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ABSTRACT
We present Roca, a technique to reduce the opportunity
cost of integrating non-programmable, high-throughput ac-
celerators in general-purpose architectures. Roca exploits
the insight that non-programmable accelerators are mostly
made of private local memories (PLMs), which are key to
the accelerators’ performance and energy efficiency. Roca
transparently exposes PLMs of otherwise unused acceler-
ators to the cache substrate, thereby allowing the system
to extract utility from accelerators even when they cannot
directly speed up the system’s workload. Roca adds low
complexity to existing accelerator designs, requires minimal
modifications to the cache substrate, and incurs a modest
area overhead that is almost entirely due to additional tag
storage.

We quantify the utility of Roca by comparing the re-
turns of investing area in either regular last-level cache banks
or Roca-enabled accelerators. Through simulation of non-
accelerated multiprogrammed workloads on a 16-core sys-
tem, we extend a 2MB S-NUCA baseline system to show
that a 6MB Roca-enabled last-level cache built upon typ-
ical accelerators (i.e. whose area is 66% memory) can, on
average, realize 70% of the performance and 68% of the en-
ergy efficiency benefits of a same-area 8MB S-NUCA con-
figuration, in addition to the potential orders-of-magnitude
efficiency and performance improvements that the added ac-
celerators provide to workloads suitable for acceleration.

CCS Concepts
•Hardware → Hardware accelerators; Economics of
chip design and manufacturing; On-chip resource manage-
ment; •Computer systems organization → Heteroge-
neous (hybrid) systems;
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vate local memory, opportunity cost
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1. INTRODUCTION
Owing to their specific purpose, non-programmable, high-

throughput accelerators allow designers to tailor the mi-
croarchitecture to a specific workload, thereby delivering
near-optimal performance and energy efficiency [4]. Unfor-
tunately, these come at the expense of generality; a given
accelerator can only speed up a specific instance of an al-
gorithm, with little or no flexibility to incorporate potential
improvements to it. As a result, the opportunity cost of inte-
grating accelerators in general-purpose architectures is usu-
ally prohibitive, since few accelerators are likely to apply to
a workload that is unknown at design time. Thus, investing
area in accelerators for these architectures frequently implies
forgoing more generally applicable and therefore productive
alternatives, such as larger caches and/or cores, greater core
counts, or not making the investment at all.

Prior work improves average on-chip memory utilization
as a way to reduce accelerator opportunity cost by build-
ing on two observations: accelerators are mostly made of
private local memories (PLMs) and have low average uti-
lization. Thus, the resulting solutions reduce the overall
amount of integrated PLMs by providing storage that ac-
celerators can allocate memory from. This storage is im-
plemented either as an accelerator-only memory pool [24]
or by allocating blocks for accelerators from the last-level
cache (LLC) [8, 13]. Although these techniques reduce the
total on-chip SRAM investment, they are only applicable to
low-bandwidth PLMs, which are scarce in high-throughput
accelerators as we discuss in Section 2.

In this work we leverage an additional observation to fur-
ther reduce the opportunity cost of accelerator integration.
We observe that accelerator PLMs disseminated across the
chip provide a de facto non-uniform cache (NUCA), which is
the optimal organization for large, multi-megabyte caches [17].
Thus, instead of providing storage external to accelerators,
our goal is to expose accelerator PLMs to the LLC [10],
thereby extracting utility from all PLMs and not just from
low-bandwidth ones. Moreover, this simplifies the design
effort over prior work, since the designer does not need to
artificially break PLMs into high and low bandwidth groups.

Three difficulties make exploiting accelerator PLMs by the
LLC challenging. First, exposing PLMs to the cache sub-
strate requires logic to abstract the PLMs’ diversity in size,
bitwidth and number of ports. Second, the cache substrate
has to dynamically handle the intermittent availability of
some of its capacity. Last, the delay due to the eviction
of dirty blocks from PLMs reclaimed by an accelerator can
potentially degrade the accelerator’s performance.
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Accelerator Logic,
NoC Interface

Private Local
Memories

L2 bank

core

L1i L1d

core

L1i L1d

core

L1i L1d

core

L1i L1d

Figure 1: 4-core chip with 2-level cache and four accelera-
tors. Most accelerator area is devoted to private local mem-
ories (PLMs) that, when otherwise inactive, are used by
ROCA to extend the last-level cache. The memory blocks
of the resulting LLC are shaded in gray.

We proposeRoca, a technique to exploit accelerator PLMs
to reduce the opportunity cost of integrating accelerators.
Roca transparently exposes accelerator PLMs to the cache
substrate, thereby extending LLC capacity while accelera-
tors are not in use. Figure 1 illustrates the goal of our tech-
nique. A four-core chip shares a Network-on-Chip (NoC)
interconnect with four accelerators, whose PLMs’ diversity
(in number of ports, size, and bitwidth) is represented by
rectangles of varying dimensions. With Roca, the LLC is
formed by combining regular NUCA banks with PLMs from
otherwise unused accelerators. In the figure, the resulting
Roca-enabled LLC is shown shaded in gray.

Roca uses a combination of old and new techniques to
achieve low complexity, high performance and modest area
overhead. First, it adds a minimum amount of logic around
PLMs to expose them through an additional port to the
cache substrate. Second, it relies on the decoupling be-
tween cache tags and the corresponding data [6], keeping
tag storage external to accelerators. Third, it leverages se-
lective cache ways [1] to dynamically adapt to the intermit-
tent availability of PLMs, flushing dirty blocks to DRAM as
PLMs are reclaimed by accelerators.

In this paper we make the following contributions:

• We present Roca, a technique that leverages acceler-
ator PLMs to dynamically expand the last-level cache
(Section 3), and show its modest area overhead, which
is almost entirely due to additional tag storage (Sec-
tion 4).

• We perform full-system simulation of multiprogrammed
workloads running on a multi-core architecture whose
LLC is mostly implemented from Roca accelerators,
evaluating Roca’s performance and energy efficiency
overhead, which we show to be low, and studyingRoca’s
sensitivity to different accelerator reclamation frequen-
cies for several spatial configurations. (Section 5).

In summary, Roca shows that extending the last-level
cache by exploiting accelerators PLMs when otherwise un-
used is an effective way of reducing accelerators’ opportunity
cost, since it decouples the utility of accelerators from the
workload under consideration.

2. BACKGROUND
Recent work on non-programmable accelerators hinges on

two main observations:
Private memories are key to accelerator perfor-

mance and energy efficiency. Specialized hardware can
potentially exploit all parallelism inherent in a given com-
putational kernel. However, a necessary condition to realize
this parallelism is the ability to fetch data, possibly in highly
irregular patterns, at the same rate as they are processed
by a specialized datapath. Attaching accelerators to exist-
ing CPU caches in order to save area and therefore energy
might seem worth pursuing, but unfortunately cache struc-
tures cannot fulfill most accelerators’ requirements. First,
high-throughput accelerators require memories with a far
greater number of ports than what caches can efficiently im-
plement [5, 14]. Second, a fixed cache block size cannot serve
well the needs of reads and writes of various widths that oc-
cur even within just a single accelerator. And third, the
high associativity needed by caches to provide fast lookups
imposes significant energy and area overheads, which goes
against the efficiency goal of acceleration. Accelerators are
thus best served by private local memories, which are mem-
ory blocks only exposed to accelerator hardware and tai-
lored in their number of ports, banks and widths to pre-
cisely match the needs of each computational block within
an accelerator [9].

Accelerators are mostly memory. Given the impor-
tance of low-latency, high-bandwidth memory accesses for
accelerators’ performance, private memory blocks take a
substantial portion of accelerators’ area. For instance, a
survey of eleven publicly available accelerators reveals that
“an average of 69% of accelerator area is consumed by mem-
ory” [24], and recent high-performance accelerators show sig-
nificant private memory investments as well [5, 19].

A corollary to the second observation is that average ac-
celerator memory utilization is low on many-accelerator sys-
tems, since not all accelerators are likely to run at the same
time. Thus, prior work has reduced accelerator opportu-
nity cost by moving private memories out of the accelerator:
proposals range from an on-chip memory pool that acceler-
ators can allocate from [24], to providing a substrate that
can store cache blocks as well as accelerator data [13, 8].

Roca has two advantages over these proposals. First, it
applies to all accelerator memories, regardless of their band-
width or access pattern (fixed or data-dependent). Second,
it requires modifications on the accelerators that are simpler
to implement: designers do not have to worry about pre-
dicting access patterns or what memory blocks are (or could
be engineered to be) of higher/lower bandwidth. Instead,
with Roca designers just focus on optimizing their design
without any additional requirements, and once the design is
done, a small amount of logic around memory blocks is all
that is needed to make an accelerator Roca-compliant.

Roca also adds logic to the cache substrate to make it
view accelerator PLMs as de facto NUCA storage. The
complexity of the logic needed, apart from additional tag
storage, is low due to two ideas. First, we exploit the obser-
vation by Chishti et al. [6] that, since tag and data lookups
happen sequentially in large caches, their placement can be
decoupled. Second, we leverage selective cache ways by Al-
bonesi [1] as the mechanism to accommodate accelerator
PLMs of diverse sizes, and to rapidly and efficiently adapt
to their intermittent activity and therefore availability.
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Figure 2: Structure of the Sort accelerator. Ping-pong
buffering enables simultaneous processing of vectors. The
dashed lines denote different pipeline stages. Banks of the
five PLMs are shaded in gray.

2.1 Accelerator Example: Sort
We now illustrate the typical structure of a high-throughput

accelerator through a particular example, which we will also
use in the next section to describe the modifications that
Roca imposes on accelerators.

Our Sort accelerator is designed to meet the PERFECT
benchmark suite’s requirements [2] by sorting batches of
floating point vectors of up to 1024 elements each. The
accelerator, whose structure is depicted in Figure 2, has five
PLMs and computes in two stages. The first stage sorts
groups of 32 elements through a parallel implementation of
bubble sort: the innermost loop of the algorithm can com-
plete in one clock cycle due to aggressive SRAM banking to
feed a specialized datapath with 32 comparators. Moreover,
PLMs in this stage are doubled to support the processing
of groups of 32 elements in a pipeline, thus allowing reads
and swap-induced writes to occur in the same clock cycle.
The second stage sorts the resulting 32-element lists (with
a maximum of 32 lists for a total of 1024 elements) using
merge sort. PLMs are again heavily banked to maximize
performance and enable pipelining.

The accelerator was optimized for performance and energy
efficiency: compared to a software implementation running
on an Intel Haswell processor clocked at 2.3GHz, a 1GHz sil-
icon implementation1 of the accelerator is up to 3.5X faster,
while requiring only 0.5% of the energy; the speedup of the
accelerator over a software implementation for an Open-
RISC CPU, with both accelerator and CPU synthesized in
an FPGA at 100MHz, is of up to 300X while consuming
3% of the energy. These significant gains are enabled by

1The accelerator logic is simple and therefore can be clocked
at high frequencies. However, the achievable clock frequency
of our silicon implementation is limited by the memory gen-
erators available to us.
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Figure 3: PLM Bandwidth of the Sort accelerator when sort-
ing 4 vectors of 1024 elements. High PLM bandwidth is
enabled by heavy SRAM banking.

PLM Size (KB) Banks Peak Bandwidth

merge-head 4 32 32
merge-regs 4 32 32
IN BUF 8 1 1
OUT BUF 8 1 1
bubble-regs 16 64 32

Table 1: Characteristics of the PLMs in the Sort accelerator.
Bandwidth is measured in number of accesses per cycle.

the use of high-bandwidth PLMs. Their effect is illustrated
in Figure 3, which plots the PLM bandwidth over time for
the two accelerator stages when sorting 4 vectors of 1024
elements. The plots show how aggressive SRAM banking
enables large amounts of concurrent PLM accesses (up to
32 accesses per PLM per cycle) which are key to achieving
high performance. Additional banking can also help pipelin-
ing. For instance, the bubble-regs PLM has twice as many
banks as it would otherwise need, which provides the neces-
sary intermediate buffering for processing different vectors
in a pipeline.

Applying prior approaches [8, 13, 24] to this accelerator
could only be done for a subset of the PLMs and would re-
sult in a substantial impact on performance or increase in
complexity. Moving memories out of the accelerator would
only be possible to do for input and output buffers, since
they are the only ones whose access patterns are fully pre-
dictable, i.e. do not depend on input values. As shown in
Table 1 these memories (IN BUF and OUT BUF ) amount
to only 40% of the PLM total, i.e. 16 out of 40 KB. More-
over, implementing this move would be complex without
significantly impacting area or performance: buffers would
have to be added to hide the pipeline-induced latency of
reading/writing data to a remote bank via the interconnect.

In the next section we show how Roca adds simple logic
to accelerators to transparently expose all of their PLMs to
the cache substrate.
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3. ROCA: EXPOSING ACCELERATOR MEM-
ORY TO THE NUCA SUBSTRATE

Our implementation ofRoca combines the following hard-
ware elements, which we describe in detail in this section:

• An enlarged tag array in the last-level cache to track
blocks stored in accelerator PLMs.

• Logic and gating hardware in the tag array to en-
able/disable ways as accelerators reclaim their mem-
ory, as in Selective Cache Ways [1].

• Registers (one per logical bank) that accelerators or
privileged software can access to enable/disable the
participation of accelerators in Roca based on the ac-
celerators’ activity rate.

• Logic on accelerators to coalesce SRAMs of different
widths, sizes, and ports to expose them as a single
PLM to the cache substrate via the interconnect.

• Logic on the tag array to support the flushing of dirty
cache blocks in accelerator PLMs.

3.1 High-Level Operation
We explain the high-level operation of Roca in Figure 4.

For the shown 3-core chip the physical address space is split
in two logical banks, which are regular LLC banks that are
extended with Roca-enabled accelerators. In the example,
core 0 misses in its L1 on a read access to the block at
address 0xf00, which is assigned to be cached at the L2’s host
bank 1. Core 0 then sends its block request to host bank 1.
The bank checks its enlarged tag array (which also tracks
blocks in accelerators 2 and 3) and forwards the request to
accelerator 2. The accelerator sends back to host bank 1 the
contents of the block, and the host bank then forwards it to
core 0.

In this operation example, accelerator 2 could have di-
rectly sent the block to core 0, therefore lowering access
latency. However, this modification would be ill-advised.
For example, consider the scenario in which immediately
after the access request for 0xf00, host bank 1 received a
command to disable accelerator 2 from caching, i.e. the ac-
celerator was reclaimed for acceleration. If there were no
communication back to the host bank, the bank would not
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Figure 5: A 4-way ROCA host bank. Two ways are local to
the bank; the other two are remote, i.e. their data arrays
are accessed via the interconnect. Shaded in orange are the
hardware structures necessary to convert a regular bank into
a ROCA host bank.

know when it would be safe to hand over the accelerator
PLMs; this could result in data corruption (if the handover
were too early and thus accelerator activity overwrote the
not-yet-read block) or in unnecessary waiting to guarantee
that the access completed.

Write accesses also require an acknowledgment message
back from accelerators to their host bank. Consider two
consecutive writes from different cores to the same block
whose data is cached by an accelerator. Without an ac-
knowledgment message, correctness would have to rely on
an interconnect with point-to-point ordering, which is a con-
straint that we do not wish to impose since it limits Roca’s
applicability.

3.2 Host Bank Organization
Roca uses two ideas to form host banks whose capac-

ity can be expanded to exploit accelerator PLMs. First, it
leverages selective cache ways to integrate accelerators with
PLMs of varying sizes, which also serves as a simple mech-
anism to dynamically adapt to the intermittent availability
for caching of accelerators. Second, it expands the tag ar-
ray in the host bank to track accelerator blocks, thereby
requiring minimal changes to accelerator designs.

Figure 5 shows the organization of a 4-way Roca host
bank. The in-bank data array only contains ways 0 and 1.
The tag array, however, tracks these two local ways as well
as two remote ways, i.e. ways whose data blocks are stored
in accelerators. Storage for tags and state of remote blocks
is where the bulk of Roca’s host bank area overhead lies.
In addition, logic in the bank controller is required to han-
dle on-chip communication related to cache block transfers
to/from remote Roca banks, as well as a Way Enable Reg-
ister to configure which ways to enable. Software can access
this register to enable/disable ways as the corresponding ac-
celerators change their availability for caching.
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3.3 Way Allocation in Logical Banks
Way allocation is performed at design time to coalesce

accelerators with diverse PLM sizes into the same logical
bank. Figure 6 illustrates way allocation through several
examples of a Roca logical bank composed of a host bank
and three associated accelerators. Example 1 is the simplest;
accelerators are all of the same size, which is a power of two
that evenly divides the size of the memory in the host bank.
Thus, in Example 1.a, the chosen number of sets is such
that each accelerator can host one element per set. In other
words, one way is assigned to each accelerator. The number
of sets can be subsequently halved to double the number of
ways, as 1.b shows.

Examples 2 and 3 are more diverse in their accelerator
PLM sizes and therefore are more realistic. Both examples
show that higher associativity (i.e. smaller numbers of sets)
helps minimize waste due to uneven accelerator memory pro-
visioning. In practice, an associativity typical for last-level
caches (10 to 20 ways) is enough to result in negligible or no
memory waste, as illustrated in examples 2.b and 3.b.

The number of sets in all three examples discussed so far is
a power of two, which makes the tag/index acquisition logic
a simple bit selection from the block address. Examples 4.a
and 4.b show way allocations that result in non-power-of-
two numbers of sets. This is in principle a plausible op-
tion in the unusual scenarios where wasting some memory
is unacceptable and the necessary associativity to achieve
zero waste with power-of-two numbers of sets is prohibitive.
However, designers need to consider the drawbacks of this
choice before committing to it. Feasible numbers of sets are
limited to those whose arithmetic modulo have a fast hard-
ware implementation, i.e. numbers of the form 2c ∗ (2n − 1)
or 2c ∗(2n+1), where c and n are non-negative integers [35].
More importantly, tags need to be enlarged to include all
bits in the block offset, since the modulo operation cannot
be constricted to just the least significant bits of the block
address.

Designers are free to assign different numbers of accelera-
tors to logical banks, allocating ways as they see fit. This can
result in varying sizes and associativity across logical banks;
given enough accelerators, however, this variability can be
minimized by uniformly distributing accelerators based on
their PLM sizes across the chip.

3.4 Impact on Cache Coherence
The intermittent availability of accelerators and the use

of way allocation have profound effects on the cache coher-
ence protocol. For instance, maintaining a directory cache
embedded in an inclusive LLC comes with substantial over-
head, since the blocks cached in an accelerator about to be
reclaimed would have to either be recalled from the private
caches or relocated.

A simpler alternative is to give up LLC inclusion. Im-
plementing a standalone directory cache guarantees that re-
calls can be made infrequent (by having enough associativ-
ity in the directory cache), and dissociates coherence from
the last-level cache; logical banks are then free to be of any
size and associativity, and to silently flush dirty blocks from
reclaimed accelerators. The cost of having a standalone di-
rectory cache is the storage overhead of its tag array, which
comes for free in an inclusive LLC. This cost, however, is
modest. For example, a standalone directory cache adds
2.5% of overhead to the last-level cache when the latter is
8 times larger than the sum of the private caches, a typi-
cal ratio for inclusive designs [22]. This relative overhead
grows as the shared-to-private ratio shrinks, reaching 11%
when the shared cache is of the same size as the sum of the
private caches. [26]

3.5 Coalescing and Exposing PLMs
Roca exposes accelerator PLMs to the cache substrate

through an additional memory port managed in the acceler-
ator by a Roca controller. To describe these two additional
components, which amount to a small amount of logic in the
form of multiplexers and in some cases a small lookup table
(LUT), we use the Sort accelerator described in Section 2.1.

Figure 7 depicts a memory-centric view of the Sort accel-
erator, in which each arrow represents a memory port. We
first focus on the PLM manager, shaded in gray: its role
is to export and coalesce SRAM banks into multi-ported
memories [30]. For example, the 64 banks of bubble-regs are
exported as a 64-port, 32b-wide PLM that has 32 ports con-
nected to each of the parallel bubble sort and merge sort
logic blocks. Given that the number of banks in the PLM is
a power of two, the PLM manager is implemented as a triv-
ial address translation unit that via bit selection determines
for each access the correct bank and offset within it.
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We now describe the Roca port added to the PLM man-
ager, shaded in orange in the figure. Its goal is to transfer
a cache block with minimum latency, whose lower bound is
imposed by the serialization in the NoC, i.e. one flit per
cycle. Thus, the Roca port aggregates all the SRAMs in
the accelerator (totaling 40KB) through an interface of the
same bit width as the NoC’s flit length, which for this exam-
ple we assume to be 128b. The attachment to the SRAMs
is attained by multiplexing the SRAM control signals, since
Roca-enabled caching and acceleration do not overlap in
time.

The addressing logic for the Roca port is in general not
as trivial as that for regular accelerator ports; the number
of banks is rarely a power of two and the banks are not
uniform in their size and bit width. The complexity of the
addressing logic can be minimized by choosing an appro-
priate arrangement of the accelerator SRAMs; furthermore,
an adequate arrangement can minimize SRAM waste and
maximize bandwidth to match the target of NoC flit per
cycle.

Such an arrangement for the Sort accelerator is shown in
Figure 8: banks are accessed in pairs resulting in a band-
width of 128b per cycle, with 64b/cycle coming from each
bank thanks to exploiting the two ports of the dual-ported
SRAMs. The SRAMs in each pair do not have to come
from the same original PLM; for instance, IN BUF and
OUT BUF as well as merge-head and merge-regs are paired
together for caching purposes yet operate in separate PLMs
during acceleration.

The Roca controller converts block addresses within the
total of 640 64-byte blocks (40KB) of memory into a phys-
ical offset within the appropriate pair of SRAM banks. To
achieve this with minimum latency, integer division is to be
avoided. Thus, we group banks of the same size as shown
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Figure 8: SRAM arrangement for the ROCA controller in
the Sort accelerator. Adequate pairing of dual-ported banks
brings bandwidth to one NoC flit (128b) per cycle.

in Figure 8 and then sort them by size in descending order,
obtaining three groups of 256, 256 and 128 blocks. Block ad-
dresses with the 9th bit set go to the third group; all other
addresses go to the first two groups, which are matched via
bit selection since both groups are of the same power of two
size. In all cases the offset within a group is also obtained
via bit selection, which results in trivial logic.

Handling less uniform groups of SRAMs is also possible
while avoiding integer division. A viable option is to have
a small lookup table (LUT) to match the upper order bits
(over that of the group sizes’ greatest common factor) to the
appropriate group; the offset within a group is then calcu-
lated via a shift, whose amount is also precomputed in the
LUT. Another option, when the size of the banks is the same
yet their number is not a power of two, is to follow the pro-
cedure presented by Seznec [35], which we mentioned when
describing way allocation in logical banks (Section 3.3). A
last option, when dealing with highly non-uniform cases,
is to either discard some memory for caching, or pad the
accelerator with additional memory (clock-gated when the
accelerator is not in Roca mode) in order to obtain more
regular sizing across banks.

The same “to pad or to waste” decision is faced when co-
alescing SRAMs from PLMs of different bit widths. For
example, if each bank is 8b-wide then 8 dual-ported banks
need to be accessed to sustain a bandwidth of 128b per cycle.
If the width is instead 7, then accessing 9 banks of which
one is extended to 8 bits is an advisable option. Accelera-
tors with diverse PLM bit widths are a common occurrence,
despite what the Sort accelerator example might suggest.

So far we have assumed that the SRAM banks are dual-
ported, i.e., in a single clock cycle two non-conflicting ac-
cesses to the same bank are allowed. Using single-ported
SRAM banks is also possible with Roca; the per-bank band-
width therefore halves, requiring the number of banks (for
Roca or for acceleration) to double in order to meet the
original bandwidth.

The NoC’s flit length is also a variable that must be
taken into consideration. In general, the larger the flit, the
more aggregate bandwidth is required from the SRAMs, and
therefore the larger their groups will be.



3.6 ROCA-to-Acceleration Transitions
When an accelerator is recalled from Roca, two options

are available in order to maintain the LLC in a consistent
state. A first option is to relocate to other LLC banks the
most frequently accessed blocks as well as the dirty ones.
This option, however, is costly in hardware: timestamped
block access counters such as bucketed LRU [34] are neces-
sary to enable the ordering across blocks in the same acceler-
ator, which holds blocks from all sets in the cache. An alter-
native, more practical option is to silently evict blocks, flush-
ing to DRAM the ones that are dirty. In practice this is not
much different from actively migrating frequently-accessed
blocks: subsequent misses to said blocks will place them in
other LLC banks, and, assuming heavy accelerator activity,
these blocks will eventually be placed in LLC host banks,
which are always available.

From the accelerator’s point of view, the flushing of dirty
blocks is simply a regular block read requested from the
controller in Roca’s host bank. The host bank is not just
the main serialization point for coherence as we discussed in
Section 3.1; it is also a serialization point for accelerators,
since an accelerator can only switch to acceleration once its
Roca host bank has completed the flushing of all the dirty
blocks the accelerator was holding.

Choosing to just flush dirty blocks has an additional ad-
vantage over more complex options in that it minimizes the
transition latency: its lower bound is the NoC’s bandwidth,
since it serializes the read requests that precede the corre-
sponding flushes to DRAM. The importance of the transi-
tion latency is nonetheless relative to the frequency at which
the accelerator switches between acceleration and caching.
Thus, an accelerator that is constantly being required to ac-
celerate is a poor target for Roca, since the positive effect
of temporarily increasing the aggregate cache size is dom-
inated by the latency from flushing dirty blocks and sub-
sequent cache misses. We thus let software decide when
to enable/disable Roca on accelerators, since software has
complete information about the system. Our results in Sec-
tion 5 quantify the accelerator invocation frequency below
which Roca should be enabled.

4. AREA OVERHEAD
Roca’s area overhead is relative to the scenario it is com-

pared against. For instance, a system with a fixed area bud-
get and initially no accelerators could benefit from including
some Roca-enabled accelerators, trading off part of the orig-
inal cache for this purpose. The resulting cache size would
depend on how much of the accelerators’ area were devoted
to memory; for instance, assuming accelerators were 69%
memory (as discussed in Section 2), each unit of cache ca-
pacity would approximately require 44% more area when
implemented in Roca than as regular cache. In return for
this area investment, however, the system would have gained
the potential of drastically increasing the performance and
efficiency of certain workloads by using the accelerators.

A more precise way to assess Roca’s area overhead is to
consider the baseline system as one already equipped with
accelerators. Expanding the existing cache with Roca has
then a modest cost, split between (1) tag storage for a stan-
dalone directory cache if it previously was embedded in the
last-level cache, as discussed in Section 3.4, and (2) addi-
tional tag storage to track cache blocks inRoca accelerators.
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Figure 9: Topology of two of the simulated systems. The
baseline system (left) is a 16-core 5x5 CMP with a 2MB S-
NUCA LLC. We augment it with 24 ROCA-enabled accel-
erators to form a 7x7 CMP with a 6MB ROCA LLC (right).
Dashed lines show the eight logical banks into which the
address space is split. MC stands for memory controller.

Storage for the cache tag array is unlikely to exceed 10% of
the storage needed for the data it tags. To be concrete, let
us assume a 48-bit physical address space and 64-byte (26)
cache blocks; then, in case the number of banks is not a
power of two, tags need to include the entire block offset,
resulting in a (48-6+2)/(64*8)=8.5% tag array area over-
head relative to the data array, assuming two bits to keep
valid and dirty states. In more common scenarios in which
the number of sets is a power of two (and thus tags do not
include the lower-order bits of the block offset) the relative
overhead shrinks to, for instance, 6.6% or 5.4% assuming 210

and 216 sets, respectively.
Roca requires additional logic whose area overhead is

however negligible compared to that of tag storage. This
logic enables Selective Cache Ways [1] in the host bank (dis-
cussed in Section 3.2), and multiplexes the control signals of
accelerators’ SRAM banks while appropriately translating
addresses to coalesce them into a single PLM (Section 3.5).

5. ENERGY AND PERFORMANCE EVAL-
UATION

5.1 Experimental Methodology
Modeled Systems. We conduct full-system simulation

running Linux in an i386 simulator based on Qsim [16]. We
initially model a 5x5 tiled CMP with 16 general-purpose
cores as the baseline system, which we then augment with 24
Roca-enabled accelerators as depicted in Figure 9, or with
enlarged cache banks as described below. Our modeled cores
are single-threaded and in-order, with a two-level cache hi-
erarchy. We choose in-order cores to maximize performance
sensitivity to variations in cache latency, as is commonly
done when studying the impact of changes to the cache hier-
archy (e.g. [34]). Energy efficiency is modeled by combining
our performance models with: McPAT 1.0 [23] for core/di-
rectory/L1 power, CACTI 6.5 [28] to obtain power/latency
numbers for sequential-access low-leakage L2 cache banks,
DSENT [36] for NoC link/router power, and the memory
power model in [11]. We approximate memory power by as-
signing 2.78W to background power and 51nJ per access for
a single DIMM as done by Sampson and Wenisch in [33].

Modeled Last-Level Caches. We model a Shared L2
LLC in all experiments. We do not consider private caches
beyond the L1’s nor a L3 cache in order to maximize sen-



Cores
16 cores, i386 ISA, in-order IPC=1 except on
memory accesses, 1 GHz

L1 caches
Split I/D 32KB, 4-way set-associative, 1-cycle
latency, LRU replacement

8-cycle latency, LRU replacement

L2 caches
S-NUCA: 16 ways, 8 banks, 2MB or 8MB
total

Roca: 12 ways,
8x(256K+2x192K+128K)=6MB

Coherence
MESI protocol, 64-byte blocks, standalone
directory cache

DRAM
1 Controller, 200-cycle latency, 3.5GB
physical

NoC
5x5 or 7x7 mesh, 128-bit flits, 2-cycle router
traversal, 1-cycle links, XY routing

Operating
System

Linux v2.6.34

Table 2: Simulated systems’ configuration

sitivity to L2 hit latency, which is common practice among
NUCA studies [15, 17, 21]. We report all results normalized
over those from the baseline system, which has a 16-way
2MB 8-bank S-NUCA LLC [17].

We augment the baseline system with 24 Roca-enabled
accelerators and convert the regular L2 banks into Roca
host banks, which renders a 7x7 system as depicted in Fig-
ure 9. We conservatively assume that on average the acceler-
ators’ reusable memory area is slightly below the typical (as
discussed in Section 2) 69%; we thus model 16 accelerators
with 192KB of memory and 8 with 128KB, with a way allo-
cation as in Example 2.b in Figure 6. The resulting memory
average corresponds to 66% of the total area (100% memory
would mean that each accelerator has 256KB of memory, i.e.
the same capacity as a regular L2 bank of the same area).

We compare the augmented system against a system that
has the same total area, but instead of integrating acceler-
ators it features larger S-NUCA banks. We conservatively
assume that this system can be laid out without changing
the chip’s tiled structure, and therefore model a 5x5 8-bank
8MB S-NUCA configuration. Table 2 summarizes the char-
acteristics of the three systems.

Energy Consumption Model for Roca banks. We
use CACTI to model leakage and per-access energy in the
Roca banks and to account for the energy consumption
overhead of the additional tag storage. Furthermore, to ac-
count for a worst-case scenario we purposely overestimate
the leakage power of accelerator-specific logic (i.e. the logic
that does not participate in Roca) as if it was induced by
SRAMs instead of regular logic.

Latency Model for Roca banks. We assume that
cache blocks are accessed from both Roca accelerators and
LLC host banks in 8 cycles: 4 cycles for 128b-flits over the
NoC and 4 cycles for message processing and tag lookup.
This is in addition to a 2-cycle-per-router NoC latency, as
shown in Table 2.

Workloads. We assess the performance impact of vary-
ing Roca accelerator availability by simulating multipro-
grammed workloads that are not amenable to acceleration.
Ideally, we would simulate a mix of accelerated and non-
accelerated workloads. However, we decide against this for

two reasons. First, there exist few accelerator benchmarks,
and those that are available (e.g. [32]) are not integrated into
larger, real applications. Second, even if those accelerated
applications were available, we would not be able to obtain
insight with respect to accelerator availability rates beyond
those present in the particular applications under study.

We therefore sweep in simulation the availability rate of
Roca accelerators, studying its impact on energy efficiency
and performance when CPU cores are executing a total of 45
multiprogrammed workloads taken from SPEC06. We sim-
ulate those that when multiprogrammed can fit in the sys-
tems’s 3.5GB of physical memory. The 13 SPEC06 bench-
marks used are thus: astar, gobmk, gromacs, h264ref, hm-
mer, libquantum, namd, omnetpp, perlbench, povray, sjeng,
soplex and sphinx3. The remaining 32 multiprogrammed
workloads result from random combinations of those 13 bench-
marks, with repetitions allowed.

We use the SPEC06 reference input sizes, launching as
many benchmarks as cores. For each benchmark we fast-
forward for one billion instructions to then record for 256
million instructions. Threads that reach the 256 million
instruction mark earlier than others continue running, so
that they still contend for shared resources. We do not pin
threads to particular cores; the Linux scheduler is free to
migrate threads across cores as it sees fit. All benchmarks
are compiled with gcc v4.6.3 enabling -O2 optimizations.

Metrics. Energy efficiency is presented in billions of
instructions per Joule (BIPJ). Given that our workloads
are multiprogrammed, performance is considered equivalent
to IPC throughput, i.e.

∑
i IPCi, which is a consistent

throughput metric [27].
Model of Accelerator Memory Availability. We

make the following assumptions when simulating the avail-
ability of accelerator PLMs:

1. Accelerators are always considered to run in bursts
of 100K cycles (100us given the 1GHz clock). Assuming a
speedup over software of 100x, in this amount of time an ac-
celerator can do an amount of work that is roughly the same
as a CPU can do in a scheduling quantum, which is typi-
cally around 10ms. Therefore, when in our experiments we
say that an accelerator is 50% active, we mean that it alter-
nates between bursts of acceleration and Roca caching, each
100us long. That is, it has an activity period T=0.2ms.
Similarly, an accelerator that is 1% active runs every 10ms,
i.e. T=10ms.

2. We do not consider the work done by the accelera-
tors as part of the workload: we limit our attention to the
overhead that accelerator activity causes on the cache sub-
strate. Thus, when reporting energy efficiency numbers, we
only count leakage and dynamic power of accelerators for
the time period they serve as Roca banks.

3. If an experiment sweeps over the accelerator use rate of
n Roca banks, throughout the simulation we consider only
that same set of n banks. Further, their bursts of activity
all start and terminate in unison, i.e. at the same simu-
lated time. This is done to measure a worst-case scenario
that maximizes block flushes from the accelerators as they
reclaim their PLMs from Roca.

5.2 Evaluation Under No Accelerator Activity
We first measure the energy efficiency and performance

of a cache built on Roca relative to a standalone S-NUCA,
without considering any accelerator activity. This would be
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Figure 10: MPKI, performance and energy efficiency im-
provements over the 2MB S-NUCA baseline for all work-
loads for 8MB S-NUCA and 6 MB ROCA configurations.
All accelerators in ROCA are inactive.

a common scenario in general-purpose Roca-enabled sys-
tems: since the workload is not known at design time, the
integrated accelerators are highly unlikely to apply to the
actual workload. However, with Roca they can nonetheless
provide value by expanding the LLC.

Figure 10 shows the throughput and energy efficiency im-
provements of the 6MB Roca and 8MB S-NUCA configu-
rations over the 2MB S-NUCA baseline. Each line plots the
improvement of all workloads for each configuration, with
the results sorted so that every line is monotonically in-
creasing. An additional dashed line per configuration is also
shown to represent the improvements’ cumulative geometric
mean.

We observe that the results’ gap between the 6M Roca
and the same-area 8MB S-NUCA is commensurate with
their 25% difference in capacity: Roca realizes 78% of the
MPKI reduction of the 8MB S-NUCA, while relative perfor-
mance (70%) and energy efficiency (68%) improvements are
slightly lower. This decrease is explained by the additional
level of indirection that Roca requires: L2 accesses that
hit in an accelerator bank require NoC transfers that are
not necessary in S-NUCA, where each regular bank com-
prehends both cache tags and data. These NoC accesses
between Roca host bank and associated result in additional
overhead by consuming energy and increasing hit latency.

Some workloads show an energy efficiency degradation
over the baseline for both configurations close to 5%. This
is explained by the unresponsiveness of these workloads to
increased last-level caching, due to either streaming access
patterns or the workload already fitting in the baseline LLC.
When this is the case, the investment in leakage power for a
larger LLC does not pay off. We do not address the problem
of opportunistically reusing accelerator PLMs to dynami-
cally size the LLC; this is left as future work.

The low performance and energy overhead of Roca com-
pared to a same-area S-NUCA in the absence of accelerator
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Figure 11: Performance and energy efficiency improvements
over 2MB S-NUCA for 6MB ROCA with one accelerator
intermittently active. Shown are improvements for some
workloads, plus the gmean for all workloads.

activity is therefore established. In the remainder of our
evaluation we study the impact of intermittently removing
accelerator banks from Roca, which happens when acceler-
ators become active and reclaim their private memories.

5.3 Same-Logical-Bank Accelerator Activity
We now consider the effect on performance and energy

efficiency of the intermittent activity of Roca-enabled ac-
celerators within the same logical bank. Such a scenario
would be most likely found on a general-purpose architec-
ture owned by a power user whose workload we assume can
exploit only up to three of the integrated accelerators. We
first study the case of a single active accelerator, and then
consider the worst case of three accelerators being on the
same logical bank; this results in the loss of 8 ways out of
the 12 ways that are assigned to a logical bank.

Single Active Accelerator. Figure 11 shows the im-
provements in performance and energy efficiency over the
baseline system for 6MB Roca with one of the 128K ac-
celerators switching between acceleration and caching. The
activity rate of this Roca bank shows negligible impact on
performance and energy efficiency. Only the workloads with
large MPKIs are sensitive to the slight L2 capacity reduction
caused by the intermittent loss of a single Roca bank.

Three Same-Logical-Bank Active Accelerators. Fig-
ure 12 shows the performance and energy efficiency improve-
ments over the baseline for this scenario. We observe that
the difference between the worst case (100% activity) and
best case (no accelerators active) is small. This is due to
the presence of 4 local ways in the Roca host banks; having
one eighth of the address space only cached by 4 LLC ways
does not greatly impact these workloads. Frequent accel-
erator use (T=0.2ms) has similar impact to 100% activity
in MPKI, performance and energy efficiency since in 0.1ms
caching there is not enough time to make effective use of the
three Roca banks. Less frequent accelerator use (4% activ-
ity, T=2.5ms) yields more positive results across the three
metrics, since the caching window is larger.
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Figure 12: Improvements for 6MB ROCA over 2MB S-
NUCA and characterization of peak number of blocks
flushed vs MPKI (top right), for varying accelerator activity
of 3 accelerators in the same logical bank.

A side effect of a larger caching window is that more dirty
blocks must be flushed to DRAM upon accelerator recla-
mation. This can be seen in the top right plot, where for
each run the peak number of blocks flushed by a single ac-
celerator upon a reclaim is shown against the run’s MPKI
together with their computed linear regression. A larger
caching window thus results in larger peak values. However,
the correlation between peak flushes and MPKI is stronger
as the caching window narrows; the intuition behind this is
that given a large enough window, the Roca bank will be
fully populated regardless of how cache-hungry the work-
load may be. Short windows, on the other hand, are highly
sensitive to the miss rate of the workload: only high-MPKI
workloads are capable of inserting a significant amount of
blocks in the Roca bank.

5.4 Chip-Wide Accelerator Activity
We complete our performance and energy efficiency eval-

uation by studying the impact on caching of intense acceler-
ator activity across the chip. In this scenario, representative
of a high-performance embedded system, the 24 accelerators
switch in unison between caching and acceleration.

Figure 13 shows the MPKI, performance and energy effi-
ciency improvements for this configuration. The worst case
for caching (100% activity for the 24 accelerators) remains
on average close to the baseline: 0.8% and 4% average per-
formance and efficiency degradation, respectively. This dif-
ference is explained by the even larger (close to 10% on av-
erage) MPKI drop caused by the low associativity (4 ways)
of the Roca host banks, which for cache-sensitive workloads
are outperformed by the equally-sized 16-way baseline cache.

Between zero and full accelerator activity we observe how
critical is the activity period T: a caching window of 10ms
(1% acc. activity) yields performance and energy efficiency
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Figure 13: Improvements for 6MB ROCA over 2MB S-
NUCA and characterization of peak number of blocks
flushed vs MPKI (top right), for varying accelerator activity
of all (24) accelerators.

within—respectively—10% and 20% of that without accel-
erator activity. The higher energy overhead is due to the
flushing of blocks upon accelerator reclamation.

A shorter caching window (T=2.5ms) results on average in
less than half the zero-activity gains in performance and neg-
ligible gains in energy efficiency over the baseline. Moreover,
it leads to the highest peak number of flushes (330) upon ac-
celerator reclamation observed over all simulations. An even
shorter caching window (T=1ms) is hardly an improvement
over the full-activity scenario: performance is similar to that
of the baseline, yet energy efficiency is 2% below.

5.5 Summary of Results
Our results show that accelerators that are not used fre-

quently (i.e. with idle windows of 10ms or longer) are prime
candidates for Roca. The average performance and en-
ergy efficiency improvements obtained from them for non-
accelerated workloads are, respectively, 70% and 68% of
those from regular cache banks of the same area, while pro-
viding orders-of-magnitude improvements for workloads suit-
able for acceleration. Furthermore, our results show the im-
portance of allocating a certain portion of the Roca LLC
to host banks (e.g. 2MB out of 6MB in our study) in or-
der to limit performance and efficiency degradation for non-
accelerated workloads when most accelerators are active.

Not all memory-rich accelerators are suitable for Roca,
however. An exception to this recommendation are acceler-
ators with rigorous real-time constraints, with deadlines in
the order of microseconds; the delay to flush dirty blocks
to DRAM when the accelerator is reclaimed from Roca
could compromise the meeting of such deadlines. For ex-
ample, flushing 330 64-byte blocks, assuming a sufficiently
buffered DRAM controller and 128b NoC flit length, would
take around 10560 cycles, i.e. 10.5us at a 1GHz clock rate.



6. ADDITIONAL RELATED WORK
The need for greater heterogeneity as a response to the

end of Dennard scaling [12] was made evident by Venkatesh
et al. [37], who proposed the combination of traditional pro-
cessor cores and energy-efficient specialized cores in the same
die. Heterogeneity, by integrating high-performance acceler-
ators on-chip, has been growing in interest, with work com-
ing from academia [5, 31, 38] and industry [19, 20]. In this
context, the importance of PLMs is confirmed by the amount
of area dedicated to accelerators’ memory [24]; this key role
of PLMs has sparked recent efforts to automate and opti-
mize the design of heavily banked memory subsystems for
accelerators [30].

Decoupling the utility of specialized hardware from par-
ticular workloads has motivated proposals, such as Smart
Memories [25], CHARM [7] and LSSD [29], that attempt to
partially match the performance and energy efficiency gains
of accelerators without giving up programmability. Our ap-
proach differs from theirs in that we relinquish programma-
bility not to compromise on performance or efficiency. With
Roca, accelerator utility is however decoupled from the
workload by augmenting the LLC with the abundant ac-
celerator memories when accelerators would otherwise be
inactive.

An interesting approach that shares Roca’s objective of
reducing the opportunity cost of accelerator integration is
Stash [18], whose goal is to minimize on-chip copies of data
by implementing a hybrid storage element for accelerators,
thereby combining the benefits of both caches and software-
managed scratchpads. Stash differs from Roca in that it
requires changes to the cache coherence protocol, and sim-
ilarly to the proposals discussed in Section 2 (i.e. [8, 13,
24]), it is not a good fit as a substitute for high-bandwidth
PLMs, since hiding the additional latency of accessing these
memories would significantly complicate accelerator designs.

Recent NUCA research has put emphasis on trading cache
capacity to reduce hit latency via controlled block placement
and replication, e.g. ASR by Beckmann et al. [3], R-NUCA
by Hardavellas et al. [15], and Locality-Aware Data Repli-
cation by Kurian et al. [21]. These techniques were designed
for always-available, equally-sized banks; extending them to
support the requirements of banks such as the ones com-
ing from Roca accelerators, which are of diverse sizes and
intermittently available, would be valuable future work.

7. CONCLUSION
We have presented Roca, a technique to exploit the abun-

dant private local memories in accelerators to mitigate the
opportunity cost of their integration. Roca enables acceler-
ators to provide utility even when they cannot directly speed
up a workload, by exposing their private local memories to
the cache substrate. Our implementation of Roca is prac-
tical, requiring minimal modifications to both accelerators
and the cache substrate, and incurring a modest area over-
head that is almost entirely due to additional tag storage.

Our results show that, relative to a 2MB S-NUCA LLC, a
6MB Roca LLC built upon typical accelerators (i.e. whose
area is 66% memory) can, on average, realize 70% of the
performance and 68% of the energy efficiency benefits of a
same-area 8MB S-NUCA configuration. Further, our results
suggest that accelerators with windows of inactivity of 10ms
or longer are prime candidates for Roca.
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