

An Analysis of Accelerator
Coupling in Heterogeneous

Architectures

Columbia UniversityColumbia University

Emilio G. Cota
Paolo Mantovani
Giuseppe Di Guglielmo
Luca P. Carloni

DAC'15, San Francisco, CA, USA

Post-Dennard scaling and
fixed power budgets are

driving designs toward
specialization

Accelerators have become become essential
for high-efficiency systems, e.g. SoCs

Generality vs. Efficiency

CPUs

CMPs

Many-cores

Accelerators
(ASICs)

Generality

Energy Efficiency1 10 100 1000

DSPs,
GPGPUs

Specialization

Our Goal

Our goal: to draw observations about
performance, efficiency and programmability
of accelerators with different couplings

Two main options w.r.t. CPUs:
● Tightly-Coupled (TCAs)
● Loosely-Coupled (LCAs)

A major trade-off in accelerator design, since it
determines how memory is accessed

Analysis of Accelerator Couplings

Tightly-Coupled (TCAs)

✔ Nil invocation overhead (via ISA extensions)
✔ No internal storage: direct access to L1 cache
✗ Limited portability: design heavily tied to CPU

a.k.a. “coprocessor model”

Loosely-Coupled (LCAs)

✔ Good design reuse: no CPU-specific knowledge
✗ Fixed set-up costs due to driver invocation and DMA
✔ Freedom to tailor private memories (scratchpads), e.g.

providing different banks, ports, and bit widths
✗ Scratchpads require large area expenses

a.k.a. “SoC-like model”

Loosely-Coupled (LCAs)

✔ Good design reuse: no CPU-specific knowledge
✗ Fixed set-up costs due to driver invocation and DMA
✔ Freedom to tailor private memories (scratchpads), e.g.

providing different banks, ports, and bit widths
✗ Scratchpads require large area expenses

a.k.a. “SoC-like model”

Two flavors:
● LLC-DMA
● DRAM-DMA

Target Applications

[*] http://hpc.pnl.gov/PERFECT

● Seven high-throughput applications from the
PERFECT Benchmark Suite[*]

Accelerator Design

● Used High-Level Synthesis for productivity
● Most effort is on the memory subsystem to

exploit parallelism, i.e. a large number of
operations per clock cycle
– Most accelerator area is therefore memory

Experimental Methodology

● Full-system
simulation running
Linux

● In-order
embedded-like
i386 cores

● Detailed Level-1 and Level-2 cache models
● Accurate DRAM simulation with DRAMSim2

● Latencies from RTL are back-annotated into the
simulator (for TCAs) and SystemC (LCAs)

● LCAs: SystemC accelerator simulation run in parallel
with the simulator, synchronizing every 100 cycles

Heterogeneous System Simulation
Input C code

SystemC

RTL Output

Add special
instructions

High-Level
Synthesis Tool

TCA simulation LCA simulation

Write OS
driver,

add driver
invocations

Experimental Methodology

Speedup over Software

● LLC-DMA LCA > DRAM-DMA LCA > TCA
● Ratio of scratchpad vs. input size matters, e.g. FFT
● DRAM bandwidth bottleneck on accelerators with

communication >> computation, e.g. sort

Performance & Energy

● LLC-DMA LCA > DRAM-DMA LCA > TCA
● Efficiency gap between LCAs due to difference

in off-chip accesses
● LLC pollution study results in paper/poster

Concluding Observations

● Why LCAs > TCAs:
Tailored, many-ported
scratchpads are key to
performance
– L1s cannot provide this

parallelism (at most 2 ports!)

● LCAs best positioned to deliver high throughput
given non-trivial inputs amenable to computation in
bursts
– DRAM bandwidth can limit this potential

● Programming LCAs is not conceptually complex
– Operating Systems have simple, well-defined

interfaces for this

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

