An Analysis of Accelerator Coupling in Heterogeneous Architectures

DAC'15, San Francisco, CA, USA

Emilio G. Cota Paolo Mantovani Giuseppe Di Guglielmo Luca P. Carloni

Columbia University

Generality vs. Efficiency

Accelerators have become become essential for high-efficiency systems, e.g. SoCs

Our Goal Analysis of Accelerator Couplings

A major **trade-off** in accelerator design, since it determines how **memory** is accessed

Our goal: to draw observations about performance, efficiency and programmability of accelerators with different couplings

Two main options w.r.t. CPUs:

- Tightly-Coupled (TCAs)
- Loosely-Coupled (LCAs)

Tightly-Coupled (TCAs) a.k.a. "coprocessor model"

- Nil invocation overhead (via ISA extensions)
- No internal storage: direct access to L1 cache
- Limited portability: design heavily tied to CPU

Loosely-Coupled (LCAs) a.k.a. "SoC-like model"

- Good design reuse: no CPU-specific knowledge
- Fixed set-up costs due to driver invocation and DMA
- Freedom to tailor private memories (scratchpads), e.g. providing different banks, ports, and bit widths
 - Scratchpads require large area expenses

Loosely-Coupled (LCAs) a.k.a. "SoC-like model"

- Good design reuse: no CPU-specific knowledge
- Fixed set-up costs due to driver invocation and DMA
- Freedom to tailor private memories (scratchpads), e.g. providing different banks, ports, and bit widths
 - Scratchpads require large area expenses

Target Applications

 Seven high-throughput applications from the PERFECT Benchmark Suite[*]

	FOOTPRINT		
Application	Ν	Size (bytes)	
AES	5 - 1000	80 - 16K	
FFT	8 - 12	2K - 32K	
FFT-2D	4 - 10	2K - 8M	
Sort	8 - 128	32K - 524K	
Debayer	16 - 1024	512 - 2M	
Lucas Kanade	32 - 512	8K - 2M	
Change Detection	32 - 512	71K - 18M	

[*] http://hpc.pnl.gov/PERFECT

Accelerator Design

	FOOTPRINT		ACCELERATOR	SCRATCHPAD	
Application	Ν	Size (bytes)	Area (um^2)	Area (um^2)	SIZE (bytes)
AES	5 - 1000	80 - 16K	192,792	ATTAL AND A STATE	192
FFT	8 - 12	2K - 32K	337,770	299,605 (88%)	40K
FFT-2D	4 - 10	2K - 8M	146,199	98,273 (67%)	16K
Sort	8 - 128	32K - 524K	302,672	210,636 (69%)	25K
Debayer	16 - 1024	512 - 2M	207,206	196,522 (94%)	32K
Lucas Kanade	32 - 512	8K - 2M	588,001	538,775 (91%)	41K
Change Detection	32 - 512	71K - 18M	189,826	134,954 (71%)	16K
* Small scratchpads	are mapped	on registers.		Shummin .	

Used High-Level Synthesis for productivity

- Most effort is on the memory subsystem to exploit parallelism, i.e. a large number of operations per clock cycle
 - Most accelerator area is therefore memory

Experimental Methodology

- Full-system simulation running Linux
- In-order
 embedded-like
 i386 cores

Cores Execute Latency	2 cores, i386 ISA, 3-stage pipeline, 2 GHz 1 cycle except IMUL=4, IDIV=15, FPADD=5, FPMUL=5, FPDIV=25 [5]
L1 caches	32KB I, 64KB D, 4 ways, 2+2 I/O ports, 1-cycle latency, LRU replacement
L2 cache	4MB, 16 ways, 16 banks, 4 MSHRs, $1+1$ I/O ports, 11-cycle latency, LRU
DRAM	1 Controller, 3.5GB, Micron DDR3 400MHz
Operating System	Linux v2.6.34

- Detailed Level-1 and Level-2 cache models
- Accurate DRAM simulation with DRAMSim2

Experimental Methodology Heterogeneous System Simulation

- Latencies from RTL are back-annotated into the simulator (for TCAs) and SystemC (LCAs)
- LCAs: SystemC accelerator simulation run in parallel with the simulator, synchronizing every 100 cycles

Speedup over Software

- LLC-DMA LCA > DRAM-DMA LCA > TCA
- Ratio of scratchpad vs. input size matters, e.g. FFT
- DRAM bandwidth bottleneck on accelerators with communication >> computation, e.g. sort

Performance & Energy

- LLC-DMA LCA > DRAM-DMA LCA > TCA
- Efficiency gap between LCAs due to difference in off-chip accesses
- LLC pollution study results in paper/poster

Concluding Observations

- LCAs best positioned to deliver high throughput given non-trivial inputs amenable to computation in bursts
 - DRAM bandwidth can limit this potential
- Programming LCAs is not conceptually complex
 - Operating Systems have simple, well-defined interfaces for this
- Why LCAs > TCAs: Tailored, many-ported scratchpads are key to performance
 - L1s cannot provide this parallelism (at most 2 ports!)

