU: COREMU [237] and PQEMU [87]. COREMU uses private code caches,
whereas PQEMU’s authors experimented with both private and shared code caches.
As an optimization, PQEMU supports a complex state machine to manage the shared
code cache.

Neither PQEMU nor COREMU (including a later port for MIPS hosts [125]) ad-
dress correctness issues speci�c to cross-ISA emulation. These issues arise due to
di�erences between guest and host in their (1) memory consistency models and (2)
atomic operation semantics. The �rst issuewas recently addressed by Lustig et al. [161].
The authors model the insertion of memory barriers between memory accesses as
a state machine; their ArMOR framework accepts a description of memory consis-
tency4 models for the guest and the host, and produces such a state machine for use
in an interpreter or dynamic binary translator. The second challenge, which to our
knowledge has no prior work in the literature, has to do with the correct and scalable
emulation of load-locked/store-conditional pairs (LL/SC) on hosts that only provide
a compare-and-swap (CAS) instruction which, unlike LL/SC, is subject to the ABA

problem [177]. Section 3.3 describes our solution to these issues.
Pico’s shared-code-cache design scales for full-system multicore guests during

code execution. However, if the multicore guest performs parallel code translation

(e.g., by executing large amounts of previously untranslated code, which is common
when running parallel compilation jobs), scalability su�ers because translation is se-
rialized with a coarse-grained lock as done in PQEMU [87]. Full-system translators
with thread-private caches (e.g., QSim [132], Parallel Embra [150], COREMU [237])
can trivially scale during parallel code translation, yet as mentioned above this can
result in prohibitive memory usage [40]. Qelt, which we present in Section 4.2.2, is, to
our knowledge, the �rst DBT engine for full-system emulators to scale during parallel
code generation and chaining while maintaining a shared code cache.

4Our understanding of cross-ISA issues is shaped by work in the area of modeling and validation of
memory barriers and atomic instructions, in particular Sarkar et al.’s work on modeling POWER and
ARMmultiprocessors [210] and Alglave et al.’s work on validating those models on real hardware [11].
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2.4 Instrumentation

DBT is the basis for dynamic binary instrumentation (DBI) tools, such asDynamoRIO [38],
Pin [160] and Valgrind [187]. DBT is well-suited for code instrumentation: it enables
the handling of unmodi�ed binaries (thus removing the need for recompilation/re-
linking) while covering all executed user-space code without requiring access to the
original sources. The overhead of DBI tools is usually low, most of it coming from
the analysis performed and not the instrumentation. For instance, Valgrind is signif-
icantly slower than Pin or DynamoRIO, in part due to the maintenance of a heavy-
weight shadow memory.

A major limitation of the above tools is the lack of support for cross-ISA analysis,
therefore requiring the instrumented binary’s ISA to match that of the host machine.
QEMU does not yet provide instrumentation capabilities, which has sparked the de-
velopment of multiple QEMU-based instrumentation tools.

A popular QEMU fork is the Unicorn framework [188], which adds an instrumen-
tation layer around QEMU’s DBT engine. Unfortunately, Unicorn is not an instru-
mentation tool: it cannot emulate binaries or work as a machine emulator, since those
features were removed when forking QEMU. Unicorn is therefore suitable for being
embedded into other applications, or for reverse engineering purposes. PEMU [247]
and QTrace [230] implement a rich instrumentation and introspection interface for
x86 guests, although they incur high overhead. TEMU [220], PANDA [88] and DE-
CAF [113], of which the latter two are cross-ISA, implement security-oriented fea-
tures such as taint propagation at the expense of large performance overhead. Of the
above QEMU-based tools, only QTrace allows for instruction-level instrumentation
injection. QTrace achieves this by shadowing guest memory and registers, which
might be a contributor to its low performance. In contrast, Qelt’s injection model is
simpler, works entirely at translation time, can instrument helpers and has negligible
performance overhead.

Similarly to Qelt, DBILL [163], PIRATE [240] and PANDA [88] can instrument
helpers, although by leveraging the LLVM compiler to convert the original helper
code into an instrumentable IR [54]. This is a �exible approach, but incurs high trans-
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lation overhead and complexity. QEMU-based instrumentation was combined with
debugging and introspection capabilities in QVMII [89], which optionally provides
deterministic record-and-replay execution at the expense of performance.

2.5 Simulation via Instrumented Emulation

Instrumented emulation has been part of simulation almost since the introduction of
emulators. At SOSP’79, Canon et al. [45] presented an emulator used for simulation
purposes. They established two simple requirements in order to make emulation suit-
able for performance evaluation: “(1) a consistent virtual time base, independent of real

time, must be established, and (2) all virtual clock values and the timing of asynchronous

virtual events must be derived from the virtual time.” Execution-driven simulators are
thus implemented in a two-pronged approach: the emulator (sometimes called func-

tional simulator) drives execution, and the timing model (which interacts with the
emulator via the instrumentation layer) controls virtual time.

We now review the state of the art in user-mode and full-system simulation.

2.5.1 User-mode Simulation

Whether to support user-mode or full-system simulation is a decision that is based
on the type of workloads to be run. If the guest workload spends most of the runtime
in user-mode, a user-mode emulator might be accurate enough to drive simulation.
Given the complexity of computer systems, however, it is hard to provide accuracy
guarantees for user-mode simulators, since the operating system (OS) can still have an
impact even if it executes rarely. For instance, the OS’ handling of virtual memory and
its use of cache-related instructions can have signi�cant impact in performance [44].
These e�ects are only exacerbated in multicore architectures, which can result in
virtual memory scalability limits [59] and scheduling decisions that greatly a�ect
performance [36, 158].

Despite these shortcomings, user-mode simulators are a popular research tool.
Table 2.1 shows a comparison of user-mode emulators in the literature, sorted chrono-
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SimpleScalar [43] 1997 Interpreter Low None several
FastSim [211] 1998 Memoization High None MIPS
SESC [204] 2004 Interpreter Low None
Graphite [181] 2010 Pin (DBT) High High x86-on-x86
SlackSim [49] 2010 Interpreter Med Low PISA
Sniper [47] 2011 Pin (DBT) High High x86-on-x86
HORNET [203] 2012 Interpreter Med Low MIPS
Zsim [209] 2013 Pin (DBT) High High x86-on-x86
ESESC [14] 2013 QEMU (DBT) High High ARM guests
PriME [100] 2014 Pin (DBT) High High x86-on-x86

Table 2.1: Comparison of user-mode architectural simulators: emulation engine,
speed, scalability on multicore hosts, and supported ISAs.

logically. Over time, higher simulation speeds have been achieved by (1) adopting
DBT for faster emulation and (2) leveraging multicore hosts to emulate multicore
guests. These changes have only been possible by raising the level of abstraction, that
is, by phasing out cycle-level simulation (as in SimpleScalar [43] or SESC [204]) for
coarser abstractions (e.g., instructions) that can still yield acceptable accuracy. Note
that cycle-level simulation is not a guarantee of accuracy; only a validated model is,
regardless of its level of abstraction [83, 239].

The adoption of the multicore-on-multicore model was led by SlackSim [49] with
the introduction of both pessimistic and optimistic synchronization across simulated
cores. HORNET [203] implements pessimistic synchronization, which in architec-
tural simulators does not o�er much room for scalability. Optimistic synchronization
can potentially exploit more parallelism via speculation, yet imposes great complex-
ity due to the necessary ability to roll back changes [101]. These di�culties motivated
the emergence of approximate synchronization schemes that forgo event causality to
achieve higher scalability. Graphite [181] pioneered this model. It uses Pin [160] as
the emulator to implement fast, scalable simulation of multicores that can also be
distributed across machines. It does not, however, model cache coherence. Later sim-
ulators such as Sniper [47], Zsim[209], ESESC [14] implement cache coherence and
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SimOS [205] 1995 Embra [241] (DBT) Med None MIPS-on-MIPS
Simics [165, 166] 1995 Interpreter Low None several
gem5 [28] 2011 Interpreter Low None several
PTLSim [246] 2007 QEMU (DBT) Med None x86 guests
MARSS [192] 2011 QEMU (DBT) Med Low x86 guests

Table 2.2: Comparison of full-system architectural simulators: emulation engine,
speed, scalability on multicore hosts, and supported ISAs.

exploit approximate synchronization model to achieve some scalability on multicore
machines. PriME [100] follows a similar approach, and it also scales across simulation
hosts.

2.5.2 Full-System Simulation

Table 2.2 shows a comparison of full-system simulators in the literature, sorted chrono-
logically. SimOS [205] pioneered key ideas in full-system emulation, such as the use
of DBT for execution and the adoption of a softMMU to portably emulate virtual
memory. Simics [166], which was developed at the same time as SimOS, has a lesser
focus on speed, perhaps due to its stronger focus on accuracy. Today, arguably the
most popular full-system simulator is gem5 [28], an open-source project that is a
descendant of M5 [29] and GEMS [172]. gem5 performs event-driven simulation,
which makes it a slow yet useful tool for simulating microarchitectural detail. gem5
models several ISAs, and has been validated for a subset of them against real hard-
ware [105]. PTLSim [246] is an x86 simulator that uses QEMU to drive execution,
which gives it higher speed than gem5 and access to the many devices emulated
in QEMU. MARSS [192] builds on PTLSim to, among other improvements, leverage
multicore hosts to scale the timing model, which is cycle-level.

By interacting with external simulation engines, full-system architectural simu-
lators can model heterogeneous systems that integrate accelerators. Simics supports
the attachment of externally-simulated SystemC devices [133]. gem5 derivatives have
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added support for accelerator models in PARADE [61] and gem5-aladdin [218]. Rab-
bits [103] integrates QEMU with SystemC accelerators by running QEMU inside a
SystemC simulation thread.

None of the full-system simulators in the literature can simulate heterogeneous
systems (i.e., multicores with accelerators) at high speed while leveraging multicore
hosts. This goal has not been achieved due to the lack of fast, scalable full-system
emulators, while user-mode simulators show that timing models can scale. Our work
with Pico (Chapter 3) and Qelt (Chapter 4) �lls this gap by turning QEMU into a fast,
scalable machine emulator.
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Chapter 3

Pico: Cross-ISA Machine Emulation

3.1 Introduction

E�cient, scalable cross-ISA DBT poses two main challenges. First, concurrent access
to key data structures should avoid contention on the memory hierarchy. Second,
guest and host ISAs may di�er in the implementation of atomic operations, as well as
in the memory consistency model; such mismatches impose additional work on the
DBT engine, beyond simply performing instruction-by-instruction translation.

This chapter1 proposes a design for a scalable cross-ISA dynamic binary transla-
tor that is simple, memory-e�cient and correct. Our design, which we call Pico, is
implemented on QEMU [24] due to its wide use and support of many di�erent guest
and host ISA combinations. The two main contributions of this chapter are:

• A memory-e�cient design of a shared code cache for DBT engines. Based on
the observation that code translation is rare, and that runtime is mostly spent on
code execution, we keep the core logic of Pico simple, and achieve scalability
through careful tuning of the emulator’s data structures. In particular, the code
cache is backed by a novel, highly concurrent hash table design that enables fast
and scalable lookups (Section 3.2).

1This chapter incorporates and extends work previously published in the proceedings of the 2017
CGO conference [66]. Our implementation was successfully evaluated by the conference’s Artifact
Evaluation (AE) committee.
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Figure 3.1: Pico’s full-system architecture. Each guest CPU is emulated by a corre-
sponding host “vCPU” thread. Guest devices are emulated by a single “I/O” thread.

• A scalable, fully correct cross-ISA approach to emulating atomic instructions
and reconciling guest-host di�erences in memory consistency models. We em-
ulate strongly-ordered architectures on top of weaker ones by leveraging the
work of Lustig et al. [161]. When possible, atomics are translated to the equiv-
alent operation on the host. Otherwise, they are emulated faithfully either by
instrumenting stores or, as a high-performance alternative, by leveraging hard-
ware transactional memory (HTM) on hosts that support it (Section 3.3).

We evaluate Pico on a 64-core x86_64 host running x86_64 code, and on a 12-core,
96-thread POWER8 host running x86_64 and Aarch64 code. Our results show that
scalability of DBT with a shared code cache is comparable with native execution and
hardware-assisted virtualization. Further, we quantify the implementation overhead
of the di�erent options to handle architectural mismatches between guest and host,
exploring correctness vs. performance trade-o�s for atomic instruction emulation.

3.2 Emulator Design

Pico’s architecture, shown in Figure 3.1, has fourmain components: the state of CPUs,
the memory map, the translation block cache and the guest RAM. In this section we
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cover the �rst three components, deferring the discussion of cross-ISAmemory access
emulation to Section 3.3.

We do not describe in detail the host “I/O” thread for device emulation, since it has
been present in QEMU for several years, supporting concurrent emulation of devices
and guest code execution with adequate performance.

3.2.1 CPU Execution

Pico allocates one host thread per emulated CPU; threads can then access the CPU
registers without need for synchronization. However, CPUs do communicate with
each other, even if sparingly; for example, the ARM architecture has instructions to
�ush the TLB on all cores in a shareability domain.

For this purpose Pico uses a two-pronged approach that scales for the common
case, in which no communication is ongoing. First, every CPU loop is wrapped in
an RCU read-critical section. Second, messages are delivered by setting a “�ag” on
the consumer CPU’s state. The use of RCU allows producer CPUs to establish when
messages have been consumed by waiting for a grace period to elapse. To ensure that
the receipt of messages is bounded in time, CPUs check the request �ag at the begin-
ning of every translated basic block. Despite the simplicity, the cost of the checks
is low: each basic block only needs two or three more instructions, depending on
the host architecture—e.g., a load, a compare and a well-predicted branch.2 Note that
QEMU does not attempt to compile multiple basic blocks into a single compiled trace,
otherwise the amortized cost could be made even lower.

3.2.2 Memory Map

QEMU-system organizes the guest’s memory map as a tree of RAM, I/O and “con-
tainer”memory regions, fromwhich a radix tree is built for e�cient lookups. Changes
in the memory map are rare once the kernel has booted, and typically happen only

2QEMU originally relied on asynchronous signals to exit emulation, instead of checking a �ag
before executing every translation block. [24] This was changed in QEMU 1.5 (2013) to improve porta-
bility and improve thread-safety.
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in response to device hot-plug and hot-unplug. Given how infrequent these changes
are, the radix tree is simply rebuilt from scratch whenever a change occurs.

The memory map radix tree is read on every TLB miss3 and on every interaction
with an emulated memory-mapped device; it is therefore crucial for Pico to provide
cheap access to it. The low update frequency and the “rebuild from scratch” approach
make the memory map data structure an excellent candidate for RCU. Thus, once the
tree is rebuilt, all CPUs are “kicked” out of their execution loop, thereby conclud-
ing their RCU read-side critical sections. This guarantees that they will all read the
updated state upon resuming execution.

3.2.3 Translation Block Cache

The translation block cache minimizes code retranslation by bu�ering already trans-
lated code. It consists of translation blocks (TBs), i.e., guest basic blocks translated to
the host architecture, that are indexed by an associated hash table.

Even though TBs can be invalidated, memory in the block cache is never reused.
When the block cache is full, the emulator stops all CPUs and starts over with an
empty bu�er. Such �ushing of the block cache is done for simplicity and performance.
For most workloads and with an appropriately sized code bu�er, the hit rate is very
high and the bu�er is �ushed rarely—on the order of 2-3 �ushes/minute in system
emulation and practically never for user mode. Thus, maintaining an eviction policy
(such as “least recently used”) would likely result in a net loss of performance: the
associated bookkeeping would negate the gains of avoiding already rare �ushes.

The translation block cache and associated lookup mechanism in QEMU is shown
in Figure 3.2a. The hash table points to TB descriptors, and is indexed by guest phys-
ical address. The hash table uses separate chaining with a �xed number of buckets.
From the CPU execution loop, TB lookups are performed in two steps. First, threads
access a direct-mapped, CPU-private cache. On a hit, a pointer to the corresponding
TB is returned. On a miss, the shared hash table is accessed after acquiring a global

3 The memory map is not used in QEMU-user, since guest addresses are trivially translated to host
addresses by adding a constant value.
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Figure 3.2: Translation Block lookup mechanisms in (a) QEMU and (b) Pico. Pico’s
improved hashing results in a more uniform bucket distribution. Further, QHT has
higher performance due to its dynamic resizing and concurrent lookup support.

lock. The CPU-private caches are tuned for latency; they are small and are invali-
dated relatively often (e.g., after every TLB �ush). Thus, contention on this lock can
be high.

Hash table design. Pico increases performance and scalability of the shared hash
table in twoways. First, we improve the hashing function used to place TB descriptors
in the hash table buckets. Second, we adopt a new hash table design that enables
correct, concurrent lookups.
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Pico uses xxhash [6], a high-performance non-cryptographic hash algorithm, to
mix all three parts of the key: the virtual program counter (PC), the physical program
counter (phys-PC) and a set of �ags representing the active CPU mode (�ags). Using
all this information leads to a signi�cantly more uniform distribution of TBs into
buckets: for instance, the longest observed chain after fully booting Debian “jessie”
on ARM is brought down from 550 to 40 TBs.

Our hash table design, called QHT, is highlighted in Figure 3.2b. Its main feature
is support for concurrent reads with optimal scalability. In addition, even though Pico
does not need it for the translation block cache, QHT also allows concurrent writes
to separate buckets. In QHT, bucket chains are composed of cache line–sized nodes.
Each node has a head spinlock for serializing writers, and stores multiple pointer-
sized objects (“D” in the �gure) along with their precomputed hashes (shown as “#”).

QHT is similar to CLHT-LB [77]; however, CLHT imposes a restriction on the
memory allocator that can be used with the hash table: the same address cannot be
returned twice by the allocator while reads are occurring. To remove this restriction,
QHT uses a per-bucket sequence number and the seqlock algorithm [149] to syn-
chronize readers against writers. Readers of a seqlock need not perform any write,
avoiding cache line bouncing and preserving scalability; they only need to retrieve
the sequence number with a regular load (plus, on non-TSO hosts, a read fence) before
and after traversing each bucket.

Writers update the sequence number before and after a concurrent write; there-
fore, if the low bit is set, readers know a writer is currently active. Readers wait until
the low bit is clear, then access the bucket. If the sequence number changes during
the access, the reader might have seen an inconsistent state and retries the access.
Retries are highly unlikely due to (1) the size of the hash table (it is not uncommon
to have several hundred thousand elements), and (2) its low update rate—about 6%
when booting Debian “jessie” on ARM, arguably a worst-case workload since most
translated code is executed only once.

Figure 3.3 presents, for several hash table con�gurations, the time it takes to fully
boot Debian “jessie” on ARM and immediately shut down. QEMU uses a �xed-size
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Figure 3.3: Bootup+shutdown time of Debian “jessie” in an ARM guest running on an
Intel Haswell i7-4790K host.

hash table together with a most recently used (MRU) promotion policy, which moves
items to the front of the bucket after every successful lookup. The plot shows that
using MRU along with e�ective hashing (xxhash) and appropriate sizing gives opti-
mal performance. On the other hand, MRUwrites to memory on every lookup, which
hurts scalability due to excessive cache line bouncing.

Furthermore, a �xed-size hash without MRU has inferior performance due to ex-
cessive bucket chain lengths and increased number of cache misses. QHT virtually
matches the performance of an ideally-sized hash table with MRU promotion by sup-
porting resizes concurrentwith lookups. Since resizes are rare, concurrentwrites spin
on bucket locks while a resize takes place. The freeing of pre-resize bucket chains is
deferred by using RCU.

We benchmarked QHT against other hash table designs featuring resizing and
concurrent lookup. While we did not apply CLHT in QEMU due to the aforemen-
tioned memory allocation requirements, Figure 3.3 shows that when booting a full
system QHT has performance on a par with that of ck_hs, the hash set implementa-
tion from concurrencykit [5].

However, QHT and ck_hs show great performance di�erences in write-heavy sce-
narios. Figure 3.4 plots the scalability to 64 cores of QHT, CLHT and ck_hs, driven
from a hash table microbenchmark operating on 200K elements at di�erent update
rates. Due to its use of seqlocks, QHT achieves performance comparable to CLHT’s
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Figure 3.4: QHT, CLHT and ck_hs performance comparison.

while not imposing restrictions on the memory allocator. On the other hand, ck_hs
is an open-addressed hash set and therefore takes the same lock around every insert;
as a result, it scales poorly even for modest update rates, which limits its general ap-
plicability. This limitation is shared with similar hash table implementations, such as
the one proposed by Bruening et al. in [40].

3.3 Correct, Cross-ISA Memory Accesses

Two cross-ISA issues are speci�c to multi-threaded emulators. First, the emulator has
to handle mismatches in the memory consistency models of the source and target
ISAs. Second, it has to correctly emulate the semantics of atomic operations. The
latter problem, in turn, has to be attacked di�erently for the two families of atomic
operations: compare-and-swap (CAS) and other read-modify-write operations on one
hand, and load-locked/store-conditional (LL/SC) on the other.
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3.3.1 Mismatches in the Memory Consistency Model

The memory consistency model of an ISA is made of a set of implicit ordering guar-
antees that the ISA promises to respect. These could be, for example, which mem-
ory accesses (loads, stores, atomic read-modify-write sequences) can be reordered in
front of older accesses, or whether memory ordering obeys causality (also known as
transitive visibility).

Performing DBT on a host that only allows reordering loads before older stores
(such as x86_64) is trivial, because the emulated code cannot have an implicit or-
dering guarantee that the host does not respect. Unfortunately, the opposite case is
problematic: performing DBT of guest code on a host whose ISA is weaker than that
of the guest means that certain reorderings need to be explicitly forbidden by the
translator.

Recent work by Lustig et al. [161] deals with exactly this problem: given two
memory consistency models, they provide a framework, called ArMOR, that gener-
ates a state machine for the translator that guarantees correct execution of code from
stronger ISAs on weaker ones.

We evaluate the performance impact of ArMOR’s state machines in Section 3.4.5.

3.3.2 Compare-and-Swap (CAS)

Single-word CAS in the guest can be easily mapped to CAS in the host. Pico imple-
ments this similarly to how COREMU [237] does4.

Multi-word CAS is required to emulate processors with 64-bit words on top of
32-bit ones. Fortunately, most 32-bit processors do provide 64-bit CAS or load-locked/
store-conditional (LL/SC) operations; the only exception is PowerPC processors (until
POWER8, which can implement it using hardware transactional memory).

This approach cannot portably implement the x86 cmpxchg16b instruction, which
performs a CAS operation on a 128-bit quantity. This operation is not available na-
tively on 32-bit hosts, as well as on 64-bit PowerPC processors until POWER8. Fortu-

4Source code available at http://coremu.sf.net/
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nately, this instruction is rarely used by operating systems (e.g., Linux), and the x86
cpuid instruction marks its presence with a separate feature bit. We therefore either
hide this feature bit from the guest, or fall back to the strategies used for emulating
load-locked/store-conditional instructions, which are described below.

Bus-locked atomics. Architectures such as x86 support the atomic execution of
certain instructions via a pre�x (e.g., LOCK xadd). The same infrastructure used for
CAS can also be used to implement other instructions such as atomic fetch-and-add or
test-and-set; they can be trivially reduced to a CAS loop, as done in COREMU [237].
However, for increased e�ciency, Pico leverages the equivalent bus-locked instruc-
tion on the host whenever possible.

3.3.3 Load-Locked/Store-Conditional (LL/SC)

Rather than providing CAS, most RISC processors implement atomic read-modify-
write operations through two instructions, load-locked (also known as load-link) and
store-conditional. The �rst returns the current value of a memory location; the second
stores a new value only if no updates have occurred to the location since the load.
Unlike CAS, these instructions detect the case where a location has been changed to
a di�erent value and then back to the original.

Implementing LL/SC primitives is trivial in a sequential emulator. Whenever a
store-conditional instruction is concurrent with one or more regular stores, however,
a parallel emulator has to order the conditional store against each regular store. This
is a consensus problem of order two, whose solution requires an atomic instruction
(such as a test-and-set instruction) in both regular and conditional stores [114]. A
trivial, non-scalable solution is to stop all other CPUs while executing store-condition-
al instructions. This is exactly what QEMU does; performance however drops very
quickly even with very few concurrent threads. A solution, in order to scale, should
thus avoid atomic instructions whenever the store does not con�ict with LL/SC op-
erations. We now present three di�erent solutions, exploring the trade-o�s between
correctness, scalability and portability.
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Figure 3.5: Instrumentation of stores in Pico-ST. Stores execute while holding the
appropriate lock i� an atomic instruction has previously been performed on their
target cache line.

Pico-CAS: a (slightly) incorrect and scalable solution. The simplest, but nonethe-
less practical solution is to not implement exact LL/SC semantics; instead, a store-con-
ditional operation can simply perform a CAS from the value fetched by load-locked

to the argument of store-conditional.
Of course, this su�ers from the ABA problem [177]: if the location were modi�ed

twice between load-locked and store-conditional, and the second write restored the
original value, then the store-conditional would incorrectly succeed.

At the same time, in practice this is rarely problematic. Portable code using
C/C++11 atomics only has access to CAS, and the entire Linux kernel does not em-
ploy LL/SC in ways that would break when emulated with CAS. Therefore, synchro-
nization algorithms and lock-free data structures avoid the ABA problem using tech-
niques such as reference counting, RCU or hazard pointers [178]. Nevertheless, it is
worth looking further for fully correct solutions.

Pico-ST: a correct, scalable and portable solution. It is possible to avoid the
ABA problem if one accepts a slowdown in single-threaded performance. This re-
quires instrumenting stores to check whether the physical address to store to has
ever been accessed atomically. If so, ongoing LL/SC pairs to the same cache line are
canceled.

For each cache line that an LL/SC operates on, a corresponding entry is kept.
An entry has two �elds: a lock and a set of CPUs to track ongoing LL/SC operations.
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Entries are looked up by coupling a scalable hash table (we use QHT, see Section 3.2.3)
and a bitmap. While each entry in the hash table represents a single cache line, each
bit in the bitmap can represent a con�gurable number of cache lines, thus keeping
its storage overhead practical. A bit set in the bitmap means that it is possible but
not guaranteed that a lock might have to be taken for a given address; to dispel the
uncertainty, the hash table is checked with the full address of the cache line. The
instrumentation preceding emulated stores is depicted in Figure 3.5.

An additional measure is necessary to avoid races between the �rst load-locked
operation on a cache line and a concurrent store to it by another CPU. This has to
be done in three steps: (1) insert the appropriate entry in the hash table and bitmap,
(2) kick all other CPUs out of the execution loop, and wait for them to actually exit;
and (3) proceed with the load-locked emulation. Step 2 can be implemented easily by
waiting for an RCU grace period (see Section 3.2.1). After Step 2, all regular stores to
the newly-added cache line will be protected by the spinlock; this makes Step 3 safe.

Finally, we relax the requirement of keeping an entry for each cache line that an
LL/SC ever operated on, which could potentially degenerate into acquiring a lock on
every emulated store. Thus, we periodically reset both bitmap and hash table, thereby
guaranteeing at negligible cost that the bitmap will remain sparsely populated.

Pico-HTM: leveraging hardware transactional memory. If the host also sup-
ports LL/SC, one may think of using them for emulating the target’s LL/SC. This is
dangerous, however, because most processors constrain the instructions that can ap-
pear between an LL/SC pair. If these restrictions are not respected, the store might
fail spuriously. The extra overhead of dynamic translation, such as TLB lookups and
register spills, may thus cause the store to fail forever.

Fortunately, some of the newestmembers of the POWER, s390 and x86_64 families
featureHTM,which does super�cially resemble LL/SC. HTM is howevermore �exible
than LL/SC and places fewer constraints on the instructions that can appear between
the LL/SC pair. POWER processors, for example, can write to several hundred cache
lines in a single transaction [153].
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x86_64 Translation Blocks

...

...

movq %rbp,(%rax)
xend

...

...

...

xbeginq 0x40062b

movq (%eax),%rbp

str x3, [x19, #16]
str x3, [x29, #152]
mov x1, x3

cmp x2, x1
b.ne #+0xc

ldxr x2, [x4]

Guest aarch64 code

cbnz w0, #-0x10
stlxr w0, x19, [x4]

Figure 3.6: Example LL/SC pair translated with Pico-HTM.

As depicted in Figure 3.6, Pico compiles load-locked to a “begin transaction” in-
struction followed by a regular load, and a store-conditional to a regular store followed
by a “commit transaction” instruction. This works because all commercial HTM im-
plementations provide strong atomicity [31]. Under strong atomicity, a store con-
�icting with a transaction will force the transaction to abort; the emulator can then
check for con�icting regular stores just by testing whether the transaction completed
successfully.

There is one important di�erence between HTM and LL/SC. Regular stores be-
tween the load-locked and store-conditional instructions persist after a failed condi-
tional store; with HTM, instead, an abort rolls back all stores in the transaction. We
cannot therefore map a transaction abort directly to a store-conditional failure. In-
stead, we retry the transaction until it succeeds, so that the conditional store actually
never reports a failure. Because the semantics of store-conditional is respected, the
di�erence is not visible to the emulated program.

HTM also requires a fallback for repeated aborts. After a few failed attempts, or
if one of the blocks between load-locked and store-conditional is not translated, Pico
executes the LL/SC sequence with all other CPUs stopped.
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3.4 Evaluation

3.4.1 Setup

Machines. We perform measurements on the following machines, which all have
64G of RAM and run Linux v4.4:

SKL has a 3.4GHz 4-core Intel Skylake i7-6700 processor with 2-way simultaneous
multithreading (SMT), for a total of 8 hardware threads.

P8 has two 3.3 GHz 6-core IBM POWER8 processors with 8-way SMT, for a total of
96 hardware threads.

AMD has four 2.3GHz, 16-core AMDOpteron 6376 processors, for a total of 64 cores.

The guest kernel is always Linux v4.4. We use QEMU v2.4.0-rc3 as the baseline em-
ulator, since newer versions already include some of the improvements in Pico.

Workloads. We use SPEC CPU2006 benchmarks for single-threaded performance
measurements. For measuring scalability we use the PARSEC suite [26], as well
two server workloads: the pgbench tool in PostgreSQL v9.5 [3] and the Masstree

in-memory key-value store [169]. We compare Pico-user to native execution, and
Pico-system to KVM.

For evaluating the overhead of atomic instruction emulation we wrote a simple
microbenchmark called atomic_add. Each thread in atomic_add executes a loop that
atomically increments a random element of an array of integers, which is appropri-
ately padded to avoid false cache line sharing. By varying the size of the array, we
can observe di�erent levels of contention in the memory hierarchy.

All experiments are run �ve times; we show the resulting mean and corrected
sample standard deviation. For each experiment we choose the thread pinning policy
that exhibits higher performance from either scattering threads evenly across NUMA
nodes, or favoring same-node pinnings.
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Figure 3.7: Speedup on SKL of Pico over QEMU for single-threaded x86_64 SPEC06
workloads.

3.4.2 Single-Threaded Performance

This experiment (Figure 3.7) compares the performance of Pico for single-threaded
execution over the baseline QEMU implementation on SKL. QEMU-user already sup-
ports multiple threads of execution, but this introduces overhead even for single-
threaded programs; for example, translation block lookups (Section 3.2.3) are serial-
ized with a lock. Pico-user is thus 20–90% faster than QEMU-user, mostly due to its
better translation block hashing and to QHT’s cache e�ciency.

Pico-system introduces locks and fences to cover previously unprotected data
structures, and converts some memory accesses to atomic operations. This balances
the advantages of improved hashing, making performance virtually identical toQEMU-
system—on average slightly worse for integer benchmarks, and slightly better for
�oating-point.
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Figure 3.8: Speedup over native on AMD for PARSEC under Pico-user.

3.4.3 Parallel Workloads

In this experiment we evaluate the scalability of Pico-user by running PARSEC with
the native input set5. Figure 3.8 compares the scalability of Pico against that of a
native run on AMD. Speedups are shown normalized over the native single-threaded

5We had issues running two PARSEC benchmarks on AMD: freqmine crashed frequently, and so
did raytrace beyond 16 threads. The crashes happened for both native execution and Pico.
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execution times; ideal, linear scaling is shown with a dashed line for comparison.
Most PARSEC benchmarks do not scale well to dozens of cores [221], showing a

performance cli� that is indicative of excessive cache line contention. Nevertheless,
on average, the scalability of Pico is better than that of native execution. This is
because the slowdown caused by DBT reduces the rate of accesses to shared memory
in the workload, thereby delaying the onset of the contention-related performance
cli� (e.g., streamcluster) and even avoiding it altogether (e.g., facesim, �uidanimate).
This e�ect is present for most workloads we tested, but it is particularly visible here
due to the slow �oating point emulation in the DBT engine.

Benchmarks that do not have particular contention show similar scalability under
both Native and Pico, as it can be seen, for instance, in swaptions, blackscholes or
canneal.

3.4.4 Server Workloads

We now show the results for full-system emulation of a guest with 32G of RAM run-
ning multi-threaded (Masstree) and multi-process (PostgreSQL) server workloads on
AMD. These workloads are representative of large virtual machines and stress two
potential sources of performance degradation: code translation and device emulation.

Code translation is stressed by multi-process server workloads due to their code
size [40], and because the virtual address of the program counter is part of the transla-
tion block hash key; even if the text of the program is loaded only once in memory by
the operating system, techniques such as address space layout randomization (ASLR)
can cause the emulator to translate it multiple times. Device emulation is stressed
simply because QEMU runs all emulation under a single global mutex, and we did
not change this in Pico.

For PostgreSQL, we use pgbench to create and populate a database of scale factor
150, running each test for 120s and spawning two connections per thread. Both Post-
greSQL server and pgbench run in the same guest, with the server con�gured with a
bu�er of 8GB. For Masstree, we run 10s get/put tests on a database initialized with
140M “1-to-10-byte decimal” [169] keys.
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Figure 3.9: Speedup vs. KVM on AMD for server workloads under Pico-system.

Figure 3.9 shows the results of the experiment. Both of the benchmarks scale up
to 64 threads. In the case of PostgreSQL, which performs disk and socket I/O as well,
device emulation is a bottleneck at 16 to 40 threads. In this range, KVM can take
advantage of optimizations to device emulation, such as moving the CPU’s interrupt
controller (local APIC) inside the hypervisor and triggering the QEMU I/O thread
directly from the hypervisor. Pico on the other hand cannot keep all cores pegged at
100% CPU utilization. Nevertheless, the scalability of Pico is in line with KVM’s.

Masstree, which is a memory-only workload, scales under Pico up to at least 64
threads. As in the PARSEC benchmarks, emulation scales better than KVM because
of the reduced rate of shared memory accesses. In neither case code translation turns
out to be a bottleneck.

3.4.5 Mismatches in the Memory Consistency Model

In order to quantify the cost of emulating parallel code from strongly-ordered ISAs on
weakly-ordered hosts, we implemented the two state machines provided by ArMOR
for executing x86_64 guest code on a PowerPC host. We then ran x86_64 SPEC06 code
on P8. The two state machines, which we call SYNC and PowerA, are summarized as
follows.

• SYNC: Insert a full memory barrier (sync in PowerPC assembly language) be-
fore every load or store. This is always correct for all possible legal code.
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Figure 3.10: Slowdown on P8 for Pico-user running x86_64 SPEC06 benchmarks, with
twoArMOR statemachines and hardware strong-access ordering, relative to omitting
all barriers in the translated code.

• PowerA: Separate loadswith lwsync barriers, pretending that PowerPC ismulti-
copy atomic even though it is not6. While this does allow illegal behavior for
the iriw litmus test [32], it allows for greater performance if the user is sure
that the system does not include code similar to iriw—which indeed is practi-
cally never seen.

The results are shown in Figure 3.10. SYNC provides full correctness but incurs
signi�cant slowdown, on average surpassing 3X for integer workloads. PowerA has a
more adequate average slowdown of approximately 2X for CINT2006, at the expense
of not handling correctly the iriw pattern. The slowdown of both approaches is
signi�cantly lower for CFP2006, since �oating point emulation dominates execution
time.

6See the ArMOR paper for details on this state machine.
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Figure 3.11: Performance on AMD for x86_64 atomic_add.

P8 has hardware support for strong-access ordering (SAO) [8], which in our tests
shows negligible overhead. Unfortunately, SAO is only available on recent IBM hard-
ware, which makes its use non-portable. Nevertheless, ArMOR is a viable strategy to
correctly emulate parallel code from strongly-ordered ISAs on weakly-ordered hosts.

3.4.6 Bus-Locked Atomics

Figure 3.11 compares the performance of emulating bus-locked atomics with the
equivalent bus-locked atomics on the host (Pico) and emulating them with a CAS

loop (Pico + CAS). In hardware, bus-locked atomics can be implemented more ef-
�ciently than CAS. This explains why Pico’s performance is superior with just one
array element, which is a worst-case scenario from a scalability viewpoint. Further-
more, when contention is slightly lower (64 elements), Pico shows greater scalability,
scaling to 64 cores whereas the CAS loop’s performance collapses around 40 cores.
QEMU shows no scalability in either scenario, due to its serial emulation of atomics.
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Figure 3.12: Performance on P8 for Aarch64 atomic_add.

3.4.7 Load-Locked/Store-Conditional (LL/SC)

Figure 3.12 compares atomic_add performance on P8 for QEMU-user and the three
Pico approaches presented in Section 3.3.3. We ran these experiments on P8 because
of its HTM support and large number of hardware threads.

The overall performance of the Pico approaches depends on the overhead of the
emulation mechanism. Thus, Pico-CAS is the fastest, followed by Pico-HTM and
Pico-ST. All three approaches show scalability that grows as contention (i.e., number
of array elements) is reduced.

The results become increasingly noisy as the number of used SMT threads grows
(i.e., beyond 12 threads). For 96 threads, Pico-HTM is occasionally able to beat Pico-
CAS and scale almost linearly. Our hypothesis is that the POWER8 microcode opti-
mizes the case where all hardware threads in the same core are contending for the
same cache lines, and e�ectively ensures that the transactions do not con�ict. In fact,
by forcing the benchmark to run on fewer cores wewere able to see the same behavior
also for 32, 48 and 64 threads (corresponding to 4, 6 and 8 fully-utilized cores).
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Figure 3.13: Speedup over QEMU on SKL of di�erent implementations of LL/SC in
Pico-user runs of Aarch64 SPEC06.

The plots show the trade-o� between correctness, scalability and portability. If
fully correct LL/SC emulation is not necessary, Pico-CAS has the highest performance
while maintaining portability. Failing that, Pico-HTM provides good performance if
processor support is available or, for hosts without HTM extensions, Pico-ST is both
fully correct and portable.

Of the three, Pico-ST is also the only one to have non-trivial single-threaded over-
head. To characterize this, we emulate SPEC06 benchmarks (compiled for Aarch64)
on SKL in user-mode. Figure 3.13 shows the results.

Pico-HTM and Pico-CAS show the highest performance, which is not surpris-
ing given that they only a�ect the emulation of atomic operations; these are rare in
SPEC06. The speedup is similar to that in Figure 3.7; as discussed in Section 3.4.2, it
is due to improvements in Pico, and not to atomic instruction emulation.
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In order to analyze the performance of Pico-ST, we include two additional sets
of results in Figure 3.13. The Inst. stores set is obtained from instrumenting stores
in Pico with empty helper functions, thereby measuring the cost of calling C code
around every store; Pico-ST-nobm is Pico-ST without the bitmap acting as a �lter
for QHT lookups. Two observations can be made. First, the limitations in QEMU’s
register allocator introduce a high overhead in Pico’s store instrumentation; the C
helpers slow down emulation on average by around 20%. Second, the bitmap plays
a key role in �ltering accesses to the hash table; QHT, despite its high performance,
requires a non-trivial amount of instructions that are easily outperformed by a bitmap
lookup. Thanks to the bitmap, Pico-ST only has 4% overhead above that of store
instrumentation. Since the bitmap check is so e�ective, a natural improvement to
Pico-ST would be for the backends to inline it in the generated assembly code. This
change would be more invasive than the other changes we made in Pico, for which
portable C code was enough.

3.5 Additional Related Work

Concurrent hash tables. The idea of using cache-friendly buckets, as done by
QHT and CLHT, was introduced earlier in MemC3 [95], albeit partial hashes were
used to minimize cache references due to Cuckoo hashing. Leveraging RCU for con-
currency in hash tables was proposed by Triplett et al. [232]. We use RCU for defer-
ring QHT bucket’s deletion, and handle dynamic resizes (which in our case are rare)
by acquiring all bucket locks.

3.6 Summary

In this chapter we have presented Pico, a novel design for multi-threaded cross-ISA
emulators. Pico leveragesmulti-core hosts by using a shared code cache from a highly
parallel fast path. Furthermore, Pico adopts recent research for handling memory
consistencymodel mismatches between guest and host, and proposes di�erent strate-
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gies for the correct emulation of atomic instructions (including LL/SC on CAS hosts)
and strongly-ordered memory accesses.

We evaluated our design in the QEMU open-source emulator. Our experimental
evaluation covers both user-mode and full-system emulation, comparing Pico against
QEMU and native execution. Our results show that Pico’s design scales to 64 cores
without forgoing simplicity or memory e�ciency.

Pico’s implementation was merged into upstream QEMU during the development
of the v2.9 version, which was released in September 2017. The only two di�er-
ences between QEMU and Pico’s implementation are that (1) QEMU uses Pico-CAS
for LL/SC emulation, and (2) support for full-system parallel emulation of x86_64
guests was merged later—it debuted in QEMU v3.1, which was released in December
2018.
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Chapter 4

Qelt: Cross-ISA Machine

Instrumentation

A note on the use of “QEMU”. In this chapter, with “QEMU” we refer to a

QEMU version that already incorporates the implementation described in

Chapter 3, which has been part of QEMU since the v2.9 release. �

4.1 Introduction

The design presented in the previous chapter, while an upgrade over the original
QEMU, does not address two common scenarios that are challenging for cross-ISA
machine emulators. First, emulated �oating point (FP) code incurs a large overhead
(2× slowdowns are typical [24]), which hinders the use of these tools for guest appli-
cations that are FP-heavy, such as the emulation of graphical systems (e.g. Android)
or as a front-end to computer architecture simulators that run scienti�c workloads.
As discussed in Section 2.2.3.3, this FP overhead is rooted in the di�culty of cor-
rectly emulating the guest’s FP environment, which can greatly di�er from that of
the host. This is commonly solved by forgoing the use of the host FPU, using instead
a much slower soft-�oat implementation, i.e. one in which the host executes no FP
instructions.
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Second, e�cient scaling of code translation when emulating multi-core systems
is non-trivial. The scalability of code translation is not an obvious concern in DBT,
since code execution is usually more common. However, some server workloads [40]
as well as parallel compilation jobs (e.g., in cross-compilation testbeds of software
projects that support several ISAs, such as the Chromium browser [1]) can show
both high parallelism and large instruction footprints, which can limit the scalability
of their emulation, particularly when using a shared code cache.

In this chapter1 we �rst address these two challenges by improving cross-ISA
DBT performance and scalability. We then combine these improvements with a novel
ISA-agnostic instrumentation layer to produce a cross-ISA dynamic binary instru-
mentation (DBI) tool, whose performance is higher than that of existing cross-ISA
DBI tools (e.g., [88, 113, 230, 247]).

Same-ISA DBI tools such as DynamoRIO [38] and Pin [160] provide highly cus-
tomizable instrumentation in return for modest performance overheads, and as a re-
sult have had tremendous success in enabling work in �elds as diverse as security
(e.g., [58, 130]), workload characterization (e.g., [30, 216]), deterministic execution
(e.g., [12, 85, 186]) and computer architecture simulation (e.g., [47, 124, 181]). Our
goal is thus to narrow the performance gap between cross-ISA DBI tools and these
state-of-the-art same-ISA tools, in order to elicit similarly diverse research, yet for a
variety of guest ISAs.

In this chapter we make the following contributions:
• We describe a technique to leverage the host FPU when performing cross-ISA DBT
to achieve high emulation performance. The key insight behind our approach is
to limit the use of the host FPU to the large subset of guest FP operations that
yield identical results on both guest and host FPUs, deferring to soft-�oat otherwise
(Section 4.2.1).

• We present the design of a parallel cross-ISA DBT engine that, while remaining
memory e�cient via the use of a shared code cache, scales for multi-core guests
that generate translated code in parallel (Section 4.2.2).
1This chapter incorporates and extends work scheduled for publication in the proceedings of the

upcoming 2019 VEE conference [67].
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• We present an ISA-agnostic instrumentation layer that converts a cross-ISA DBT
engine into a low-overhead cross-ISA DBI tool, with support for state-of-the-art
instrumentation features such as instrumentation injection at the granularity of
individual instructions, as well as the ability to instrument guest operations that
are emulated outside the DBT engine (Section 4.2.3).

We implement our approach in Qelt, a cross-ISA machine emulator and DBI tool
based on QEMU [24]. Qelt achieves high performance by combining our novel tech-
niques with further DBT optimizations, which are described in Section 4.2.4.2. As
shown in Section 4.3, Qelt scales when emulating a guest machine used for paral-
lel compilation, and it outperforms (1) QEMU as both a user-mode and full-system
emulator and (2) state-of-the-art cross-ISA instrumentation tools. Last, for complex
instrumentation such as cache simulation, Qelt can match the performance of state-
of-the-art, same-ISA DBI tools such as Pin.

4.2 Qelt Techniques

We now present the techniques that allow Qelt to achieve high performance and
portability. First, we accelerate the emulation of FP instructions by leveraging the
host FPU for the vast majority of guest FP instructions. Next, we improve the scala-
bility of multi-core emulation with a DBT engine that avoids global locks while keep-
ing a shared code cache. Third, we describe an ISA-agnostic instrumentation layer
that allows us to convert a DBT engine into a cross-ISA DBI tool. Finally, we cover
some additional DBT optimizations that further increase Qelt’s speed.

4.2.1 Fast FP Emulation using the Host FPU

Speeding up the emulation of guest FP instructions using the host’s FPU is decep-
tively simple. A naïve implementation would �rst clear the host’s FP �ags, execute
the equivalent FP instruction on the host, check the host FP �ags and then raise the ap-
propriate �ags on the guest. This approach would be trivial to implement, and would
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be correct for many FP instructions. Performance, however, would be abysmal, as we
show in Section 4.3.4. This is due to the lack of optimizations in the FPU hardware for
the use case of clearing/checking the FP �ags, which is justi�ed by how rare these
operations are in FP workloads.

Our approach is thus to leverage the host FPU but only for a subset of all possible
FP operations. Fortunately, as we discuss next, this subset covers the vast major-
ity of FP instructions in real-world code. Our approach is guided by the following
observations:

• FP workloads operate mostly on normal or zero numbers. In other words,
speeding up the handling of denormals, in�nities or not-a-numbers (NaNs) is
not necessary to accelerate most FP workloads.

• With some trivial checks, we can select FP operations capable of raising only
three exceptions: inexact, over�ow and under�ow.

• FP �ags are rarely cleared by FP workloads. This explains why FP �ags are
cumulative (or sticky). That is, once an exception occurs, the corresponding bit
remains set until it is explicitly cleared by software.

• Due to FP’s �nite precision, most FP operations raise the inexact �ag.

• FP workloads rarely change the rounding mode, which defaults to round-to-
nearest-even.

We thus accelerate the common case, i.e.: the rounding is round-to-nearest-even,
inexact is already set, and the operands are checked to limit the �ags that the opera-
tion can raise. Otherwise, we defer to a soft-�oat implementation.

Figure 4.1 shows the application of our approach to double-precision multiplica-
tion. First, we �ush the operands to zero if �ush-to-zeromode is enabled (line 2). Next,
we check whether this is the common case, checking both operands as well as the em-
ulated FP environment (3-6). If so, we �rst perform a small optimization, checking for
the trivial case of either operand being zero (7-10). As shown in Section 4.3.4, this can
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0 float64 float64_mul(float64 a, float64 b, fp_status *st)
1 {
2 float64_input_flush2(&a, &b, st);
3 if (likely(float64_is_zero_or_normal(a) &&
4 float64_is_zero_or_normal(b) &&
5 st->exception_flags & FP_INEXACT &&
6 st->round_mode == FP_ROUND_NEAREST_EVEN)) {
7 if (float64_is_zero(a) || float64_is_zero(b)) {
8 bool neg = float64_is_neg(a) ^ float64_is_neg(b);
9 return float64_set_sign(float64_zero, neg);
10 } else {
11 double ha = float64_to_double(a);
12 double hb = float64_to_double(b);
13 double hr = ha * hb;
14 if (unlikely(isinf(hr))) {
15 st->float_exception_flags |= float_flag_overflow;
16 } else if (unlikely(fabs(hr) <= DBL_MIN)) {
17 goto soft_fp;
18 }
19 return double_to_float64(hr);
20 }
21 }
22 soft_fp:
23 return soft_float64_mul(a, b, st);
24 }

Figure 4.1: Pseudo-code of a Qelt-accelerated double-precision multiplication.

improve performance for some workloads, since we avoid accessing the host FPU’s
registers. The else branch leverages the host FPU to compute the result (12-14). Fi-
nally, we handle over�ow (16-17) and resort to soft-�oat if there is a risk of under�ow
(18-19).

The key insight behind our technique is the identi�cation of a large set of FP op-
erations that can be run on the host FPU, while deferring corner cases (whether in
the result or in the �ags to be raised) to the slower soft-�oat code. We implement this
technique in Qelt, accelerating commonly-used single and double-precision opera-
tions, namely addition, subtraction, multiplication, division, square root, comparison
and fused multiply-add. Pro�ling shows that on average Qelt accelerates (i.e., does
not defer to soft-�oat) 99.18% of FP instructions in SPECfp06 benchmarks.
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Our approach has three main limitations. First, it does not speed up applications
that frequently clear the inexact �ag or that mostly operate with denormal numbers.
Native hardware does not perform well in these cases either, so deferring to soft-�oat
for these is appropriate. Second, applications with rounding other than round-to-
nearest-even are not accelerated. Our approach could be changed to handle other
rounding modes (particularly with regards to over�ow), but we believe that the cor-
responding slowdown due to additional branches in the code is not justi�ed, given
how rare it is to �nd applications that require a non-default rounding mode. Last,
while our approach does not require the guest or host to be IEEE-754 compliant (since
compliance diverges only for operands outside of the common case), it requires the
host FPU to natively support the same precision as that of the guest. This is, how-
ever, unlikely to be an issue in practice, since most FP workloads use only single and
double precision, which are widely supported by commercial CPUs.

4.2.2 Scalable Dynamic Binary Translation

The design presented in Chapter 3 for DBT engines with a shared code cache enables
parallel guest execution, which allows parallel workloads to scale when emulated
on multi-core hosts. Focusing on making code execution parallel pays o�, because
the runtime of most DBT workloads is largely spent on code execution and not on
translation.

While this observation holds for many workloads, others can show signi�cant
amounts of parallel code translation. This scenario is typical in parallel server work-
loads [40], e.g. during parallel compilation jobs that require large amounts of guest
code execution with little code reuse. In these cases, achieving scalability for uni�ed
code cache translators is challenging, since scalability is limited by the contention im-
posed by global locks protecting code generation and translation block (TB) chaining
state [40, 87].

We address this challenge by starting from the design in Chapter 3, which is now
part of upstreamQEMU. InQelt, wemodify this baseline design, inwhich a single lock
protects both code translation/invalidation as well as code chaining, to make each
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vCPU thread work—in the fast path—on uncontended cache lines. As we describe
next, we achieve this by distributing state across vCPUs, and combining lock-free
operations with �ne-grained locks that are unlikely to be contended.

Translator state and code cache. We distribute the translator’s state by replicat-
ing it across the vCPU threads. We keep the baseline’s single, contiguous (in virtual
memory) bu�er for the code cache, since doing otherwise would greatly complicate
cross-ISA code generation. However, we partition this bu�er so that each vCPU gen-
erates code into a separate region. Figure 4.2 illustrates the impact of region parti-
tioning: while a monolithic cache forces writers to be serialized, a partitioned cache
allows vCPUs to generate code in parallel. Partitioning can reduce the e�ective size
of the code cache, since vCPUs generate code at di�erent rates. However, in most
practical scenarios this reduction is negligible due to adequate region sizing, which
accounts for the number of vCPUs and the size of the code cache.

Program counter (PC) TB lookups. PC TB lookups take the program counter
(as a host virtual address) of some translated code and provide the corresponding
TB descriptor. To serve these lookups we maintain a per-region binary search tree
that tracks the beginning and end host addresses of the region’s TBs. Operations on
each of the trees are serialized with the same per-region lock used for writing code
into the region. This has little to no impact on scalability, since PC TB lookups and
TB invalidations are rare; the writer thread therefore acquires an uncontended lock,
which is fast.

Physical memory map. Descriptors of guest memory pages are kept in the mem-
ory map, which is implemented as a radix tree. We modify this tree to support lock-
free insertions, and rely on the fact that the tree already supports RCU for lookups
(see Chapter 3). A spin lock is added to each descriptor to serialize accesses to the
page’s list of TBs. This list is accessed when TBs are either added or removed during
code translation or invalidation, respectively. Some operations (e.g. invalidating a
range of virtual pages) require atomic modi�cations over a range of non-contiguous
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Figure 4.2: With a monolithic code cache (a), TB execution (green TBs) can happen in
parallel, yet TB generation (red) is serialized. With partitioning (b), each vCPUwrites
to a separate region, thereby enabling both parallel code execution and translation.

physical pages. To avoid deadlock we acquire the locks of all the associated page
descriptors in ascending order of physical address.

TB index. We rely on QHT (described in Section 3.2.3) to implement scalable TB
bookkeeping. Accesses to the index are used as synchronization points. For instance,
if two threads are contending to insert the same TB, the �rst one to complete the
insertion into the hash table will win the race. The other thread will realize this at
insertion time, subsequently undoing prior changes (e.g. insertion into the page’s list
of TBs) to then use the TB translated by the other thread.

Code chaining. TBs that are linked via direct jumps are chained together during
code execution by patching the generated code to directly jump across translated
code, thereby increasing performance. The linking and patching requires serializa-
tion to prevent chaining to a TB that is being invalidated and to protect the list of
incoming TBs. Instead of relying on a global lock, we use a per-jump spinlock and
add two tagged pointers to each TB descriptor to point to its two destination TBs.
The pointers, which are accessed atomically with compare-and-swap, are tagged to
ensure that no jumps from invalidated TBs can be linked.

60



4.2.3 Portable Cross-ISA Instrumentation

We now describe Qelt’s technique to convert a cross-ISA DBT engine into a cross-ISA
DBI tool. This technique has four main properties. First, it provides injection points
at an instruction level, which is in line with state-of-the-art instrumentation tools
such as Pin and DynamoRIO. Second, it is ISA-agnostic, i.e., it remains portable by
only requiring modi�cations to the ISA-independent parts of the DBT engine. Third,
it is suitable for full-system instrumentation, since it can also instrument the side-
e�ects of emulation performed via helpers. Last, it is high performance, with support
for inline callbacks2 and multiple event subscriptions.

ISA-agnostic instrumentation. Figure 4.3 shows the �ow of a TB, from its cre-
ation to its translation into instrumented host code. The guest code snippet in Fig-
ure 2.2 is reused here; note that additional instrumentation-related code is added to
both the IR and host code. In particular, this additional code implements a memory
callback to a plugin.

The �ow begins from a guest program counter from which code is to be executed.
A single guest-to-IR translation pass is performed, and along the way, empty instru-
mentation is inserted. For instance, if a memory access is encountered, a callback to
a placeholder “empty” memory callback is generated into the IR. Once the TB is fully
formed, we dispatch it to plugins. Plugins add their instrumentation calls to the TB
using the instrumentation API, which correspondingly annotates the TB’s descriptor.
We then perform the injection pass. That is, we go through all the empty instrumen-
tation points, and either remove them from the IR if no subscriptions to them were
requested, or copy them as needed (one copy per plugin request), substituting the
“empty” placeholder with the plugin-supplied callback and/or data. The �ow �nishes
by translating the instrumented IR into host code.

2Just like in tools such as Pin, instrumentation code is built into plugins, i.e. shared libraries that are
dynamically loaded by the DBI tool. Plugins subscribe to guest events of their interest by registering
functions (callbacks) that are called as soon as the appropriate event occurs.
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Guest Code

IR with empty
instrumentation

Instrumented
IR

Host Code

stq t9,-30384
br 0x12004d890

plugin_
inject()

plugin_dispatch()

...
plugin 0

plugin n

tcg_gen_code()

translate()

movi_i64 tmp3,$0x������8950
add_i64 tmp2,t12,tmp3
qemu_st_i64 t9,tmp2,leq,1
movi_i32 tmp1,$0x23
movi_i64 tmp4,$0x0
ld_i32 tmp0,env,$0x�������d8
mov_i64 tmp3,tmp2
call empty_mem_cb, \
$0x10,$0,tmp0,tmp1,tmp3,tmp4

mov 0xd8(%r14),%rbp
add $0x������8950,%rbp
mov 0xb8(%r14),%rbx
mov %rbx,0x0(%rbp)
mov -0x28(%r14),%ebx
mov %ebx,%edi
mov $0x23,%esi
mov %rbp,%rdx
xor %ecx,%ecx
callq *0x35(%rip)

movi_i64 tmp3,$0x������8950
add_i64 tmp2,t12,tmp3
qemu_st_i64 t9,tmp2,leq,1
movi_i32 tmp1,$0x23
movi_i64 tmp4,$0x0
ld_i32 tmp0,env,$0x�������d8
mov_i64 tmp3,tmp2
call plugin_mem_cb, \
$0x10,$0,tmp0,tmp1,tmp3,tmp4

Figure 4.3: Example instrumentation �ow of Alpha-on-x86_64 emulation. We inject
empty instrumentation as we translate the guest TB. Once the TB is well-de�ned,
we dispatch it to plugins, which annotate it with instrumentation requests. Empty
instrumentation is then either removed if unneeded or replaced with the plugin’s
requests. Finally, the instrumented IR is translated into host code.

Injection points. Instead of letting plugins inject instrumentation directly into the
IR, we keep the IR entirely internal to the implementation, injecting during guest TB
translation empty instrumentation that we can later remove if unneeded. This ap-
proach, which at �rst glance might seem wasteful in that it might perform unneces-
sary work, has several strengths:

• It enables the implementation of instruction-grained instrumentation, which lets
plugins inject instrumentation for events associated to a particular instruction. For
instance, a plugin can, at translation time, insert instrumentation before/after mem-
ory accesses associated with a particular instruction, instead of subscribing to all

guest memory accesses and then selecting those of interest at run-time.
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• It is ISA-agnostic, i.e., it requires no modi�cations to ISA-speci�c code. The in-
strumentation layer only modi�es generic code, leaving instruction decoding to
plugins.

• It incurs negligible cost. As we show in Section 4.3.5, on average the injection of
empty instrumentation induces negligible overhead.

Event subscriptions. We distinguish between two event types: regular and dy-

namic. Dynamic events are related to guest execution (e.g. memory accesses, TBs
executed), and therefore occur extremely frequently. Regular events are all others,
e.g. vCPU thread starts/stops, or TBs being translated. We expand later on dynamic
events, whose delivery we optimize with inlining and direct callbacks. Regular sub-
scriptions are kept in per-event RCU [174] lists, which make callback delivery fast
and scalable. RCU is a �tting tool for this purpose due to the read-mostly nature of
the access pattern: list traversals (i.e. callbacks) strongly outnumber list insertions/re-
movals (i.e. subscription registrations/cancellations).

Helper instrumentation. Instrumenting helpers is challenging, since at transla-
tion time we do not know what they implement or when they will execute. The
magnitude of the challenge increases when we consider the amount of helpers that
might be in a code base. For instance, each of the 22 target translators in QEMU uses,
on average, more than a hundred helpers. Thus, the straw man solution of modify-
ing thousands of helpers to add instrumentation-related code becomes a tedious and
error-prone prospect.

We present a low-overhead approach to instrument helpers that is more practical.
Our approach, which we apply to memory accesses performed by helpers, relies on
the following observation. Guest memory accesses from helpers are performed via
a handful common interfaces. Thus, we modify those common interfaces—about a
dozen call sites in QEMU—instead of editing potentially thousands of helpers.

Most of the work is done at translation time. We start by tracking which guest
instructions have emitted helpers. For each of these instructions, if plugins have
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subscribed to their memory accesses, we proceed in two steps. First, we allocate
the subscription requests from the appropriate plugins into an array, which we track
usingQHT (see Section 3.2.3) so that it can be freed once the TB is invalidated. Second,
we inject IR code before the guest instruction that sets helper_mem_cb, which is a �eld
in the state of the vCPU that will execute the helper, to point to the subscription array.
We also insert code after the instruction to clear this �eld.

At execution time, we rely on ourmodi�ed common interfaces for accessingmem-
ory from helpers. Thus, when an instrumented helper accesses memory, the generic
memory access code checks the executing vCPU’s helper_mem_cb �eld, and if set,
delivers the callbacks to plugins.

Inlining. We support manual inlining of instrumentation code for dynamic events.
Plugins can explicitly insert inline operations, which they choose via the plugin API.
These operations implement typical actions needed by instrumentation code, such
as setting a variable or incrementing a counter, and are independent from the IR,
since the latter is internal to the translator’s implementation and therefore always
subject to change. In Section 4.3.6 we show how inlining can increase performance
for instrumentation-heavy workloads.

Direct callbacks. We treat dynamic events di�erently from regular ones. The rea-
son is performance: dynamic events—such as memory accesses or TBs/instructions
executed—can be generated extremely frequently, and therefore the overhead of in-
strumenting these events can easily dominate execution time. Although inlining can
help mitigate this overhead, complex instrumentation (e.g. code that inserts an ad-
dress into a hash table) cannot bene�t from it, which brings our focus to the perfor-
mance of callback delivery.

Most existing cross-ISA DBI tools deliver dynamic event callbacks using an inter-
mediate helper that iterates over a list of subscriptions [88, 89, 113]. This is convenient
from an implementation viewpoint, but introduces an unnecessary level of indirec-
tion. We eliminate this indirection by leveraging the injected empty instrumentation,
which allows us to embed callbacks directly in the generated code. As we show in
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Section 4.3.5, direct callbacks result in better performance over delivering callbacks
from an intermediate helper. They, however, complicate subscription management.
To cancel a direct callback subscription, instead of just updating a list as in regular
callbacks, we must re-translate the TB. This, while costly, is not a practical concern,
since instruction-grained injection points virtually eliminate the need for frequent
subscription cancellations from dynamic events.

An example Qelt plugin. Figure 4.4 shows an example Qelt instrumentation plu-
gin that counts guest memory accesses. Execution begins in the plugin at load time,
with Qelt calling the plugin_install function. The plugin subscribes to two events:
TB translations and guest exit—i.e., termination of a user-program or shutdown of a
full-system guest.

Instrumentation of guest code occurs in vcpu_tb_translate. For each instruc-
tion in a TB, instrumentation is added after the instruction’s memory accesses, if any.
Depending on do_inline’s value, instrumentation is either via a direct callback to
vcpu_mem or through an inline increment to the counter, mem_count. Note that to
keep the example simple, the counter’s increment is not implemented with an atomic
operation, which could result in missed counts when instrumenting parallel guests.

We conclude by discussing three points that are not obvious from the exam-
ple. First, the API exposes no ISA-speci�c knowledge. For example, instructions are
treated as opaque objects; this requires plugins that need instruction information to
rely on an external disassembler, but as we show in Section 4.3.5 this has negligible
overhead. Second, vCPU registers can be queried from callbacks. The example does
not use this feature, and thus it disables register copying at callback time with the
CB_NO_REGS �ag. Third, instead of supporting user-de�ned functions like Pin [160]
or QTrace [230] do, we attach a user data pointer (udata) to direct callbacks, which
achieves the �exibility of user-de�ned functions while being more portable and sim-
pler to implement.
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static uint64_t mem_count;
static bool do_inline;

static void plugin_exit(plugin_id_t id, void *p)
{
printf("mem accesses: %" PRIu64 "\n", mem_count);

}

static void vcpu_mem(unsigned int cpu_index,
plugin_meminfo_t meminfo, uint64_t vaddr, void *udata)

{
mem_count++;

}

static void vcpu_tb_translate(plugin_id_t id,
unsigned int cpu_index, struct plugin_tb *tb)

{
size_t n = plugin_tb_n_insns(tb);
size_t i;
for (i = 0; i < n; i++) {
struct plugin_insn *insn = plugin_tb_get_insn(tb, i);
if (do_inline) {
plugin_register_vcpu_mem_inline__after(
insn, PLUGIN_INLINE_ADD_U64, &mem_count, 1);

} else {
plugin_register_vcpu_mem_cb__after(
insn, vcpu_mem, PLUGIN_CB_NO_REGS, NULL);

}
}

}

int plugin_install(plugin_id_t id, int argc, char **argv)
{
if (argc && strcmp(argv[0], "inline") == 0)
do_inline = true;

plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_translate);
plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;

}

Figure 4.4: Example Qelt plugin to count memory accesses either via a callback or by
inlining the count.

4.2.4 Additional DBT Optimizations

We now describe DBT optimizations implemented in Qelt that are derived from those
in state-of-the-art DBT engines.

4.2.4.1 TLB Emulation

Guest TLB emulation in full-system emulators is a large contributor to performance
overhead. As discussed in Section 2.2.2, the softMMUmaps guest virtual addresses to
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host virtual addresses. SoftMMU overhead comes from three sources, which we list
in order of importance. First, non-compulsory misses in the TLB result in guest page
faults, which take hundreds of host instructions to execute. Second, even if the TLB
miss rate is low, hits still incur non-negligible latency, since each guestmemory access
is translated into several host instructions which index and compare the contents
of the TLB against the appropriate portion of the guest virtual address. And third,
clearing the TLB on a �ush can also incur non-trivial overhead due to frequently-
occurring �ushes. It is for this reason that QEMU has a small, static TLB size.

Tong et al. [231] present a detailed study in which they evaluate di�erent options
tomitigate softMMUoverhead. One of these options is to resize the TLB depending on
the workload’s requirements. They resize the TLB only during �ushes, since doing
it at any other time would require rehashing the table, which is expensive. They
propose a simple resizing policy: if the TLB use rate at �ush time is above a certain
upper threshold (e.g. 70%), double the TLB size; if the rate is below a certain lower
threshold (e.g. 30%), halve it. Note that the upper threshold should not ever be too
close to 100%, for otherwise we are at risk of incurring a large amount of con�ict
misses, given that the softMMU is direct-mapped to keep TLB lookup latency low.
In addition, computing the table index dynamically incurs a slight lookup latency
increase. The rationale, however, is that the reduced number of misses is likely to
amortize this additional cost.

We observe that this policy can lead to overly aggressive resizing. This can be
illustrated with two alternating processes, of which one is memory-hungry and the
other uses little memory. With this policy, when the guest schedules out the memory-
hungry process, the TLB size doubles, yet the next process will not make much use of
it, whichwill induce a downsize. This results in a sequence of TLB size doubling/halv-
ing, which neither process can bene�t from.

We improve upon this policy by incorporating history into it. We track the max-
imum use rate in the most recent past (e.g. a history window of 100ms), and resize
based on that maximum observed use rate. The rationale is that if a memory-hungry
process has been recently scheduled, it is likely that it will be scheduled again in the
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near future. This can result in an oversized TLB for processes that are scheduled next,
but this cost is likely to be o�set by an eventual reduction in overall misses. In other
words, we incorporate some history into the policy to perform the same aggressive
upsizing, yet downsize more conservatively. In Section 4.3.2 we compare these two
policies, with 70%-30% thresholds and a history window of 100ms, against QEMU’s
static TLB.

4.2.4.2 Indirect branches in DBT

Baseline QEMU handles indirect branches by simply returning to the dispatch loop.
As discussed in Section 2.2.3.1, Hong et al. [117] present an approach for QEMU that
leverages caching to minimize expensive exits to the dispatcher. In Qelt we follow an
approach similar to theirs, with four di�erences. First, instead of adding a cache solely
for this purpose, we reuse the existing TB jmp cache, a small, direct-mapped private
cache that is always accessed �rst by vCPU threads when searching for a TB (see
Figure 3.2b). Second, we improve the hashing function used in user-mode to access
the jmp cache, resulting in an e�ective capacity increase. Third, we perform a lookup
in the global TB hash table after missing in the TB jmp cache, which reduces the exits
to the dispatcher to only compulsory cases (i.e. invalidated or previously untranslated
TBs) and makes performance less sensitive to the sizing of the jmp cache. Last, we
abstract these operations by adding an instruction (“lookup and goto ptr”) to the TCG
IR, which minimizes the amount of target and host-speci�c code needed to support
this optimization3. Performance-wise, our results (Section 4.3.2) are comparable to
those reported by Hong et al. [117]; note however that a fair quantitative comparison
would be di�cult, given that the baseline QEMU implementations used are several
years apart.

3The use of an IR operation allowed the QEMU community to quickly expand on our work: within
days of the merging of our implementation into QEMU v2.11, the number of target and host ISAs that
implement lookup_and_goto_ptr grew from 3 and 1 to 8 and 7, respectively.
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4.3 Evaluation

4.3.1 Setup

Host. We run all experiments on a host machine with two 2.6GHz, 16-core Intel
Xeon Gold 6142 processors, for a total of 32 cores. The machine has 384GB of RAM,
and runs Ubuntu 18.04 with Linux kernel v4.15. We compile all source code with GCC
v8.2.0 with -O2 �ags.

Workloads. We measure single-threaded performance with SPEC06’s test set, ex-
cept for libquantum, xalancbmk, gamess, soplex and calculix. For these workloads
we use the train set, since test is too lightweight (e.g. libquantum runs natively un-
der 0.02s) for us to draw meaningful conclusions when running them under di�erent
DBT engines.

We run all experiments multiple times. We report the measured mean as well as
error bars or shaded regions (for bar charts or line plots, respectively) representing
the 95% con�dence interval around the mean.

Guest ISA. We use x86_64 guest workloads, which allows us to compare against
existing DBI tools (all of them support x86_64) and to benchmark against native runs
on the host machine, including full-system guests virtualized with KVM.

QEMU baseline. Our QEMU baseline is derived from QEMU v3.1. Given that
several of Qelt’s techniques are already part of QEMU v3.1, our baseline (hereafter
QEMU ) is the result of reverting their corresponding changes from v3.1.

4.3.2 Performance Impact of Qelt’s Techniques

We begin our evaluation by characterizing the performance impact of implementing
Qelt’s techniques in sequence on top of QEMU when running single-threaded guest
workloads.
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Figure 4.5: Cumulative speedup of Qelt’s techniques over QEMU for user-mode x86_
64 SPEC06.

Figure 4.5 shows the resulting speedup for user-mode x86_64 SPEC06. Qelt’s in-
direct branch optimizations (+ibr, Section 4.2.4.2) yield an average 29% performance
gain for integer workloads. Qelt’s parallel code generation (+par, Section 4.2.2) and
instrumentation support (+inst, Section 4.2.3) show negligible performance impact.
Last, Qelt’s FP emulation improvements (+float, Section 4.2.1) shows the largest im-
provement: SPECfp06’s performance increases more than 2× on average.

Figure 4.6 shows Qelt’s speedup over QEMU for full-system x86_64 SPEC06. The
techniques presented in Figure 4.5 are combined as Qelt-statTLB. Their resulting
speedup is lower than in user-mode due to the overhead of full-system mode’s soft-
MMU. Adding a TLB resizing policy based solely on the TLB use rate at �ush time
(+dynTLB, as described in [231]) results in a slowdown on average, since the system
also runs system processes with low memory demands. Qelt’s policy (+history, Sec-
tion 4.2.4.1) bases its resizing decisions on the use rate over the recent past, which
leads to overall mean speedups of 1.76× and 2.18× for integer and FP workloads,
respectively.
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Figure 4.6: Cumulative speedup of Qelt’s techniques over QEMU for full-system x86_
64 SPEC06.
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Figure 4.7: Cumulative Qelt speedup over 1-vCPU QEMU for parallel compilation
inside an x86_64 VM. On the right, KVM scalability for the same workload.

4.3.3 Scalable Dynamic Binary Translation

We now evaluate Qelt’s scalability with a workload that requires large amounts of
parallel DBT. For this we build 189 Linux v4.19.1 kernel modules with make -j N

(where N is the number of guest cores) inside an x86_64 virtualmachine (VM) running
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Figure 4.8: Cumulative speedup over QEMU of accelerating the emulation FP instruc-
tions with Qelt for user-mode x86_64 SPECfp06. The -zero results show the impact
of removing Qelt’s zero-input optimization.

Ubuntu 18.04. Figure 4.7 (left plot) shows the results, which are normalized over those
of QEMU with N=1. QEMU shows poor scalability, with a maximum speedup of 4×
at 16 cores. Qelt’s indirect branch optimizations (+ibr) slightly improve performance,
but do not address the underlying scalability bottleneck. Qelt’s parallel translator
(+par, Section 4.2.2) brings scalability in line with that of KVM (right plot), for a
maximum speedup above 16× at 32 cores. Scalability is further improved with Qelt’s
dynamic TLB resizing (+dynTLB hist.), which brings the overall speedup up to 18.78×.

4.3.4 Fast FP Emulation using the Host FPU

Qelt accelerates the following operations, in both single and double precision: addi-
tion, subtraction, multiplication, division, square root, comparison and fusedmultiply-
add (FMA). We validate our implementation against real hardware (ppc64, Aarch64
and x86_64 hosts) aswell as against Berkeley’s Test�oat v3e [110] and IEEE-754-compliant
test patterns from IBM’s FPgen [27].

Figure 4.8 shows the speedup of accelerating FP emulationwith Qelt for SPECfp06
in user-mode x86_64. The results shown are cumulative, which reveals the impact of
accelerating each group of FP instructions separately. Note that QEMU’s FP opera-
tions are implemented as a C library that is shared by all ISA translators. Thus, while
the �nal SPECfp06 speedup is similar across all ISAs, the broken-down speedups are
speci�c to each translator. For instance, the x86_64 translator (shown here) is sensi-
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Figure 4.9: FP microbenchmark results. Throughput is normalized over that of an
ideal native run.

tive to changes to both addition andmultiplication’s performance, whereas Aarch64’s
(results not shown) is most sensitive to FMA. The last set of results (-zero) shows the
e�ect of removing the zero-input optimization in Figure 4.1. Its removal hurts average
performance, since some benchmarks frequently execute zero-input FP operations
(e.g., cactusADM, GemsFDTD).

FP Microbenchmark. The above results depend on the distribution of FP instruc-
tions in SPECfp06. To better understand Qelt’s impact on FP emulation, we wrote
a microbenchmark that feeds random normal FP operations to the FP emulation li-
brary. Figure 4.9 shows the resulting throughput, normalized over that of an ideal,
incorrect run on the host, i.e. without any checks on either the result or FP �ags.

The �rst set of results (hw-excp) in Figure 4.9 corresponds to a naïve implemen-
tation that, as described in Section 4.2.1, for each FP instruction �rst clears the host’s
FP �ags (with feclearexcept(3)), then executes the FP operation on the host, and
�nally checks the host FP �ags (fetestexcept(3)). This approach has poor perfor-
mance, even when compared against QEMU’s soft-�oat implementation (so�-fp). We
have reproduced this on other machines as well, which suggests that FPUs are opti-
mized for fast, overlapping execution of FP instructions, and not for frequent FP �ag
checks.

Qelt improves performance over soft-�oat, with speedups ranging from 2.16×
(mul-double) to 19.84× (sqrt-double). The performance gap between Qelt and ideal
FP performance quanti�es the cost of correctness; recall from Figure 4.1 that we have
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Figure 4.10: Impact of increasing instrumentation on user-mode x86_64 SPECint06.

to perform checks on the input as well as on the computed output (to detect un-
der/over�ow). The latter checks, however, are not needed for comparison and square
root (a non-negative normal-or-zero square root cannot under/over�ow), which ex-
plains the narrow performance gap between them and the ideal implementation.

4.3.5 Instrumentation

We now characterize the performance of Qelt’s instrumentation layer. We �rst an-
alyze the overhead of typical instrumentation plugins, and then evaluate the impact
of di�erent direct callback implementations.

Overhead. Figure 4.10 shows Qelt’s slowdown over the baseline for typical instru-
mentation plugins, broken down per instrumented event. Subscribing to TB transla-
tion events (+TB-tr) incurs negligible average overhead (1.1%), with perlbench show-
ing themaximum overhead (12%) since it is the workload that executes themost guest
code.

Subscribing to TB execution callbacks (+TB-ex) has signi�cant overhead (mean
41%, maximum 107% for sjeng). The overhead is caused by the high frequency of
guest TB execution and, therefore, TB execution callbacks. It is for this reason that
instrumentation is preferably done at translation time whenever possible. The “cap-
stone” plugin (+capst) is an example of translation-time processing that mimics what
an architectural simulator would do during decode: it disassembles each translated
TB using Capstone [200] and then allocates a per-TB descriptor to be passed to the
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Figure 4.11: Slowdown of user-mode x86_64 SPECint06 for helper-based and direct
callbacks.

TB execution callback. This translation-time processing incurs negligible additional
overhead (mean 2.6%), which supports our decision to not export via the plugin API
any interfaces with ISA-speci�c knowledge of the target’s instructions.

Memory callbacks (+mem) incur large overhead due to their high frequency. For-
tunately, this cost can be mitigated with inlining, as shown in Section 4.3.6.

Direct callbacks. We now discuss the impact of instrumenting dynamic (i.e. high-
frequency) events. Figure 4.11 compares the instrumentation of a dynamic event
(TB execution) for three di�erent implementations and either one or two (denoted
with the 2x pre�x) plugin subscriptions. The helper-list implementation uses a helper
function from which callbacks are dispatched by iterating over a list of subscribers.
When the event has a single subscriber, it pays o� to avoid the list altogether, which
improves performance—as helper-nolist shows—due to increased cache locality. An
additional improvement is obtained by using direct callbacks (direct), which incur
one less function call (i.e., the helper) per event.

With two subscribers, helper-list performs three function calls per event, for
helper-nolist’s four. However, the former’s subsequent gains are canceled out by
iterating over the subscribers’ list (2.40× vs. 2.45×mean slowdown), which has poor
data cache locality. Using direct callbacks outperforms them both (2.07× slowdown),
since it incurs one function call per subscriber and has optimal data cache locality.

75



0
20
40
60
80
100
120
140
160
180
200

Sl
ow

do
w
n

no instrumentation

0

50

100

150

200

250

300

Sl
ow

do
w
n

memcount

0
50
100
150
200
250
300
350
400

41
0.b

wa
ve

s

41
6.g

am
es

s
43

3.m
ilc

43
4.z

eu
sm

p

43
5.g

ro
ma

cs

43
6.c

ac
tu

sA
DM

43
7.l

es
lie

3d
44

4.n
am

d
44

7.d
ea

lII
45

0.s
op

lex
45

3.p
ov

ra
y

45
4.c

alc
uli

x

45
9.G

em
sF

DT
D

46
5.t

on
to

47
0.l

bm
48

1.w
rf

48
2.s

ph
inx

3

FP
-ge

om
ea

n

Sl
ow

do
w
n

cachesim

0

10

20

30

40

50

60

70

Sl
ow

do
w
n

no instrumentation

0
20
40
60
80
100
120
140
160

Sl
ow

do
w
n

memcount

PANDA QVMII Qelt Qelt-inline

0

50

100

150

200

250

300

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc
42

9.m
cf

44
5.g

ob
mk

45
6.h

mm
er

45
8.s

jen
g

46
2.l

ibq
ua

nt
um

46
4.h

26
4re

f

47
1.o

mn
etp

p
47

3.a
sta

r

48
3.x

ala
nc

bm
k

IN
T-g

eo
me

an
SPECint06SPECfp06

Sl
ow

do
w
n

cachesim

Figure 4.12: Slowdown over KVM execution for PANDA, QVMII and Qelt for full-system emulation of x86_64 SPEC06.
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4.3.6 DBI Tool Comparison

We conclude our evaluation by comparing Qelt against the state of the art in full-
system and user-mode DBI tools.

Full-System DBI. We compare Qelt against PANDA [88] (version d886146, Aug 3
2018) andQVMII [89] (dc7d35d, Jul 18 2018). We also considered other QEMU-derived
tools such as QTrace [230], PEMU [247] and DECAF [113], but discarded them due
to their slow baseline emulation performance (we measured QTrace to be on average
11.3× slower than Qelt for SPEC06int, and [247] reports a 4.33× average slowdown
of PEMU over QEMU) or lack of support for x86_64 (DECAF). Figure 4.12 shows the
resulting slowdown over using KVM to virtualize an x86_64 VM running SPEC06. For
both integer and FP workloads (top row), Qelt is the fastest emulator, with PANDA
coming second with performance similar to that of baseline QEMU (PANDA’s fork
point is close to our QEMU baseline, which we evaluated in Figure 4.6). QVMII is
the slowest, since by default it instruments all memory accesses in case any plugins
subscribe to them.

Instrumenting the execution ofmemory accesses with a counter increment (mem-

count) shows the di�erences in instrumentation overhead. PANDA lags behind be-
cause for simplicity of the implementation it disables keyQEMUoptimizations (trans-
lation block chaining and TCG softMMU lookups [24], respectively). Qelt is 3×/2.5×
faster than QVMII for integer/FP workloads, with a slight improvement with inlin-
ing, a feature not supported by the other tools. The gap between QVMII and Qelt is
explained by their di�erent baseline emulation performance as well as Qelt’s use of
direct callbacks instead of QVMII’s helper-based approach.

We then perform heavy instrumentation (cachesim), similar to what an archi-
tectural simulator would do. We simulate L1 instruction and data caches, without a
directory and with an LRU set eviction policy. This is implemented by instrumenting
all memory accesses, as well as simulating the corresponding instruction cache ac-
cesses when a basic block executes. Instrumentation now dominates execution time
for SPECint06, making QVMII 1.53× slower than Qelt. This performance gap reduc-
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tion vs. baseline emulation is less pronounced for SPECfp06; Qelt is 1.72× faster than
QVMII thanks to Qelt’s improved FP performance.

User-Mode DBI. Figure 4.13 compares Qelt against Pin [160] (v3.7-97619, May 8
2018) and DynamoRIO (v7.0.17735-0, Jul 30 2018). These tools are not cross-ISA,
which to a large extent explains their higher performance for pure emulation (top
row). DynamoRIO and Pin stay below or close to 2× slowdown over native, while
Qelt is 4.20×/13.89× slower than native for integer/FP. Note that despite Qelt’s FP
improvement over QEMU, it still requires a helper function call to the FP library on
every guest FP instruction, which explains the large FP gap vs. Pin/DynamoRIO.

Inlining is key toDynamoRIO’s performancewhen instrumenting frequent events.
This is a consequence of DynamoRIO’s �exibility, since it allows plugin developers
to make arbitrary changes to the guest code stream. Unfortunately, when inlining
cannot be performed (either by disabling it or when a function is too complex to be
inlined), constructing a callback involves a signi�cant amount of work: “switching
to a safe stack, saving all registers, materializing the arguments, and jumping to the
callback” [140]. On the other hand, tools like Pin in its “classic” mode (which we use)
or Qelt do not allow arbitrary guest code modi�cations, and therefore can e�ciently
insert a call/trampoline to a plugin. This explains DynamoRIO’s large overhead in
memcount, whereas it is the fastest tool for inline memcount.

For memcount, Pin is in most cases faster than Qelt, although Pin’s well-known
performance issues with large instruction footprints (e.g., perlbench, gcc) [160] bring
Pin’s SPECint06 mean slowdown slightly above Qelt’s for both out-of-line and inline
memcount’s. For SPECfp06memcount, Qelt is only slightly slower than Pin, since the
frequent callbacks dominate execution time. However, with inlining Qelt is slower
than Pin/DynamoRIO, because of its slower FP emulation.

The callbacks in cachesim are too complex to be inlined, which explains Dy-
namoRIO’s large slowdown. On average, Qelt’s cachesim performance is similar to
Pin’s. This is due to cachesim’s substantial overhead, which dominates over the dif-
ference in emulation speed between Qelt and Pin.
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Figure 4.13: Slowdown over native execution for DynamoRIO, Pin and Qelt for user-mode x86_64 SPEC06.
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4.4 Summary

In this chapter we have presented two novel techniques to increase cross-ISA DBT
emulation performance: fast FP emulation leveraging the host FPU and scalable DBT
generation and chaining for emulating multi-core guests. We have also introduced
a novel ISA-agnostic instrumentation layer, which can be used to convert cross-ISA
DBT engines into cross-ISA DBI tools.

We combined these techniques together with further DBT optimizations to build
Qelt, a cross-ISA machine emulator and DBI tool that outperforms the state of the art
in both cross-ISA emulators and DBI tools. Further, Qelt can match the performance
of Pin, a state-of-the-art, same-ISA DBI tool, when performing complex instrumen-
tation such as cache simulation.

Except for the instrumentation layer, which is currently under review by the
QEMU community, Qelt’s implementation has been merged into upstream QEMU
during the development of the v4.0 version, which is scheduled for release in April
2019.
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Chapter 5

Accelerator Coupling in

Heterogeneous Architectures

In this chapter1 we present a study that compares di�erent accelerator coupling mod-
els, which we brie�y introduced in Section 2.1. The study is enabled by Cargo, a
machine simulator that we developed to model systems that integrate accelerators.
Cargo allowed us to quantitatively compare accelerator coupling models and to also
reason about their impact on system software (e.g., kernel-space drivers), which high-
lights the usefulness of machine emulation for conducting research on heterogeneous
systems.

5.1 Introduction

As discussed in Chapter 1, �xed power budgets and the end of Dennard scaling have
led researchers to embrace accelerators in order to sustain performance and energy
e�ciency increases. Thus, research on accelerating relevant applications is ongoing
(e.g., [50, 242]), and accelerator-rich architectures are on the horizon [46, 63, 233].
Unfortunately, most existing research on accelerators has focused on computational
aspects and has disregarded design decisions with practical implications, such as the

1This chapter incorporates and extends work previously published in the proceedings of the 2015
DAC conference [69].
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model for accelerator invocation from software and the interaction between acceler-
ators and the components (e.g. general-purpose cores, caches) surrounding them.

In this chapter we attempt to shed some light on these issues by developing seven
high-throughput accelerators and the software to drive them. We designed each ac-
celerator conforming to three design models: tight coupling behind a CPU, loose
out-of-core coupling with Direct Memory Access to the last-level cache (hereafter
LLC-DMA), and loose out-of-core coupling with DMA to DRAM (DRAM-DMA).

Our experiments on these accelerators induce the following observations.

• Private local memories (PLMs) are key to performance and energy e�ciency.
Accelerator logic is capable of processing vast amounts of data provided they
can be fed at high throughput. This is hardly achievable attaching accelerators
to CPU caches; most accelerators can exploit parallelism in the algorithms they
implement and thus require many-ported memories tailored to their needs.
This makes loosely-coupled accelerators better suited to high-throughput ap-
plications than tightly-coupled accelerators.

• DRAMbandwidth can quickly become a bottleneck. Making an accelerator rely
on the LLC can help in certain cases given its higher bandwidth over DRAM.
However, when the working set is of streaming nature, LLC thrashing occurs
and DRAM bandwidth becomes the dominant bottleneck.

• Cache pollution plays a minor role when comparing LLC-DMA vs. DRAM-
DMA loosely-coupled accelerators. LLC-DMA has slightly higher performance
and signi�cantly higher energy e�ciencywhen theworkload can �t in the LLC.
Further, the LLC canmitigate DRAM saturation under high accelerator activity.

• The run-time overhead of abstracting loosely-coupled accelerators as just SoC-like
devices becomes negligible once the granularity of the acceleration (i.e. work-
ing set size) becomes non-trivial. Moreover, abstracting accelerators using de-
vice drivers is not conceptually more complex than the alternatives, such as
expanding the ISA to invoke accelerators tightly-coupled with the CPU.

82



In summary, this chapter’s main contribution is an extensive study on the design
and integration of high-throughput accelerators, with a focus on rarely-treated as-
pects such as coupling with the rest of the system and its impact on software. Results
from our experiments can help future designers as well as increase understanding of
existing accelerator implementations.

5.2 Accelerator Models

Our analysis focuses on con�gurable, non-programmable accelerators for applica-
tions that have high-throughput requirements. We study the implementation of ac-
celerators following three models, which we present in this section.

Tightly-coupled accelerators (TCAs). They consist of one or more specialized
hardware functional units which can accelerate critical portions of an application
kernel; for example, the body of an inner loop for an algorithm or a sequence of
trigonometric functions. This type of accelerator is located inside, or very close to,
the processing core [224]. Figure 5.1 shows a diagram of a tightly-coupled accelerator
(TCA) integrated in a CPU core. The core shares key resources (register �le, memory
management unit (MMU) and L1 data cache) with the TCA, and thus stalls until the
TCA completes execution. TCAs do not require internal storage apart from status
registers, since they use the L1 to hold data. L1 misses are served by the memory
hierarchy on behalf of the coupled CPU. Reorders in the cache are hidden so that the
accelerator can exploit multi-ported caches transparently [121].

A strength of TCAs is the nil run-time overhead of their invocation. In a similar
manner to coprocessors, TCAs require an expansion of the ISA to include special
instructions to manage their operation. This ISA expansion usually percolates to
software via the compiler or through low-level libraries.

From a hardware viewpoint, however, TCAs can pose integration challenges.
First, they further complicate the design of the CPU. Second, they can pose timing clo-
sure challenges, since it is common to require the TCA logic to meet the same clock-
frequency constraints that are set for the CPU. Third, they have limited portability
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Figure 5.1: Tightly-coupled accelerator (TCA) model. The accelerator shares key re-
sources (register �le, MMU and L1) with the CPU.
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Figure 5.2: Loosely-coupled accelerator (LCA) model. The integrated DMA controller
transfers data between the accelerator’s PLM and either the LLC or DRAM.

across di�erent system designs, since it is often necessary to adapt the accelerators’
interfaces to CPU-dependent structures.

Loosely-coupled accelerators (LCAs). We consider two options, depending
on whether the accelerators are capable of direct memory access to either the last-
level cache (LLC-DMA) or to DRAM (DRAM-DMA). Loosely-coupled accelerators
(LCAs) are located outside CPU cores and interact with them through the on-chip
interconnect, as shown in Figure 5.2. Being out-of-core a�ords LCAs a greater area
budget than TCAs since they cannot degrade the processor pipeline’s performance
or the L1 access time. This allows for coarse-grained accelerator logic blocks with
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Figure 5.3: Typical LCA structure. Aggressive SRAM banking enables multi-ported
memories for computation blocks.

complex data paths that implement and accelerate a complete application kernel, for
instance a fast Fourier transform (FFT) or a full image encoding algorithm.

The relaxed area constraint due to being out-of-core allows LCAs to implement
private local memories (PLMs), which store the input data to be processed, tempo-
rary results, and the output data to be written back to memory. Crucially, these PLMs
can be tailored to the accelerator’s speci�c needs. Given that memories are usually
implemented with static RAM (SRAM) and each SRAM bank has at most two ports,
LCA PLMs typically combine several independent SRAM banks to form multi-ported
memories of sizes tailored to the LCA’s needs. This is a key advantage of LCAs ver-
sus TCAs: LCAs can unleash the parallelism inherent in the kernels they accelerate
by instantiating these tailored many-ported memories, whereas the granularity of
TCA data is at the cache line size and their parallelism is severely constrained by the
unavoidably low number of ports of L1 caches.

Figure 5.3 shows a typical breakdown of an LCA into four main components: (1)
a DMA input block; (2) one or more computation blocks that handle data tokens of
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di�erent sizes; (3) a DMA output block; and (4) a PLM. These blocks interact bymeans
of control signals and shared memory banks.

From a system-level perspective, the decoupling of LCA from the CPU results in
greater �exibility than that of the TCA model. For instance, when the accelerator is
running the CPU is free to run other tasks or be turned o� to save energy. The TCA
model, however, requires less e�ort from software, since LCAs require software to
make sure that data tokens are available and consistent. This is usually accomplished
with a device driver running in kernel space, since low-level control of memory is re-
quired. Similarly to the case of a TCA, the user application is responsible for preparing
the data in memory. Unlike TCAs, however, the application must issue a system call
(e.g. read(), write(), ioctl()) to invoke the corresponding device driver, which
passes the physical addresses of this memory to the LCA’s DMA controller. Then,
once the command to start is issued, the driver puts the calling thread to sleep until
an interrupt from the accelerator arrives.

From a system integrator viewpoint, LCAs o�er better design-reuse opportunities
because their design is mostly independent from the design of the CPU and the rest
of the system. To couple the LCA with these it is su�cient to have a thin hardware
wrapper that interfaces its con�guration registers and DMA controller with the on-
chip interconnect. Furthermore, provided that the system allows for multiple clock
domains, an LCA doesn’t necessarily need to run at the same frequency of the CPU,
thus simplifying the porting of the accelerator across di�erent technology processes.

5.3 Target Applications

To carry out our analysis we design a custom platform composed of CPUs, accelera-
tors, user applications and device drivers. We choose candidates for acceleration from
MachSuite [201] and the PERFECT Benchmark Suite [22]. Out of themwe select those
applications that present interesting memory-access patterns and are suitable to ar-
chitectural optimizations, e.g. ping-pong data bu�ering (Figure 5.4), circular bu�ering
or data caching. We adopt high-level synthesis (HLS) [170] to automatically synthe-
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Footprint Accelerator PLM
Application N Size (bytes) Area (um2) Area (um2) Size (bytes)

AES 5 - 1000 80 - 16K 192,792 −∗ 192
FFT 8 - 12 2K - 32K 337,770 299,605 (88%) 40K
FFT-2D 4 - 10 2K - 8M 146,199 98,273 (67%) 16K
Sort 8 - 128 32K - 524K 302,672 210,636 (69%) 25K
Debayer 16 - 1024 512 - 2M 207,206 196,522 (94%) 32K
Lucas Kanade 32 - 512 8K - 2M 588,001 538,775 (91%) 41K
Change Detection 32 - 512 71K - 18M 189,826 134,954 (71%) 16K
∗ Small PLMs are mapped on registers.

Table 5.1: Accelerators’ footprint, area and aggregate PLM’s characteristics.

size the C implementations from the suites into custom RTL accelerators, which we
then integrate with the CPUs using a virtual (simulated) bus. Section 5.4 has more
details on the full-system simulation of our platform. In the remainder of this section
we describe the main challenges in designing the seven accelerators.

Footprint and PLM. Figure 5.5 depicts the applications’ input data tokens, high-
lighting the minimum addressable element that each algorithm requires. The value
N represents which dimensions are used for parameterizing the corresponding input
size. For example, in AES, N is the number of 128-bit input blocks.

Table 5.1 reports for all applications the considered N ranges and their corre-
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Figure 5.5: Application memory footprints.

sponding memory footprint size. This is the measure of the total number of bytes an
application uniquely addresses as input data. These sizes are chosen according to the
size of the adopted LLC (4MB); we thus cover applications whose footprint is signi�-
cantly smaller (AES, FFT and Sort), approximately the same size (Debayer and Lucas
Kanade) and signi�cantly larger (FFT-2D and Change Detection) than the LLC.

We perform logic synthesis and preliminary place and route using a 32nm SOI
CMOS technology. In Table 5.1 we report the accelerators’ total area, as well as the
area and size aggregates of the PLMs they integrate. Note that for most accelerators
the aggregate PLM size is of the same order of magnitude as the CPU’s L1 data cache
(64 KB).

Architectural choices. We adopt HLS in order to e�ciently evaluate multiple
implementation alternatives through design space exploration (DSE).We observe that
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the design of the PLM largely determines the resulting design space: on the system’s
side we have to de�ne the communication between the accelerator, its local-memory
subsystem and the o�-chip memory; on the accelerator side, we have to make several
micro-architectural choices that are directly correlated with the PLM’s architecture,
e.g. number of ports and banks. Let us consider some examples.

As shown in Section 5.2, the accelerator model consists of hardware modules that
share a local memory subsystem. The model supports the overlapping of I/O with
computation, which provides the designer with a signi�cant degree of optimization.

Example 1. In order to achieve high throughput, we adopt ping-pong data bu�er-

ing to implement the data transfer among the o�-chip main memory and the ac-

celerator PLM. Image-processing applications (e.g., Debayer, Change Detection)

that are of streaming nature signi�cantly bene�t from this solution. �

HLS o�ers a rich set of knobs for the RTL design optimization, e.g. for manipu-
lating loops, pipelining portion of a design, inserting states, implementing array as
memories or registers etc.

Example 2. Figure 5.6 reports a portion of synthesizable C code of the De-

bayer application. This estimates via interpolation non-sampled values of red,

green, and blue of a given image. In particular, the code applies an interpolation

mask to estimate values of green for an image stored in the two-dimensional

array bayer. A �rst micro-architectural choice is to allocate the arrays bayer

and debayer as memories rather than �attening them as registers: the use of

registers produces very fast but excessively large hardware. A second micro-

architectural choice targets the loops of the application. Combinational loops

cannot be implemented in hardware: they must be either broken or unrolled,

and choosing between these options is an area vs. performance trade-o�.

An important constraint is the scheduling of memory accesses. For instance,

the loop COL_LOOP contains read and write operations on the memory-allocated

arrays bayer and debayer. Unrolling such loop generates an implementation

with multiple read and write memory operations per clock cycle, therefore im-

proving performance. This however reduces the ability to schedule the design,
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#define PAD 2
#define NUM_ROWS 1024
#define NUM_COLS 1024

uint16_t bayer[NUM_ROW][NUM_COLS]; // input img
uint16_t debayer[NUM_ROW-PAD][NUM_COLS-PAD]; // output img

// interpolate green value for pixels on even row and column
ROW_LOOP: for (row = PAD; row < NUM_ROWS-PAD; row += 2)
{

COL_LOOP: for (col = PAD; col < NUM_COLS-PAD; col += 2)
{
u16 pos =

2*bayer[row-1][col] + 2*bayer[row][col-1] +
4*bayer[row][col] +
2*bayer[row][col+1] + 2*bayer[row+1][col];

u16 neg =
bayer[row][col+2] + bayer[row-2][col] +
bayer[row][col-2] + bayer[row+2][col];

debayer[row-PAD][col-PAD].green = ((pos - neg) >> 3);
}

}

Figure 5.6: DSE-enabled implementation of the Debayer kernel.

given that the number of available memory ports is heavily vendor and tech-

nology dependent. �

In summary, we observe that accelerator design e�ort is usually concentrated on
(1) the accelerator memory subsystem, which is responsible for most accelerator area,
and (2) how to e�ciently bring data in and out of accelerators.

5.4 Experimental Methodology

Simulated System. To conduct our evaluation we developed Cargo, a full-system
simulator derived from the QEMU-based Qsim [132]. We model a one-issue in-order
core with a 3-stage (Fetch + Decode, Execute, Memory + Writeback) pipeline and
a 2-level cache hierarchy. The last-level cache is connected to a memory controller
modeled by DRAMSim2 [206]. Table 5.2 summarizes the system’s parameters.
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Cores 2 cores, i386 ISA, 3-stage pipeline, 2 GHz
Exec. Latency 1 cycle except IMUL=4, IDIV=15, FPADD=5, FPMUL=5, FPDIV=25 [98]

L1 caches 32KB I, 64KB D, 4 ways, 2+2 I/O ports, 1-cycle latency, LRU
L2 cache 4MB, 16 ways, 16 banks, 4 MSHRs, 1+1 I/O ports, 11-cycle latency, LRU

DRAM 1 Controller, 3.5GB, Micron DDR3 400MHz

OS Linux v2.6.34

Table 5.2: System con�guration for experimental results

Energy consumption is modeled by combining our performance numbers with
powermodels. We useMcPAT1.0 [155] for modeling core/directory/L1 power, CACTI
6.5 [185] to obtain power/latency numbers for sequential-access low-leakage L2 cache
banks, and approximate DRAM power by assigning 2.78W to background power and
51nJ per access for a single DIMM as done by Sampson and Wenisch [207].

Simulated Accelerators. We simulate TCAs by substituting the applications’
core kernel code with special code blocks that contain latencies back-annotated from
the RTL implementation of the accelerators. Our simulator recognizes these special
code blocks and freezes the CPU pipeline for the latency speci�ed in each block.
Additional latency is appropriately added to the freeze if within a block the modeled
accelerator performs memory accesses that miss in the L1 data cache.

LCAs are simulated by attaching back-annotated SystemC accelerator code to our
event-driven simulation engine. We synchronize the system’s event queue with Sys-
temC’s event queue every 100 cycles—this results in a minimal event skew and pro-
vides signi�cant gains in simulation time. LCA interrupt latency is set to 2000 CPU
cycles, which is commensurate with current Inter-Processor Interrupt (IPI) latencies.
DRAM-DMA LCAs are fed from noncacheable memory bu�ers.
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Figure 5.7: Speedup over software for all accelerators. Input sizes are parameterized
as described in Table 5.1.
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5.5 Experimental Results

Performance. Figure 5.7 reports the speedup for all accelerators over a software im-
plementation running on a simulated CPU core. The reported speedup is on average
much greater for LCAs than for TCAs. TCAs only outperform LCAs when the input
size is small (i.e. �ts in a CPU cache line), which is due to the �xed cost in setting up
LCA accelerators—i.e. system call latency, I/O access latency and interrupt latency.
TCAs outperform LCAs for small inputs of AES and FFT. Note however that in these
cases the speedup over software is not signi�cant (less than 2x), the reason being that
given the small inputs there is not much computation to do.

Moving to larger input sizes greatly improves performance for LCAs. In these
scenarios the �xed cost of operating LCAs is amortized by the signi�cant computation
throughput they can sustain thanks to their tailored PLMs. However, two causes can
limit LCA performance.

First, the limited size of the PLM may force the algorithm to abandon ping-pong
data bu�ering when dependent data chunks outsize the available PLM. An example
of this is the FFT: note the drop in performance at N = 11, where the accelerator
is forced to alternate between communication and computation. Second, the high
throughput that the accelerator can sustain may not be sustainable by DRAM. This
leads to a �attening of the speedup with increases in input size. Clear examples of
this e�ect are Sort (�attening above 30X) and FFT-2D (5X).

Whether DRAM becomes a bottleneck is ultimately a function of the kernel to
accelerate. If the kernel has a high ratio of computation over communication, that is,
relatively short data transfers lead to signi�cant calculation, then an accelerator with
a su�ciently large PLM can sustain high throughput. Lucas-Kanade is an example
of this: the speedup for the largest input set reaches 200X over software. Increasing
speedups with input size can also be seen for AES, Change Detection and Debayer,
but these are less pronounced due to the lower computation/communication ratio.

Energy E�ciency. Figure 5.8 aggregates speedup and energy reduction results
from the experiments shown in Figure 5.7 (which total 55 distinct experiments for
each coupling model), sorting them in monotonically increasing order. The perfor-
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Figure 5.9: omnetpp IPC increase over running in isolation.

mance gap between the two LCAs and the TCA becomes here evenmore evident than
in Figure 5.7. Further, the gap in energy reduction between LLC-DMA and DRAM-
DMA LCAs widens with respect to their gap in performance. The reason is that
LLC-DMA accelerators perform less accesses to o�-chip DRAM, which incur in a
signi�cant energy penalty. It is thus clear that on average, performance and energy
improvements are greater with LLC-DMA LCAs.

LLC-DMA vs DRAM-DMA LCAs. A potential source of concern with regards
to LLC-DMA loosely-coupled accelerators is cache pollution. To measure this e�ect
we simulate a 2-core system running omnetpp, a SPEC06 benchmark that is sensitive
to LLC size around 4MB [123], together with a program that runs an LCA-accelerated
application in an in�nite loop, where each workload and input size is a unique pair
chosen from the aforementioned set of 55 experiments. We fast-forward simulation
for 100M cycles of omnetpp, and then record omnetpp’s IPC over 256M cycles.
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Figure 5.9 shows the resulting IPC improvements for omnetpp. The improvement
is always below 1, i.e. the interference is always detrimental to performance. The left
plot (all values) shows a dramatic performance reduction for omnetpp when coexist-
ingwith certain DRAM-DMALCAs. This is explained by the DRAMbottleneckwe al-
luded to earlier: these accelerators saturate DRAM bandwidth (sort, FFT-2D) thereby
adding high latency to omnetpp’s relatively rare LLC misses. LLC-DMA LCAs do not
su�er from such a severe performance degradation due to the mediation of the LLC;
o�-chip accesses to DRAM from the accelerator are thus kept to a minimum, which
leaves enough DRAM bandwidth to ensure moderate LLC miss latencies.

Note that the interference seen for the �rst ten DRAM-DMA workloads is very
noticeable, which is partly due to the fact that we invoke the accelerator in an in�nite
loop. More realistic workloads might not necessarily run accelerators in a loop as
tight as ours, which would moderate the performance degradation. However, many-
accelerator systems are likely to encounter scenarios in which several accelerators
execute at the same time, which would bring the bandwidth demands close to those
of our experiments. Our results show that given an adequately sized LLC, LLC-DMA
LCAs are better equipped to mitigate this e�ect.

5.6 Related Work

Most work on accelerator research focuses on the performance and energy e�ciency
improvements that accelerators can provide [233, 50, 242], rarely considering system-
level implications. Interesting examples of the latter are by Kelm and Lumetta [129]
and Cong et al [63], who focus on software support for loosely-coupled accelerators.
Our study is complementary to their work; we study a wider range of accelerator
models and a wider set of applications, while also evaluating the memory-hierarchy
interference that results from having high-throughput accelerators share the die with
memory-intensive software.

Vo et al make a case for OS-friendly accelerators [234]. Our approach di�ers from
theirs in that the applications we consider show little bene�t from tightly-coupled

95



acceleration since many-ported tailored memories are necessary to sustain high-
throughput. Further, our results show that the software model for device manage-
ment prevalent in SoCs is directly applicable to these high-throughput accelerators.
Stuecheli et al [225] attach accelerators to the PCIe bus using a cache that is coherent
with other CPUs in the system, thereby removing the need for device drivers. This
is a promising approach for workloads that (1) must be accelerated o�-chip, e.g. due
to prohibitive area requirements or need for recon�gurability (e.g. on FPGA), and (2)
require frequent communication with general-purpose cores.

5.7 Summary

In this chapter we have considered system integration and programmability issues in-
herent in di�erent accelerator models. Through full-system simulation we performed
a quantitative and qualitative comparison of three suchmodels: tight coupling behind
a CPU, loose (i.e. out-of-core) couplingwith DMA to the LLC, and loose couplingwith
DMA to DRAM. Our experiments on these accelerators induce a set of observations
that can help future designers and increase understanding of existing designs.

Observations. From our quantitative study we observe the key role of private
memory blocks in high-performance acceleration. Loosely-coupled accelerators can
leverage these blocks by tailoring SRAM banks to the needs of their computation
blocks; the resulting multi-ported memories enable the exploitation of parallelism in-
herent in kernels, which is where the potential for performance and energy e�ciency
improvements lies. This potential might not be realized if the application requires
excessive DRAM bandwidth or is not amenable to sustained computational bursts
that �t in the accelerator’s PLM. Equipping accelerators with direct memory access
to the LLC can mitigate this in some cases, which also reduces the risk of DRAM
bandwidth saturation. With regards to software, abstracting these high-throughput
loosely-coupled accelerators using device drivers similar to those for SoC on-chip
devices shows to be a low-complexity and e�cient approach. Recent work by Giri,
Mantovani and Carloni [102] corroborates this last point through an evaluation of
accelerators and CPUs implemented on FPGA.
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Limitations. There are potentially as many accelerators as applications in ex-
istence. Therefore we cannot claim that our observations apply to every workload
imaginable. We instead restrict our scope to high-throughput applications that (1)
have clear memory access patterns and have input sizes large enough to make vector
processing impractical and (2) are irregular enough to not map well into GPUs; an
exception to this is the FFT, which we chose for its popularity.
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Chapter 6

ROCA: Reducing the Opportunity

Cost of Accelerator Integration

In this chapter1 we present a novel technique to expand the last-level cache of a het-
erogeneous system by reusing memory from otherwise unused on-chip accelerators.
The evaluation of this technique underscores the importance of scalable emulation;
by enhancing Cargo (introduced in Section 5.4) to support multicore-on-multicore
simulation, we are able to simulate a heterogeneous system that runs large parallel
workloads (executing billions of instructions) at an acceptable speed.

6.1 Introduction

Owing to their speci�c purpose, non-programmable, high-throughput accelerators
allow designers to tailor the microarchitecture to a speci�c workload, thereby de-
livering near-optimal performance and energy e�ciency [35]. Unfortunately, these
come at the expense of generality; a given accelerator can only speed up a speci�c
instance of an algorithm, with little or no �exibility to incorporate potential improve-
ments to it. As a result, the opportunity cost of integrating accelerators in general-
purpose architectures is usually prohibitive, since few accelerators are likely to apply

1This chapter incorporates and extends work previously published in Computer Architecture Let-
ters [70] and in the proceedings of the 2016 ICS conference [68].
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to a workload that is unknown at design time. Thus, investing area in accelerators for
these architectures frequently implies forgoing more generally applicable and there-
fore productive alternatives, such as larger caches and/or cores, greater core counts,
or not making the investment at all.

Prior work improves average on-chip memory utilization as a way to reduce ac-
celerator opportunity cost by building on two observations: accelerators are mostly
made of private local memories (PLMs) and have low average utilization. Thus, the
resulting solutions reduce the overall amount of integrated PLMs by providing stor-
age that accelerators can allocate memory from. This storage is implemented either
as an accelerator-only memory pool [162] or by allocating blocks for accelerators
from the last-level cache (LLC) [65, 94]. Although these techniques reduce the total
on-chip SRAM investment, they are only applicable to low-bandwidth PLMs, which
are scarce in high-throughput accelerators as we discuss in Section 6.2.

We leverage an additional observation to further reduce the opportunity cost of
accelerator integration. We observe that accelerator PLMs disseminated across the
chip provide a de facto non-uniform cache architecture (NUCA), which is the opti-
mal organization for large, multi-megabyte caches [135]. Thus, instead of provid-
ing storage external to accelerators, our goal is to expose accelerator PLMs to the
LLC [70], thereby extracting utility from all PLMs and not just from low-bandwidth
ones. Moreover, this simpli�es the design e�ort over prior work, since the designer
does not need to arti�cially break PLMs into high and low bandwidth groups.

Three di�culties make exploiting accelerator PLMs by the LLC challenging. First,
exposing PLMs to the cache substrate requires logic to abstract the PLMs’ diversity
in size, bitwidth and number of ports. Second, the cache substrate has to dynamically
handle the intermittent availability of some of its capacity. Last, the delay due to
the eviction of dirty blocks from PLMs reclaimed by an accelerator can potentially
degrade the accelerator’s performance.

We propose Roca, a technique to exploit accelerator PLMs to reduce the oppor-

tunity cost of integrating accelerators. Roca transparently exposes accelerator PLMs
to the cache substrate, thereby extending LLC capacity while accelerators are not
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Figure 6.1: 4-core chip with 2-level cache and four accelerators. Most accelerator area
is devoted to private local memories (PLMs) that, when inactive, are used by ROCA
to expand the LLC. The memory blocks of the resulting LLC are shaded in gray.

in use. Figure 6.1 illustrates the goal of our technique. A four-core chip shares a
network-on-chip (NoC) interconnect with four accelerators, whose PLMs’ diversity
(in number of ports, size, and bitwidth) is represented by rectangles of varying di-
mensions. With Roca, the LLC is formed by combining regular non-uniform cache
architecture (NUCA) banks with PLMs from otherwise unused accelerators.

Roca uses a combination of old and new techniques to achieve low complex-
ity, high performance and modest area overhead. First, it adds a minimum amount
of logic around PLMs to expose them through an additional port to the cache sub-
strate. Second, it relies on the decoupling between cache tags and the corresponding
data [55], keeping tag storage external to accelerators. Third, it leverages selective
cache ways [10] to dynamically adapt to the intermittent availability of PLMs, �ush-
ing dirty blocks to DRAM as PLMs are reclaimed by accelerators.

In this chapter we make the following contributions:

• We present Roca, a technique that leverages accelerator PLMs to dynamically
expand the last-level cache (Section 6.3), and show its modest area overhead,
which is almost entirely due to additional tag storage (Section 6.4).

• We perform full-system simulation of multiprogrammedworkloads running on
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a multi-core architecture whose LLC is mostly implemented from Roca accel-
erators, evaluating Roca’s performance and energy e�ciency overhead, which
we show to be low, and studying Roca’s sensitivity to di�erent accelerator
reclamation frequencies for several spatial con�gurations. (Section 6.5).

In summary, Roca shows that extending the last-level cache by exploiting accel-
erators PLMs when otherwise unused is an e�ective way of reducing accelerators’
opportunity cost, since it decouples the utility of accelerators from the workload un-
der consideration.

6.2 Background

Recent work on non-programmable accelerators hinges on two main observations:

Privatememories are key to accelerator performance and energy e�ciency.
Specialized hardware can potentially exploit all parallelism inherent in a given com-
putational kernel. However, a necessary condition to realize this parallelism is the
ability to fetch data, possibly in highly irregular patterns, at the same rate as they are
processed by a specialized datapath. Attaching accelerators to existing CPU caches
in order to save area and therefore energy might seem worth pursuing, but unfor-
tunately cache structures cannot ful�ll most accelerators’ requirements. First, high-
throughput accelerators require memories with a far greater number of ports than
what caches can e�ciently implement [50, 108]. Second, a �xed cache block size can-
not serve well the needs of reads and writes of various widths that occur even within
just a single accelerator. And third, the high associativity needed by caches to pro-
vide fast lookups imposes signi�cant energy and area overheads, which goes against
the e�ciency goal of acceleration. Accelerators are thus best served by private lo-
cal memories, which as we discussed in Chapter 5 are memory blocks only exposed
to accelerator hardware and tailored in their number of ports, banks and widths to
precisely match the needs of each computational block within an accelerator.

Accelerators are mostly memory. Given the importance of low-latency, high-
bandwidth memory accesses for accelerators’ performance, private memory blocks
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take a substantial portion of accelerators’ area. For instance, a survey of eleven pub-
licly available accelerators reveals that “an average of 69% of accelerator area is con-
sumed bymemory” [162], and recent high-performance accelerators show signi�cant
private memory investments as well [50, 145].

A corollary to the second observation is that average accelerator memory utiliza-
tion is low on many-accelerator systems, since not all accelerators are likely to run at
the same time. Thus, prior work has reduced accelerator opportunity cost by moving
private memories out of the accelerator: proposals range from an on-chip memory
pool that accelerators can allocate from [162], to providing a substrate that can store
cache blocks as well as accelerator data [94, 65].

Roca has two advantages over these proposals. First, it applies to all accelerator
memories, regardless of their bandwidth or access pattern (�xed or data-dependent).
Second, it requires modi�cations on the accelerators that are simpler to implement:
designers do not have to worry about predicting access patterns or what memory
blocks are (or could be engineered to be) of higher/lower bandwidth. Instead, with
Roca designers just focus on optimizing their design without any additional require-
ments, and once the design is done, a small amount of logic around memory blocks
is all that is needed to make an accelerator Roca-compliant.

Roca also adds logic to the cache substrate to make it view accelerator PLMs as
de facto NUCA storage. The complexity of the logic needed, apart from additional tag
storage, is low due to two ideas. First, we exploit the observation by Chishti et al. [55]
that, since tag and data lookups happen sequentially in large caches, their placement
can be decoupled. Second, we leverage selective cache ways by Albonesi [10] as the
mechanism to accommodate accelerator PLMs of diverse sizes, and to rapidly and
e�ciently adapt to their intermittent activity and, therefore, availability.

6.2.1 Accelerator Example: Sort

We now illustrate the typical structure of a high-throughput accelerator through a
particular example, which we will also use in the next section to describe the modi-
�cations that Roca imposes on accelerators.
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Figure 6.2: Structure of the Sort accelerator. Ping-pong bu�ering enables simultane-
ous processing of vectors. The dashed lines denote di�erent pipeline stages. Banks
of the �ve PLMs are shaded in gray.

Our Sort accelerator is designed to meet the PERFECT benchmark suite’s require-
ments [22] by sorting batches of �oating point vectors of up to 1024 elements each.
The accelerator, whose structure is depicted in Figure 6.2, has �ve PLMs and com-
putes in two stages. The �rst stage sorts groups of 32 elements through a parallel
implementation of bubble sort: the innermost loop of the algorithm can complete in
one clock cycle due to aggressive SRAM banking to feed a specialized datapath with
32 comparators. Moreover, PLMs in this stage are doubled to support the processing
of groups of 32 elements in a pipeline, thus allowing reads and swap-induced writes
to occur in the same clock cycle. The second stage sorts the resulting 32-element lists
(with a maximum of 32 lists for a total of 1024 elements) using merge sort. PLMs are
again heavily banked to maximize performance and enable pipelining.

The accelerator was optimized for performance and energy e�ciency: compared
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Figure 6.3: PLM Bandwidth of the Sort accelerator when sorting 4 vectors of 1024
elements. High PLM bandwidth is enabled by heavy SRAM banking.

to a software implementation running on an Intel Haswell processor clocked at 2.3GHz,
a 1GHz silicon implementation2 of the accelerator is up to 3.5X faster, while requiring
only 0.5% of the energy; the speedup of the accelerator over a software implementa-
tion for an OpenRISC CPU, with both accelerator and CPU synthesized in an FPGA
at 100MHz, is of up to 300X while consuming 3% of the energy. These signi�cant
gains are enabled by the use of high-bandwidth PLMs. Their e�ect is illustrated in
Figure 6.3, which plots the PLM bandwidth over time for the two accelerator stages
when sorting 4 vectors of 1024 elements. The plots show how aggressive SRAM bank-
ing enables large amounts of concurrent PLM accesses (up to 32 accesses per PLM per
cycle) which are key to achieving high performance. Additional banking can also help
pipelining. For instance, the bubble-regs PLM has twice as many banks as it would
otherwise need, which provides the necessary intermediate bu�ering for processing
di�erent vectors in a pipeline.

Applying prior approaches [65, 94, 162] to this accelerator could only be done for
a subset of the PLMs and would result in a substantial impact on performance or in-

2The accelerator logic is simple and therefore can be clocked at high frequencies. However, the
achievable clock frequency of our silicon implementation is limited by the memory generators avail-
able to us.
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PLM Size (KB) Banks Peak Bandwidth

merge-head 4 32 32
merge-regs 4 32 32
IN_BUF 8 1 1
OUT_BUF 8 1 1
bubble-regs 16 64 32

Table 6.1: Characteristics of the PLMs in the Sort accelerator. Bandwidth is measured
in number of accesses per cycle.

crease in complexity. Moving memories out of the accelerator would only be possible
to do for input and output bu�ers, since they are the only ones whose access patterns
are fully predictable, i.e. do not depend on input values. As shown in Table 6.1 these
memories (IN_BUF and OUT_BUF ) amount to only 40% of the PLM total, i.e. 16 out
of 40 KB. Moreover, implementing this move would be complex without signi�cantly
impacting area or performance: bu�ers would have to be added to hide the pipeline-
induced latency of reading/writing data to a remote bank via the interconnect.

In the next section we show how Roca adds simple logic to accelerators to trans-
parently expose all of their PLMs to the cache substrate.

6.3 ROCA: ExposingAcceleratorMemory to theNUCA

Substrate

Our implementation of Roca combines the following hardware elements, which we
describe in detail in this section:

• An enlarged tag array in the last-level cache to track blocks stored in accelerator
PLMs.

• Logic and gating hardware in the tag array to enable/disable ways as accelera-
tors reclaim their memory, as in selective cache ways [10].

• Registers (one per logical bank) that accelerators or privileged software can
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terleaved across two logical banks, each composed of a ROCA host bank and associ-
ated accelerators (marked with a dashed line). Requests to a logical bank are always
routed to the host bank (1-2), as well as responses from ROCA accelerators with the
requested data (3-4).

access to enable/disable the participation of accelerators in Roca based on the
accelerators’ activity rate.

• Logic on accelerators to coalesce SRAMs of di�erent widths, sizes, and ports to
expose them as a single PLM to the cache substrate via the interconnect.

• Logic on the tag array to support the �ushing of dirty cache blocks in acceler-
ator PLMs.

6.3.1 High-Level Operation

We explain the high-level operation of Roca in Figure 6.4. For the shown 3-core chip
the physical address space is split in two logical banks, which are regular LLC banks
that are extended with Roca-enabled accelerators. In the example, core 0 misses in
its L1 on a read access to the block at address 0xf00, which is assigned to be cached
at the L2’s host bank 1. Core 0 then sends its block request to host bank 1. The bank
checks its enlarged tag array (which also tracks blocks in accelerators 2 and 3) and
forwards the request to accelerator 2. The accelerator sends back to host bank 1 the
contents of the block, and the host bank then forwards it to core 0.
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In this operation example, accelerator 2 could have directly sent the block to
core 0, therefore lowering access latency. However, this modi�cation would be ill-
advised. For example, consider the scenario in which immediately after the access
request for 0xf00, host bank 1 received a command to disable accelerator 2 from
caching, i.e. the accelerator was reclaimed for acceleration. If there were no com-
munication back to the host bank, the bank would not know when it would be safe to
hand over the accelerator PLMs; this could result in data corruption (if the handover
were too early and thus accelerator activity overwrote the not-yet-read block) or in
unnecessary waiting to guarantee that the access completed.

Write accesses also require an acknowledgment message back from accelerators
to their host bank. Consider two consecutive writes from di�erent cores to the same
block whose data is cached by an accelerator. Without an acknowledgment mes-
sage, correctness would have to rely on an interconnect with point-to-point ordering,
which is a constraint that we do not wish to impose since it limits Roca’s applicability.

6.3.2 Host Bank Organization

Roca uses two ideas to form host banks whose capacity can be expanded to exploit
accelerator PLMs. First, it leverages selective cache ways to integrate accelerators
with PLMs of varying sizes, which also serves as a simple mechanism to dynamically
adapt to the intermittent availability for caching of accelerators. Second, it expands
the tag array in the host bank to track accelerator blocks, thereby requiring minimal
changes to accelerator designs.

Figure 6.5 shows the organization of a 4-way Roca host bank. The in-bank data
array only contains ways 0 and 1. The tag array, however, tracks these two local ways
as well as two remote ways, i.e. ways whose data blocks are stored in accelerators.
Storage for tags and state of remote blocks is where the bulk of Roca’s area overhead
lies. In addition, logic in the bank controller is required to handle on-chip communi-
cation related to cache block transfers to/from remote Roca banks, as well as a Way

Enable Register to con�gure which ways to enable. Software can access this register
to enable/disable ways as the corresponding accelerators change their availability.
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remote, i.e. their data arrays are accessed via the interconnect. Shaded in orange are
the hardware structures necessary to convert a regular bank into a ROCA host bank.

6.3.3 Way Allocation in Logical Banks

Way allocation is performed at design time to coalesce accelerators with diverse PLM
sizes into the same logical bank. Figure 6.6 illustrates way allocation through several
examples of a Roca logical bank composed of a host bank and three associated ac-
celerators. Example 1 is the simplest; accelerators are all of the same size, which is
a power of two that evenly divides the size of the memory in the host bank. Thus,
in Example 1.a, the chosen number of sets is such that each accelerator can host one
element per set. In other words, one way is assigned to each accelerator. The number
of sets can be subsequently halved to double the number of ways, as 1.b shows.

Examples 2 and 3 are more diverse in their accelerator PLM sizes and therefore
are more realistic. Both examples show that higher associativity (i.e. smaller numbers
of sets) helps minimize waste due to uneven accelerator memory provisioning. In
practice, an associativity typical for last-level caches (10 to 20 ways) is enough to
result in negligible or no memory waste, as illustrated in examples 2.b and 3.b.
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Figure 6.6: Way allocation examples for a ROCA logical bank with three accelerators,
assuming a block size of 64 bytes.

The number of sets in all three examples discussed so far is a power of two, which
makes the tag/index acquisition logic a simple bit selection from the block address.
Examples 4.a and 4.b show way allocations that result in non-power-of-two numbers
of sets. This is in principle a plausible option in the unusual scenarios where wasting
some memory is unacceptable and the necessary associativity to achieve zero waste
with power-of-two numbers of sets is prohibitive. However, designers need to con-
sider the drawbacks of this choice before committing to it. Feasible numbers of sets
are limited to those whose arithmetic modulo have a fast hardware implementation,
i.e. numbers of the form 2c∗(2n−1) or 2c∗(2n+1), where c andn are non-negative inte-
gers [215]. More importantly, tags need to be enlarged to include all bits in the block
o�set, since the modulo operation cannot be constricted to just the least signi�cant
bits of the block address.

Designers are free to assign di�erent numbers of accelerators to logical banks,
allocatingways as they see �t. This can result in varying sizes and associativity across
logical banks; given enough accelerators, however, this variability can be minimized
by uniformly distributing accelerators based on their PLM sizes across the chip.

6.3.4 Impact on Cache Coherence Tra�c

The intermittent availability of accelerators and the use of way allocation can have a
profound impact on coherence tra�c. For instance, maintaining a directory cache em-
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bedded in an inclusive LLC comes with substantial overhead, since the blocks cached
in an accelerator about to be reclaimed would have to either be recalled from the
private caches or relocated.

A simpler alternative is to give up LLC inclusion. Implementing a standalone
directory cache guarantees that recalls can be made infrequent (by having enough
associativity in the directory cache), and dissociates coherence from the last-level
cache; logical banks are then free to be of any size and associativity, and to silently
�ush dirty blocks from reclaimed accelerators. The cost of having a standalone di-
rectory cache is the storage overhead of its tag array, which comes for free in an
inclusive LLC. This cost, however, is modest. For example, a standalone directory
cache adds 2.5% of overhead to the last-level cache when the latter is 8 times larger
than the sum of the private caches, a typical ratio for inclusive designs [154]. This
relative overhead grows as the shared-to-private ratio shrinks, reaching 11% when
the shared cache is of the same size as the sum of the private caches [171].

6.3.5 Coalescing and Exposing PLMs

Roca exposes accelerator PLMs to the cache substrate through an additional memory
port managed by a Roca controller. To describe these two additional components,
which require a small amount of logic in the form of multiplexers and in some cases
a small lookup table (LUT), we use the Sort accelerator described in Section 6.2.1.

Figure 6.7 depicts a memory-centric view of the Sort accelerator, in which each
arrow represents a memory port. We �rst focus on the PLMmanager, shaded in gray:
its role is to export and coalesce SRAM banks into multi-ported memories [193]. For
example, the 64 banks of bubble-regs are exported as a 64-port, 32b-wide PLM that
has 32 ports connected to each of the parallel bubble sort and merge sort logic blocks.
Given that the number of banks in the PLM is a power of two, the PLM manager is
implemented as a trivial address translation unit that via bit selection determines for
each access the correct bank and o�set within it.

We now describe the Roca port added to the PLM manager, shaded in orange in
the �gure. Its goal is to transfer a cache block with minimum latency, whose lower
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Figure 6.7: Memory ports in the Sort accelerator. The PLMmanager aggregates SRAM
banks to export them as multi-ported memories. An additional NoC-�it-wide port is
exported to the ROCA controller, shaded in orange.

bound is imposed by the serialization in the NoC, i.e. one �it per cycle. Thus, the
Roca port aggregates all the accelerator SRAMs (totaling 40KB) through an interface
of the same bit width as the NoC’s �it length, which for this example we assume to
be 128b. The attachment to the SRAMs is attained by multiplexing the SRAM control
signals, since Roca-enabled caching and acceleration do not overlap in time.

The addressing logic for the Roca port is in general not as trivial as that for regu-
lar accelerator ports; the number of banks is rarely a power of two and the banks are
not uniform in their size and bit width. The complexity of the addressing logic can be
minimized by choosing an appropriate arrangement of the accelerator SRAMs; fur-
thermore, an adequate arrangement can minimize SRAM waste and maximize band-
width to match the target of NoC �it per cycle.

Such an arrangement for the Sort accelerator is shown in Figure 6.8: banks are
accessed in pairs resulting in a bandwidth of 128b per cycle, with 64b/cycle coming
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quate pairing of dual-ported banks brings bandwidth to one NoC �it (128b) per cycle.

from each bank thanks to exploiting the two ports of the dual-ported SRAMs. The
SRAMs in each pair do not have to come from the same original PLM; for instance,
IN_BUF and OUT_BUF as well as merge-head and merge-regs are paired together for
caching purposes yet operate in separate PLMs during acceleration.

The Roca controller converts block addresses within the total of 640 64-byte
blocks (40KB) of memory into a physical o�set within the appropriate pair of SRAM
banks. To achieve this with minimum latency, integer division is to be avoided. Thus,
we group banks of the same size as shown in Figure 6.8 and then sort them by size in
descending order, obtaining three groups of 256, 256 and 128 blocks. Block addresses
with the 9th bit set go to the third group; all other addresses go to the �rst two groups,
which are matched via bit selection since both groups are of the same power of two
size. In all cases the o�set within a group is also obtained via bit selection, which
results in trivial logic.

Handling less uniform groups of SRAMs is also possible while avoiding integer di-
vision. A viable option is to have a small lookup table (LUT) to match the upper order
bits (over that of the group sizes’ greatest common factor) to the appropriate group;
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the o�set within a group is then calculated via a shift, whose amount is also precom-
puted in the LUT. Another option, when the size of the banks is the same yet their
number is not a power of two, is to follow the procedure presented by Seznec [215],
which we mentioned when describing way allocation in logical banks (Section 6.3.3).
A last option, when dealing with highly non-uniform cases, is to either discard some
memory for caching, or pad the accelerator with additional memory (clock-gated
when the accelerator is not in Roca mode) in order to obtain more regular sizing
across banks.

The same “to pad or to waste” decision is faced when coalescing SRAMs from
PLMs of di�erent bit widths. For example, if each bank is 8b-wide then 8 dual-ported
banks need to be accessed to sustain a bandwidth of 128b per cycle. If the width is
instead 7, then accessing nine banks of which one is extended to 8 bits is an advisable
option. Accelerators with diverse PLM bit widths are a common occurrence, despite
what the Sort accelerator example might suggest.

So far we have assumed that the SRAMbanks are dual-ported, i.e., in a single clock
cycle two non-con�icting accesses to the same bank are allowed. Using single-ported
SRAM banks is also possible with Roca; the per-bank bandwidth therefore halves,
requiring the number of banks (for Roca or for acceleration) to double in order to
meet the original bandwidth.

The NoC’s �it length is also a variable that must be taken into consideration. In
general, the larger the �it, themore aggregate bandwidth is required from the SRAMs,
and therefore the larger their groups will be.

6.3.6 ROCA-to-Acceleration Transitions

When an accelerator is recalled from Roca, two options are available to maintain the
LLC in a consistent state. A �rst option is to relocate to other LLC banks the most
frequently accessed blocks as well as the dirty ones. This option, however, is costly
in hardware: timestamped block access counters such as bucketed LRU [208] are
necessary to enable the ordering across blocks in the same accelerator, which holds
blocks from all sets in the cache. An alternative, more practical option is to silently
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evict blocks, �ushing to DRAM if necessary. In practice this is not very di�erent from
actively migrating frequently-accessed blocks: subsequent misses to said blocks will
place them in other LLC banks, and, assuming heavy accelerator activity, these blocks
will eventually be placed in LLC host banks, which are always available.

From the accelerator’s point of view, the �ushing of dirty blocks is simply a reg-
ular block read requested from the controller in Roca’s host bank. The host bank is
not just the main serialization point for coherence as we discussed in Section 6.3.1;
it is also a serialization point for accelerators, since an accelerator can only switch
to acceleration once its Roca host bank has completed the �ushing of all the dirty
blocks the accelerator was holding.

Choosing to just �ush dirty blocks has an additional advantage over more com-
plex options in that it minimizes the transition latency: its lower bound is the NoC’s
bandwidth, since it serializes the read requests that precede the corresponding �ushes
to DRAM. The importance of the transition latency is nonetheless relative to the fre-
quency at which the accelerator switches between acceleration and caching. Thus, an
accelerator that is constantly being required to accelerate is a poor target for Roca,
since the positive e�ect of temporarily increasing the aggregate cache size is dom-
inated by the latency from �ushing dirty blocks and subsequent cache misses. We
thus let software decide when to enable/disable Roca on accelerators, since software
has complete information about the system. Our results in Section 6.5 quantify the
accelerator invocation frequency below which Roca should be enabled.

6.4 Area Overhead

Roca’s area overhead is relative to the scenario it is compared against. For instance,
a system with a �xed area budget and initially no accelerators could bene�t from
including some Roca-enabled accelerators, trading o� part of the original cache for
this. The resulting cache size would depend on how much of the accelerators’ area
were devoted to memory; e.g., assuming accelerators were 69% memory (as discussed
in Section 6.2), each unit of cache capacity would approximately require 44% more
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area when implemented in Roca than as regular cache. In return for this area invest-
ment, however, the system would have gained the potential of drastically increasing
the performance and e�ciency of certain workloads by using the accelerators.

A more precise way to assess Roca’s area overhead is to consider the baseline
system as one already equipped with accelerators. Expanding the existing cache
with Roca has then a modest cost, split between (1) tag storage for a standalone
directory cache if it previously was embedded in the last-level cache, as discussed in
Section 6.3.4, and (2) additional tag storage to track cache blocks in Roca accelera-
tors. Storage for the cache tag array is unlikely to exceed 10% of the storage needed
for the data it tags. To be concrete, let us assume a 48-bit physical address space and
64-byte (26) cache blocks; then, in case the number of banks is not a power of two,
tags need to include the entire block o�set, resulting in a (48-6+2)/(64*8)=8.5% tag
array area overhead relative to the data array, assuming two bits to keep valid and
dirty states. In more common scenarios in which the number of sets is a power of
two (and thus tags do not include the lower-order bits of the block o�set) the relative
overhead shrinks to, for instance, 6.6% or 5.4% assuming 210 and 216 sets, respectively.

Roca requires additional logic whose area overhead is however negligible com-
pared to that of tag storage. This logic enables Selective Cache Ways [10] in the host
bank (discussed in Section 6.3.2), and multiplexes the control signals of accelerators’
SRAM banks while appropriately translating addresses to coalesce them into a single
PLM (Section 6.3.5).

6.5 Energy and Performance Evaluation

6.5.1 Experimental Methodology

Simulation platform. We extend Cargo (see Section 5.4) to support parallel sim-
ulation of the memory hierarchy of a cache-coherent multicore system, in a similar
fashion to Sniper [47] or Zsim [209].

Modeled Systems. We conduct full-system simulation of an i386 machine run-
ning Linux. We initially model a 5x5 tiled CMP with 16 general-purpose cores as
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CMP with a 2MB S-NUCA LLC. We augment it with 24 ROCA-enabled accelerators
to form a 7x7 CMPwith a 6MB ROCA LLC (right). Dashed lines show the eight logical
banks into which the address space is split. MC stands for memory controller.

the baseline system, which we then augment with 24 Roca-enabled accelerators as
depicted in Figure 6.9, or with enlarged cache banks as described below.

Our modeled cores are single-threaded and in-order, with a two-level cache hier-
archy. We choose in-order cores to maximize performance sensitivity to variations
in cache latency, as is commonly done when studying the impact of changes to the
cache hierarchy (e.g. [208]). Energy e�ciency is modeled by combining our perfor-
mance models with: McPAT 1.0 [155] for core/directory/L1 power, CACTI 6.5 [185]
to obtain power/latency numbers for sequential-access low-leakage L2 cache banks,
DSENT [226] for NoC link/router power, and the memory power model in [81]. We
approximate memory power by assigning 2.78W to background power and 51nJ per
access for a single DIMM as done by Sampson and Wenisch in [207].

Modeled Last-Level Caches. Wemodel a Shared L2 LLC in all experiments. We
do not consider private caches beyond the L1’s nor a L3 cache in order to maximize
sensitivity to L2 hit latency, which is common practice among NUCA studies [109,
135, 148]. We report all results normalized over those from the baseline system, which
has a 16-way 2MB 8-bank S-NUCA LLC [135].

We augment the baseline system with 24 Roca-enabled accelerators and convert
the regular L2 banks into Roca host banks, which renders a 7x7 system as depicted
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Cores 16 cores, i386 ISA, in-order IPC=1 except on memory accesses, 1 GHz

L1 caches Split I/D 32KB, 4-way set-associative, 1-cycle latency, LRU replacement

8-cycle latency, LRU replacement
L2 caches S-NUCA: 16 ways, 8 banks, 2MB or 8MB total

Roca: 12 ways, 8x(256K+2x192K+128K)=6MB

Coherence MESI protocol, 64-byte blocks, standalone directory cache

DRAM 1 Controller, 200-cycle latency, 3.5GB physical
NoC 5x5/7x7 mesh, 128-bit �its, 2-cycle router traversal, 1-cycle links, XY routing

OS Linux v2.6.34

Table 6.2: Con�guration of the simulated system.

in Figure 6.9 (right). We conservatively assume that on average the accelerators’
reusable memory area is slightly below the typical (as discussed in Section 6.2) 69%;
we thus model 16 accelerators with 192KB of memory and 8 with 128KB, with a way
allocation as in Example 2.b in Figure 6.6. The resulting memory average corresponds
to 66% of the total area (100% memory would mean that each accelerator has 256KB
of memory, i.e. the same capacity as a regular L2 bank of the same area).

We compare the augmented system against a system that has the same total area,
but instead of integrating accelerators it features larger S-NUCA banks. We conser-
vatively assume that this system can be laid out without changing the chip’s tiled
structure, and therefore model a 5x5 8-bank 8MB S-NUCA con�guration. Table 6.2
summarizes the characteristics of the three systems.

EnergyConsumptionModel for Roca banks. Weuse CACTI tomodel leakage
and per-access energy in the Roca banks and to account for the energy consumption
overhead of the additional tag storage. Furthermore, to account for a worst-case sce-
nario we purposely overestimate the leakage power of accelerator-speci�c logic (i.e.
the logic that does not participate in Roca) as if it was induced by SRAMs instead of
regular logic.

LatencyModel for Roca banks. We assume that cache blocks are accessed from
both Roca accelerators and LLC host banks in 8 cycles: 4 cycles for 128b-�its over
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the NoC and 4 cycles for message processing and tag lookup. This is in addition to a
2-cycle-per-router NoC latency, as shown in Table 6.2.

Workloads. We assess the performance impact of varying Roca accelerator
availability by simulating multiprogrammed workloads that we assume are not ame-
nable to acceleration. Ideally, we would simulate a mix of accelerated and non-
accelerated workloads. However, we decide against this for two reasons. First, there
exist few accelerator benchmarks, and those that are available (e.g., [201]) are not in-
tegrated into larger, real applications. Second, even if those accelerated applications
were available, we would not be able to obtain insight with respect to accelerator
availability rates beyond those present in the particular applications under study.

We therefore sweep in simulation the availability rate of Roca accelerators, study-
ing its impact on energy e�ciency and performance when CPU cores are executing a
total of 45 multiprogrammed workloads taken from SPEC06. We simulate those that
when multiprogrammed can �t in the systems’s 3.5GB of physical memory. The 13
SPEC06 benchmarks used are thus: astar, gobmk, gromacs, h264ref, hmmer, libquan-
tum, namd, omnetpp, perlbench, povray, sjeng, soplex and sphinx3. The remaining
32 multiprogrammed workloads result from random combinations of those 13 bench-
marks, with repetitions allowed.

We use the SPEC06 reference input sizes, launching asmany benchmarks as cores.
For each benchmark we fast-forward for one billion instructions to then record for
256 million instructions. Threads that reach the 256 million instruction mark earlier
than others continue running, so that they still contend for shared resources. We
do not pin threads to particular cores; the Linux scheduler is free to migrate threads
across cores as it sees �t. All benchmarks are compiled with gcc v4.6.3 enabling -O2
optimizations.

Metrics. Energy e�ciency is presented in billions of instructions per Joule (BIPJ).
Given that our workloads are multiprogrammed, performance is considered equiva-
lent to IPC throughput, i.e.

∑
i IPCi , which is a consistent throughput metric [179].

Model of Accelerator Memory Availability. We make the following assump-
tions when simulating the availability of accelerator PLMs:
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1. Accelerators are always considered to run in bursts of 100K cycles (100us given
the 1GHz clock). Assuming a speedup over software of 100x, in this amount of time
an accelerator can do an amount of work that is roughly the same as a CPU can
do in a scheduling quantum, which is typically around 10ms. Therefore, when in
our experiments we say that an accelerator is 50% active, we mean that it alternates
between bursts of acceleration and Roca caching, each 100us long. That is, it has an
activity period T=0.2ms. Similarly, an accelerator that is 1% active runs every 10ms,
i.e. T=10ms.

2. We do not consider the work done by the accelerators as part of the workload:
we limit our attention to the overhead that accelerator activity causes on the cache
substrate. Thus, when reporting energy e�ciency, we only count the leakage and
dynamic power of accelerators for the time period they serve as Roca banks.

3. If an experiment sweeps over the accelerator use rate ofn Roca banks, through-
out the simulation we consider only that same set of n banks. Further, their bursts of
activity all start and terminate in unison, i.e. at the same simulated time. This is done
to measure a worst-case scenario that maximizes block �ushes from the accelerators
as they reclaim their PLMs from Roca.

6.5.2 Evaluation Under No Accelerator Activity

We �rst measure the energy e�ciency and performance of a cache built on Roca
relative to a standalone S-NUCA, without considering any accelerator activity. This
would be a common scenario in general-purpose Roca-enabled systems: since the
workload is not known at design time, the integrated accelerators are highly unlikely
to apply to the actual workload. However, with Roca they can nonetheless provide
value by expanding the LLC.

Figure 6.10 shows the throughput and energy e�ciency improvements of the 6MB
Roca and 8MB S-NUCA con�gurations over the 2MB S-NUCA baseline. Each line
plots the improvement of all workloads for each con�guration, with the results sorted
so that every line is monotonically increasing. An additional dashed line per con�g-
uration is also shown to represent the improvements’ cumulative geometric mean.
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Figure 6.10: MPKI, performance and energy e�ciency improvements over the 2MB
S-NUCA baseline for all workloads for 8MB S-NUCA and 6MB ROCA con�gurations.
All accelerators in ROCA are inactive.

We observe that the results’ gap between the 6M Roca and the same-area 8MB
S-NUCA is commensurate with their 25% di�erence in capacity: Roca realizes 78%
of the MPKI reduction of the 8MB S-NUCA, while relative performance (70%) and
energy e�ciency (68%) improvements are slightly lower. This decrease is explained
by the additional level of indirection that Roca requires: L2 accesses that hit in an ac-
celerator bank require NoC transfers that are not necessary in S-NUCA, where each
regular bank comprehends both cache tags and data. These NoC accesses between
the Roca host bank and associated accelerators result in additional overhead by con-
suming energy and increasing hit latency.

Someworkloads show an energy e�ciency degradation over the baseline for both
con�gurations close to 5%. This is explained by the unresponsiveness of these work-
loads to increased last-level caching, due to either streaming access patterns or the
workload already �tting in the baseline LLC.
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Figure 6.11: Performance and energy e�ciency improvements over 2MB S-NUCA for
6MB ROCA with one accelerator intermittently active. Shown are improvements for
some workloads, plus the gmean for all workloads.

The low performance and energy overhead of Roca compared to a same-area
S-NUCA in the absence of accelerator activity is therefore established. In the remain-
der of our evaluation we consider the impact of intermittently removing accelerator
banks fromRoca, which happenswhen accelerators become active and reclaim PLMs.

6.5.3 Same-Logical-Bank Accelerator Activity

We now consider the e�ect on performance and energy e�ciency of the intermittent
activity of Roca-enabled accelerators within the same logical bank. Such a scenario
would be most likely found on a general-purpose architecture owned by a power user
whoseworkloadwe assume can exploit only up to three of the integrated accelerators.
We �rst study the case of a single active accelerator, and then consider the worst case
of three accelerators being on the same logical bank; this results in the loss of 8 ways
out of the 12 ways that are assigned to a logical bank.

Single Active Accelerator. Figure 6.11 shows the improvements in performance
and energy e�ciency over the baseline system for 6MB Roca with one of the 128K
accelerators switching between acceleration and caching. The activity rate of this
Roca bank shows negligible impact on performance and energy e�ciency. Only the
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Figure 6.12: Improvements for 6MB ROCA over 2MB S-NUCA and characterization
of peak number of blocks �ushed vs MPKI (top right), for varying accelerator activity
of 3 accelerators in the same logical bank.

workloads with large MPKIs are sensitive to the slight L2 capacity reduction caused
by the intermittent loss of a single Roca bank.

Three Same-Logical-Bank Active Accelerators. Figure 6.12 shows the perfor-
mance and energy e�ciency improvements over the baseline for this scenario. We
observe that the di�erence between the worst case (100% activity) and best case (no
accelerators active) is small. This is due to the presence of 4 local ways in the Roca
host banks; having one eighth of the address space only cached by 4 LLC ways does
not greatly impact these workloads. Frequent accelerator use (T=0.2ms) has similar
impact to 100% activity in MPKI, performance and energy e�ciency since in 0.1ms
caching there is not enough time to make e�ective use of the three Roca banks. Less
frequent accelerator use (4% activity, T=2.5ms) yields more positive results across the
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three metrics, since the caching window is larger.
A side e�ect of a larger caching window is that more dirty blocks must be �ushed

to DRAM upon accelerator reclamation. This can be seen in the top right plot, where
for each run the peak number of blocks �ushed by a single accelerator upon a reclaim
is shown against the run’s MPKI together with their computed linear regression. A
larger caching window thus results in larger peak values. However, the correlation
between peak �ushes and MPKI is stronger as the caching window narrows; the in-
tuition behind this is that given a large enough window, the Roca bank will be fully
populated regardless of how cache-hungry the workload may be. Short windows, on
the other hand, are highly sensitive to the miss rate of the workload: only high-MPKI
workloads are capable of inserting a signi�cant amount of blocks in the Roca bank.

6.5.4 Chip-Wide Accelerator Activity

We complete our performance and energy e�ciency evaluation by studying the im-
pact on caching of intense accelerator activity across the chip. In this scenario the 24
accelerators switch in unison between caching and acceleration.

Figure 6.13 shows theMPKI, performance and energy e�ciency improvements for
this con�guration. The worst case for caching (100% activity for the 24 accelerators)
remains on average close to the baseline: 0.8% and 4% average performance and e�-
ciency degradation, respectively. This di�erence is explained by the even larger (close
to 10% on average) MPKI drop caused by the low associativity (4 ways) of the Roca
host banks, which for cache-sensitive workloads are outperformed by the equally-
sized 16-way baseline cache.

Between zero and full accelerator activity we observe how critical is the activity
period T: a caching window of 10ms (1% acc. activity) yields performance and energy
e�ciencywithin—respectively—10% and 20% of that without accelerator activity. The
higher energy overhead is due to the �ushing of blocks upon accelerator reclamation.

A shorter caching window (T=2.5ms) results on average in less than half the zero-
activity gains in performance and negligible gains in energy e�ciency over the base-
line. Moreover, it leads to the highest peak number of �ushes (330) upon accelerator
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Figure 6.13: Improvements for 6MB ROCA over 2MB S-NUCA and characterization
of peak number of blocks �ushed vs MPKI (top right), for varying accelerator activity
of all (24) accelerators.

reclamation observed over all simulations. An even shorter caching window (T=1ms)
is hardly an improvement over the full-activity scenario: performance is similar to
that of the baseline, yet energy e�ciency is 2% below.

6.5.5 Summary of Results

Our results show that accelerators that are not used frequently (i.e. with idle win-
dows of 10ms or longer) are prime candidates for Roca. The average performance
and energy e�ciency improvements obtained from them for non-accelerated work-
loads are, respectively, 70% and 68% of those from regular cache banks of the same
area, while providing orders-of-magnitude improvements for workloads suitable for

124



acceleration. Furthermore, our results show the importance of allocating a certain
portion of the Roca LLC to host banks (e.g. 2MB out of 6MB in our study) in order
to limit performance and e�ciency degradation for non-accelerated workloads when
most accelerators are active.

Not all memory-rich accelerators are suitable for Roca, however. An exception to
this recommendation are accelerators with rigorous real-time constraints, with dead-
lines in the order of microseconds; the delay to �ush dirty blocks to DRAM when the
accelerator is reclaimed from Roca could compromise the meeting of such deadlines.
For example, �ushing 330 64-byte blocks, assuming a su�ciently bu�ered DRAM
controller and 128b NoC �it length, would take around 10,560 cycles, i.e. 10.5us at a
1GHz clock rate.

6.6 Related Work

The importance of accelerator PLMs is con�rmed by the amount of area dedicated to
them [162]; this key role of PLMs has sparked recent e�orts to automate and optimize
the design of heavily banked memory subsystems for accelerators [193].

Decoupling the utility of specialized hardware from particular workloads has mo-
tivated proposals, such as Smart Memories [167], CHARM [64] and LSSD [189], that
attempt to partially match the performance and energy e�ciency gains of accelera-
tors without giving up programmability. Our approach di�ers from theirs in that we
relinquish programmability not to compromise on performance or e�ciency. With
Roca, accelerator utility is however decoupled from the workload by augmenting the
LLC with accelerator memories when accelerators would otherwise be inactive.

An interesting approach that shares Roca’s objective of reducing the opportunity
cost of accelerator integration is Stash [143], whose goal is tominimize on-chip copies
of data by implementing a hybrid storage element for accelerators, thereby combining
the bene�ts of both caches and software-managed scratchpads. Stash di�ers from
Roca in that it requires changes to the cache coherence protocol, and similarly to
the proposals discussed in Section 6.2 (i.e. [65, 94, 162]), it is not a good �t as a
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substitute for high-bandwidth PLMs, since hiding the additional latency of accessing
these memories would signi�cantly complicate accelerator designs.

Recent NUCA research has put emphasis on trading cache capacity to reduce hit
latency via controlled block placement and replication, e.g. ASR by Beckmann et
al. [23], R-NUCA by Hardavellas et al. [109], and Locality-Aware Data Replication by
Kurian et al. [148]. These techniques were designed for always-available, equally-
sized banks; extending them to support the requirements of banks such as the ones
coming from Roca accelerators, which are of diverse sizes and intermittently avail-
able, would be valuable future work.

6.7 Summary

In this chapter we have presented Roca, a technique to exploit the abundant private
local memories in accelerators to mitigate the opportunity cost of their integration.
Roca enables accelerators to provide utility even when they cannot directly speed
up a workload, by exposing their private local memories to the cache substrate. Our
implementation of Roca is practical, requiring minimal modi�cations to both accel-
erators and the cache substrate, and incurring a modest area overhead that is almost
entirely due to additional tag storage.

Our results show that, relative to a 2MB S-NUCA LLC, a 6MB Roca LLC built
upon typical accelerators (i.e. whose area is 66% memory) can, on average, realize
70% of the performance and 68% of the energy e�ciency bene�ts of a same-area 8MB
S-NUCA con�guration. Further, our results suggest that accelerators with windows
of inactivity of 10ms or longer are prime candidates for Roca.
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Chapter 7

Future Directions

In this chapter we explore future research avenues inspired by the work presented in
this dissertation.

7.1 Cross-ISA Virtualization

In their 1974 seminal paper, Popek and Goldberg [195] de�ne virtualization as the
ful�llment of the following requirements:

“As a piece of software a VMM has three essential characteristics. First, the

VMM provides an environment for programs which is essentially identical

with the original machine; second, programs run in this environment show

at worst only minor decreases in speed; and last, the VMM is in complete

control of system resources.” [195]

Can we then provide cross-ISA virtualization in a portable cross-ISA emulator like
QEMU? The e�ciency requirement is clearly the hardest to meet. Despite the perfor-
mance improvements presented in this dissertation (e.g., Figures 4.5 and 4.6), single-
threaded performance of emulated workloads is still far from being “essentially iden-
tical” to native execution. DynamoRIO and Pin show that DBT can be used to achieve
near-native performance for same-ISA user-mode emulation (Figure 4.13, top row),
and MAMBO-X64 shows similar near-native performance for Aarch32-to-Aarch64
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user-mode emulation [76]. This suggests that narrowing the performance gap be-
tween these tools and portable cross-ISA ones is feasible. Such an e�ort would prob-
ably require a combination of old and new techniques regarding the sources of emu-
lation overhead that we identi�ed in Section 2.2.3:

Floating point emulation. Two complementary approaches could be followed.
First, the code needed for the FP fast path in Figure 4.1 could be generated directly by
the DBT engine, thereby removing the overhead of one helper call per emulated FP
instruction. Second, our work on FP emulation could be combined with vectorization
techniques to achieve higher performance without giving up correctness. Guo et
al. [104] show encouraging results for emulating vectorized ARM code. QEMU has
recently gained support for vectors in its IR [25], which makes it a good candidate
for evaluating this idea.

Indirect branch handling. Trace-based execution could lower the cost of indirect
branch handling. However, as discussed in Section 2.2.3.1, using traces in full-system
emulation remains challenging. Recent work by d’Antras et al. [75] shows techniques
that can yield performance gains on this front without the use of traces, for instance
by leveraging the return address predictor of the host.

Code quality. Some solutions in the literature demonstrate that the cost of high
code quality can be amortized for hot code blocks. Good examples are HQEMU [118],
which leverages LLVM to compile hot code blocks/traces, and HERMES [249], which
performs a �nal host-speci�c optimization pass on the generated code.

SoftMMU. In portable emulators, a softMMU is probably inevitable in order to em-
ulate the guest’s virtual memory. Our results show that a dynamically-sized softMMU
(Section 4.2.4.1) yields improvements over a static one, yet full-system emulation is
still on average 1.8× slower than user-mode for SPECint061.

1This slowdown can be easily computed: the average SPECint06 slowdown of full-system and user-
mode emulation over native execution is 7.6× (Figure 4.12) and 4.2× (Figure 4.13), respectively. The
softMMU-induced overhead is therefore 7.6/4.2 = 1.80×
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Alternatives to the softMMU that leverage virtualization hardware on the host
have shown encouraging results. For instance, Spink et al. [222] report an aver-
age speedup of 2.5× for SPECint06 in QEMU. However, this approach has only been
demonstrated with guests whose virtual address length is shorter than that of the
host, e.g. 32-on-64-bit emulation. Further research is needed to determine whether
this approach could be made to work e�ciently to support guests with the same vir-
tual address length as that of the host, e.g. 64-on-64 bit emulation.

7.2 Scalable Simulation of Heterogeneous Systems

This dissertation demonstrates the feasibility of a scalable cross-ISA machine emula-
tor, which can be used as a simulation front-end. Having such a front-end is a neces-
sary requirement for scalable, cross-ISA, full-system simulation. A scalable front-end,
however, is not su�cient to ful�ll this goal; a scalable timing back-end is also needed.
As reviewed in Section 2.5.1, recent work on same-ISA simulation has shown that
scalable timing back-ends are feasible, although their scalability comes at the expense
of accuracy when simulating events that contend on shared resources [47, 209].

Achieving both accuracy and scalability in a timing back-end while accurately
modeling contention remains an open research question. This problem is particularly
challenging when applied to DRAM simulation: small alterations to event ordering
can lead to very di�erent outcomes, particularly under unfair scheduling algorithms
in the memory controller [184].

7.3 Emulation of Multi-ISA Machines

Asymmetric processors typically integrate one large, high-performance core and sev-
eral small, low-performance ones. This arrangement allows the system to e�ciently
execute both serial and parallel workloads [115, 146]. An argument following the
rationale behind asymmetric cores could be made for multi-ISA systems, since these
systems could bene�t from the larger power-performance design space that using
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several ISAs can bring. Multi-ISA systems, however, have not yet materialized, prob-
ably due to the lack of an operating system that can handle them. Research on this
topic was pioneered by Barbalace et al. [21], although the cores they use are not on
the same chip, but connected through the PCIe bus.

Machine emulation could help spur further research on multi-ISA operating sys-
tems and architectures by enabling the evaluation of ideas in simulation. To this end,
the emulator design presented in this dissertation could be expanded to supportmulti-
ISA guests. Conceptually, this would require little more than the addition of a �eld
to each translated block to keep track of the ISA it belongs to. Implementation-wise,
however, in QEMU this change might require signi�cant engineering e�ort, since
QEMU is a large code base that has been written without ever considering multi-ISA
support as a potential feature.
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Chapter 8

Conclusions

In this dissertation we have �rst introduced the design of a novel DBT-based machine
emulator that (1) scales on multicore hosts while remaining memory e�cient via the
use of a shared code cache, (2) correctly handles guest-host ISA di�erences in atomic
instruction semantics without sacri�cing scalability, (3) achieves high FP emulation
performance by leveraging the host FPU, and (4) supports e�cient instrumentation,
which—among other uses—allows it to drive the execution of architectural simulators.

We have then presented two additional contributions that highlight the useful-
ness of machine emulation for conducting research on heterogeneous systems. First,
we analyzed the trade-o�s in di�erent accelerator coupling models. Second, we de-
veloped and evaluated a novel technique to reuse the private memories of on-chip
accelerators when they are otherwise inactive to expand the system’s last-level cache,
thereby reducing the opportunity cost of the accelerators’ integration.

We believe that fast and scalable machine emulation will become an important
piece of research infrastructure. To help ful�ll this vision, we have integrated our
emulator’s implementation into QEMU, a popular open-sourcemachine emulator and
virtualizer. We hope that this e�ort will bear fruit by enabling others to performmore
productive research across the di�erent layers in computing systems.
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Appendix

Implementation Adoption

Contributions to Upstream QEMU

At the time of this writing, the main intellectual contributions implemented in Pico
and Qelt (Chapters 3 and 4, respectively) are part of QEMU1. The only exception is
Qelt’s instrumentation layer, which is currently under review by the QEMU commu-
nity.

QEMU v2.7, released in September 2016, includes (1) Pico’s improved hashing for
the TB block hash table (commit 42bd32287) and (2) Pico’s implementation and use of
QHT for scalable TB lookups (909eaac9, 518615c6). QEMU v2.8 includes: (1) the use
of the host’s atomic instructions to emulate the guest’s atomics (e.g., x86 in 37b995f6,
ARM in 354161b3, Aarch64 in 1dd089d0; merge commit 5929d7e8), and (2) the nec-
essary work to safely support multi-threaded execution (53f5ed95, 3359baad; merge
commit c640f284). Qelt’s indirect branch improvements (a0d4aac7) are in v2.10, par-
allel code generation (33836a73) is in v3.0, and Qelt’s FP emulation enhancements
(ec3c927f) as well as dynamic TLB sizing (3a183e33) are in v4.0, released in April
2019.

1http://www.qemu.org/
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Lessons Learned

The integration of the above features totals more than 300 non-merge commits in
QEMU. The required integration e�ort involved a substantial time investment, yet
came with two long-term bene�ts: (1) it ensures that the features will be maintained,
which maximizes the number of eventual users, and (2) the resulting code quality is
higher, since the code went through several review iterations.

Navigating the upstream process of a popular open-source project is not trivial.
Based on the lessons learned from our interactions with the QEMU community, we
now re�ect on four principles that an external contributor would do well to follow.

Trust. Maintainers are responsible for maintaining code after it is merged, and are
therefore judicious in what code they merge in the �rst place. Proposing novel fea-
tures without a clear use case is guaranteed to fail; maintainers will inevitable ask the
question “What is it what you are trying to do?” Answering this question with a prac-
tical use case and with technical depth is a mandatory step towards building some
trust from the maintainers. Only after this question has a satisfactory answer a con-
tributor should move on to a submission via the project’s contribution mechanisms
(e.g. QEMU’s submission guide), to then clear the bar imposed by the maintainers in
terms of code clarity and e�ciency.

Empathy. Projectmaintainers are deeply knowledgeable and—perhaps as a result—
extremely busy. They not only write code, they also review code submissions from
others and guide the direction of the project. Thus, a contributor should use the
maintainers’ time wisely and always remain patient when waiting for feedback. A
contributor should address all concerns raised by code reviewers in a timely fashion,
and be prepared to expand the scope of a contribution if so required (for example, by
adding tests when modifying some code, even though no tests for that code existed
previously).
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Engagement. Regardless of the medium of communication used, a mature open-
source project is inevitably a team e�ort, and the more a contributor can contribute
to that collective e�ort, the easier it will be for the contributor to get their changes
merged. A simple way to engage with the community is for the contributor to also
review other people’s code submissions, as well as monitor the bug tracking system;
this increases good will from other members of the community, as well as improves
the contributor’s understanding about potentially unfamiliar parts of the code base.
Another productive way of engaging with the community is to attend one of their
regular in-person events, e.g. KVM Forum in case of QEMU, which is a yearly gath-
ering of QEMU developers.

Persistence. It is not unusual to go through more than a dozen review iterations
for a submission, particularly when landing a large feature. This can be discouraging,
but persistence has a reward: the resulting (merged) code will be of higher quality.
Being quick in incorporating review feedback is also strongly advised; reviewers will
have a fresher state when submitting an improved version, which will likely result in
a quicker turnaround.
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