
An Analysis of Accelerator Coupling
in Heterogeneous Architectures

Emilio G. Cota Paolo Mantovani Giuseppe Di Guglielmo Luca P. Carloni
Dept. of Computer Science, Columbia University. New York, NY, USA

{cota,paolo,giuseppe,luca}@cs.columbia.edu

ABSTRACT
Existing research on accelerators has emphasized the perfor-
mance and energy efficiency improvements they can provide,
devoting little attention to practical issues such as acceler-
ator invocation and interaction with other on-chip compo-
nents (e.g. cores, caches). In this paper we present a quan-
titative study that considers these aspects by implementing
seven high-throughput accelerators following three design
models: tight coupling behind a CPU, loose out-of-core cou-
pling with Direct Memory Access (DMA) to the LLC, and
loose out-of-core coupling with DMA to DRAM. A salient
conclusion of our study is that working sets of non-trivial
size are best served by loosely-coupled accelerators that in-
tegrate private memory blocks tailored to their needs.

1. INTRODUCTION
Fixed power budgets and the end of Dennard scaling have

led researchers to embrace accelerators in order to sustain
performance and energy efficiency increases. Originally re-
stricted to Systems-on-Chip (SoCs), growing consensus is
that general-purpose architectures will also evolve follow-
ing an SoC-like model. Thus, research on accelerating im-
portant applications is ongoing [3, 20], and accelerator-rich
architectures are in the horizon [18, 4]. Unfortunately, a
large set of existing research on accelerators has focused on
computational aspects and has disregarded design decisions
with practical implications, such as the model for acceler-
ator invocation from software and the interaction between
accelerators and the components (e.g. general-purpose cores,
caches) surrounding them.

In this paper we attempt to shed some light on these is-
sues by developing seven high-throughput accelerators and
the software to drive them. We designed each accelerator
conforming to three design models: tight coupling behind a
CPU, loose out-of-core coupling with Direct Memory Access
to the Last-Level Cache (hereafter LLC-DMA), and loose
out-of-core coupling with DMA to DRAM (DRAM-DMA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744794

Our experiments on these accelerators induce the follow-
ing observations.

• Private memories are key to performance and energy
efficiency. Accelerator logic is capable of processing
vast amounts of data provided they can be fed at high
throughput. This is hardly achievable attaching accel-
erators to CPU caches; most accelerators can exploit
parallelism in the algorithms they implement and thus
require many-ported memories tailored to their needs.
This makes loosely-coupled accelerators better suited
to high-throughput applications than tightly-coupled
accelerators.

• DRAM bandwidth can quickly become a bottleneck.
Making an accelerator rely on the LLC can help in
certain cases given its higher bandwidth over DRAM.
However, when the working set is of streaming nature,
LLC thrashing occurs and DRAM bandwidth becomes
the dominant bottleneck.

• Cache pollution plays a minor role when comparing
LLC-DMA vs. DRAM-DMA loosely-coupled accelera-
tors. LLC-DMA wins slightly in performance and sig-
nificantly in energy efficiency when the workload can
fit in the LLC. Further, the LLC can mitigate DRAM
saturation under high accelerator activity.

• The runtime overhead of abstracting loosely-coupled
accelerators as just SoC-like devices becomes negligible
once the granularity of the acceleration (i.e. working
set size) becomes non-trivial. Moreover, abstracting
accelerators using device drivers is not conceptually
more complex than the alternatives, such as expanding
the ISA to invoke accelerators tightly-coupled with the
CPU.

In summary, our main contribution is an extensive study
on the design and integration of high-throughput accelera-
tors, with a focus on rarely-treated aspects such as coupling
with the rest of the system and its impact on software. Re-
sults from our experiments can help future designers as well
as increase understanding of existing accelerator implemen-
tations.

2. ACCELERATOR MODELS
Our analysis focuses on configurable, non-programmable

accelerators for high-throughput applications. We study
the implementation of accelerators following three models,
which we present in this section.

http://dx.doi.org/10.1145/2744769.2744794

RF
... D$...

Accelerator Logic
CPU

Figure 1: Tightly-coupled accelerator (TCA) model. The
accelerator shares key resources (register file, MMU and L1)
with the CPU.

Tightly-Coupled Accelerators (TCAs). They con-
sist of one or more specialized hardware functional units
which can accelerate critical portions of an application ker-
nel; for example, the body of an inner loop for an algorithm
or a sequence of trigonometric functions. This type of ac-
celerator is located inside, or very close to, the processing
core [16]. Figure 1 shows a diagram of a TCA integrated in
a CPU core. The core shares key resources with the TCA
(register file, memory-management unit (MMU) and L1 data
cache), and thus stalls until the TCA completes execution.
TCAs do not require internal storage apart from status reg-
isters, since they use the L1 to hold data. L1 misses are
served by the memory hierarchy on behalf of the coupled
CPU. Reorders in the cache are hidden so that the acceler-
ator can exploit multi-ported caches transparently [6].

A strength of TCAs is the nil runtime overhead of their
invocation. In a similar manner to coprocessors, TCAs re-
quire an expansion of the ISA to include special instructions
to manage their operation. This ISA expansion usually per-
colates to software via the compiler or through low-level li-
braries.

From a hardware viewpoint, however, TCAs can pose inte-
gration challenges. First, they further complicate the design
of the CPU. Second, they can pose timing closure challenges,
since it is common to require the TCA logic to meet the
same clock-frequency constraints that are set for the CPU.
Third, they have limited portability across different system
designs, since it is often necessary to adapt the accelerators’
interfaces to CPU-dependent structures.

Loosely-Coupled Accelerators (LCAs). We consider
two options, depending on whether the accelerators are ca-
pable of direct memory access to either the last-level cache
(LLC-DMA) or to DRAM (DRAM-DMA). LCAs are
located outside CPU cores and interact with them through
the on-chip interconnect, as shown in Figure 2. Being out-
of-core affords LCAs a greater area budget than TCAs since
they cannot degrade the processor pipeline’s performance or
the L1 access time. This allows for coarse-grained acceler-
ator logic blocks with complex data paths that implement
and accelerate a complete application kernel, for instance a
Fast-Fourier-Transform or a full image encoding algorithm.

The relaxed area constraint due to being out-of-core allows
LCAs to implement private local memories, also known as
scratchpads [1], which store the input data to be processed,
temporary results, and the output data to be written back
to memory. Crucially, these scratchpads can be tailored to
the accelerator’s specific needs. Given that memories are
usually implemented with static RAM (SRAM) and each
SRAM bank has at most two ports, LCA scratchpads typ-
ically combine several independent SRAM banks to form
multi-ported memories of sizes tailored to the LCA’s needs.
This is a key advantage of LCAs versus TCAs: LCAs can

On-Chip-Interconnect

Accelerator Logic
CPU

I/D$

IRQ

CMD REG

...

STATUS REG

SIZE REG
MODE REG

DMA
controller

Scratchpad

LLCAccelerator
Interface

Figure 2: Loosely-coupled accelerator (LCA) model. The
integrated DMA controller transfers data between the ac-
celerator’s scratchpad and either the LLC or DRAM.

Input

Computation 1

Computation n

...

Output

DMA
read

DMA
write

Scratchpad

Bank0

Bank3 Bank4

Bank5

Bank1 Bank2

Bank6

Figure 3: Typical LCA structure. Aggressive SRAM bank-
ing enables multi-ported memories for computation blocks.

unleash the parallelism inherent in the kernels they accel-
erate by instantiating these tailored many-ported memories,
whereas the granularity of TCA data is at the cache line size
and their parallelism is severely constrained by the unavoid-
ably low number of ports of L1 caches.

Figure 3 shows a typical breakdown of an LCA into four
main components: (1) a DMA input block; (2) one or more
computation blocks that handle data tokens of different sizes;
(3) a DMA output block; and (4) a scratchpad. These blocks
interact by means of control signals and shared memory
banks.

From a system-level perspective, the decoupling of LCA
from the CPU results in greater flexibility than that of the
TCA model. For instance, when the accelerator is running
the CPU is free to run other tasks or be turned off to save
energy. The TCA model, however, requires less effort from
software, since LCAs require software to make sure that
data tokens are available and consistent. This is usually
accomplished with a device driver running in kernel space,
since low-level control of memory is required. Similarly to
the case of a TCA, the user application is responsible for
preparing the data in memory. Unlike TCAs, however, the
application must issue a system call (e.g. read(), write(),
ioctl()) to invoke the corresponding device driver, which
passes the physical addresses of this memory to the LCA’s
DMA controller. Then, once the command to start is issued,
the driver puts the calling thread to sleep until an interrupt
from the accelerator arrives.

From a system integrator viewpoint, LCAs offer better
design-reuse opportunities because their design is mostly in-
dependent from the design of the CPU and the rest of the
system. To couple the LCA with these it is sufficient to have
a thin hardware wrapper that interfaces its configuration
registers and DMA controller with the on-chip interconnect.
Furthermore, provided that the system allows for multiple
clock domains, an LCA doesn’t necessarily need to run at
the same frequency of the CPU, thus simplifying the porting
of the accelerator across different technology processes.

Table 1: Accelerators’ footprint, total area and aggregate scratchpad’s characteristics.

Footprint Accelerator Scratchpad
Application N Size (bytes) Area (um2) Area (um2) Size (bytes)

AES 5 - 1000 80 - 16K 192,792 −∗ 192
FFT 8 - 12 2K - 32K 337,770 299,605 (88%) 40K
FFT-2D 4 - 10 2K - 8M 146,199 98,273 (67%) 16K
Sort 8 - 128 32K - 524K 302,672 210,636 (69%) 25K
Debayer 16 - 1024 512 - 2M 207,206 196,522 (94%) 32K
Lucas Kanade 32 - 512 8K - 2M 588,001 538,775 (91%) 41K
Change Detection 32 - 512 71K - 18M 189,826 134,954 (71%) 16K
∗ Small scratchpads are mapped on registers.

AES

FFT-2D

64-bit
complex
number

N2

N2

Sort
32-bit float number

N

1024

N2

64-bit complex number

FFT
128-bit block256-bit key

N

N

N

Lucas Kanade

32-bit pixel

x 3N

N

frame

16-bit pixel

Change Detection

N

N

training
set

32-bit pixel

N

N

16-bit pixel

Debayer

55

Figure 4: Application memory footprints

3. TARGET APPLICATIONS
For our analysis we designed a custom platform composed

of CPUs, accelerators, user applications and device drivers.
We chose candidates for acceleration from MachSuite [13]
and the PERFECT Benchmark Suite [2]. Out of them we
selected those applications that present interesting memory-
access patterns and are suitable to architectural optimiza-
tions, e.g. ping-pong data buffering (Figure 5), circular
buffering or data caching. We adopted High-Level Synthesis
(HLS) [11] to automatically synthesize the C implementa-
tions from the suites into custom RTL accelerators, which
we then integrated with the CPUs using a virtual (simu-
lated) bus. Section 4 has more details on the full-system
simulation of our platform. In the remainder of this sec-
tion we describe the main challenges in designing the seven
accelerators.

Footprint and scratchpad. Figure 4 depicts the ap-
plications’ input data tokens, highlighting the minimum ad-
dressable element that each algorithm requires. The value N
shown for each application represents which dimensions are
used for parameterizing the corresponding input size. For
example, in AES, N is the number of 128-bit input blocks.

Table 1 reports for all applications the considered N ranges
and their corresponding memory footprint size. This is the
measure of the total number of bytes an application uniquely
addresses as input data. These sizes have been chosen ac-
cording to the size of the adopted LLC (4MB); we thus
cover applications whose footprint is significantly smaller
(AES, FFT and Sort), approximately the same size (De-
bayer and Lucas Kanade) and significantly larger (FFT-2D
and Change Detection) than the LLC.

in3

C3

out3

in5

in0

Main Memory

Main Memory

Main Memory

Main Memory

Main Memory

Main Memory

C1

in1

out1

in2

out2

in4

in2

in0

out0

out0 out1in1

C2 C4

C2

C0

C1C0

clock

Figure 5: Ping-pong data buffering (below) improves
throughput over single buffering (above) by overlapping in
time computation and communication.

We performed logic synthesis and preliminary place and
route using a 32nm SOI CMOS technology. Reported in Ta-
ble 1 are the accelerators’ total area, as well as the area and
size aggregates of the scratchpad memories they integrate.
Note that for most accelerators the aggregate scratchpad
size is of the same order of magnitude as the CPU’s L1 data
cache (64 KB).

Architectural choices. We adopted HLS in order to effi-
ciently evaluate multiple implementation alternatives through
Design Space Exploration (DSE). We observe that the de-
sign of the scratchpad largely determines the resulting design
space: on one side we had to define the communication be-
tween the accelerator, its local-memory subsystem and the
off-chip memory; on the other, in the design of the accelera-
tors we had to make several micro-architectural choices and
these are directly correlated with the scratchpad architec-
ture, e.g. number of ports and banks. Let us consider some
examples.

As shown in Section 2 the accelerator model consists of
concurrent hardware modules with a local-memory subsys-
tem. The model can overlap I/O with computation. This
provides the designer with a significant degree of optimiza-
tion at architecture level.

Example 1. In order to achieve high throughput, we

adopted ping-pong data buffering to implement the

data transfer among the off-chip main memory and

the accelerator scratchpad. Image-processing appli-

cations (e.g. Debayer and Change Detection) that

are of streaming nature significantly benefit from this

solution. 2

HLS offers a rich set of knobs for the RTL design opti-
mization, e.g. for manipulating loops, pipelining portion of
a design, inserting states, implementing array as memories
or registers etc.

#define PAD 2
#define NUM_ROWS 1024
#define NUM_COLS 1024

uint16_t bayer[NUM_ROW][NUM_COLS]; // input img
uint16_t debayer[NUM_ROW-PAD][NUM_COLS-PAD]; // output img

// interpolate green value for pixels on even row and column
ROW_LOOP: for (row = PAD; row < NUM_ROWS-PAD; row += 2)
{
COL_LOOP: for (col = PAD; col < NUM_COLS-PAD; col += 2)
{
u16 pos =

2*bayer[row-1][col] + 2*bayer[row][col-1] +
4*bayer[row][col] +
2*bayer[row][col+1] + 2*bayer[row+1][col];

u16 neg =
bayer[row][col+2] + bayer[row-2][col] +
bayer[row][col-2] + bayer[row+2][col];

debayer[row-PAD][col-PAD].green = ((pos - neg) >> 3);
}

}
Figure 6: Design space exploration

Example 2. Figure 6 reports a portion of synthesiz-
able C code of the Debayer application. This esti-
mates via interpolation non-sampled values of red,
green, and blue of a given image. In particular, the
code applies an interpolation mask to estimate values
of green for an image stored in the two-dimensional
array bayer. A first micro-architectural choice is
to allocate the arrays bayer and debayer as mem-
ories rather than flattening them as registers: the
use of registers produces very fast but excessively
large hardware. A second micro-architectural choice
targets the loops of the application. Combinational
loops cannot be implemented in hardware: they must
be either broken or unrolled, and choosing between
these options is an area vs. performance trade-off.

An important constraint is the scheduling of memory

accesses. For instance, the loop COL_LOOP contains

read and write operations on the memory-allocated

arrays bayer and debayer. Unrolling such loop gener-

ates an implementation with multiple read and write

memory operations per clock cycle, therefore improv-

ing performance. This however reduces the ability to

schedule the design, given that the number of avail-

able memory ports is heavily vendor and technology

dependent. 2

In summary, we observe that accelerator design effort is
usually concentrated on (1) the accelerator memory subsys-
tem, which is responsible for most accelerator area, and (2)
how to efficiently bring data in and out of accelerators.

4. EXPERIMENTAL METHODOLOGY
Simulated System. We conduct full-system simulation

running Linux under an i386 simulator based on Qsim [9].
We model a one-issue in-order core with a 3-stage (Fetch
+ Decode, Execute, Memory + Writeback) pipeline and a
2-level cache hierarchy. The last-level cache is connected to
a memory controller modeled by DRAMSim2 [14]. Table 2
summarizes the system’s parameters.

Energy consumption is modeled by combining our perfor-
mance numbers with power models. We use McPAT1.0 [10]
for modeling core/directory/L1 power, CACTI6.5 [12] to ob-
tain power/latency numbers for sequential-access low-leakage
L2 cache banks, and approximate DRAM power by assign-
ing 2.78W to background power and 51nJ per access for a
single DIMM as done by Sampson and Wenisch in [15].

Cores 2 cores, i386 ISA, 3-stage pipeline, 2 GHz

Execute
Latency

1 cycle except IMUL=4, IDIV=15,
FPADD=5, FPMUL=5, FPDIV=25 [5]

L1 caches
32KB I, 64KB D, 4 ways, 2+2 I/O ports,
1-cycle latency, LRU replacement

L2 cache
4MB, 16 ways, 16 banks, 4 MSHRs, 1+1
I/O ports, 11-cycle latency, LRU

DRAM
1 Controller, 3.5GB, Micron DDR3
400MHz

Operating
System

Linux v2.6.34

Table 2: System configuration for experimental results

Simulated Accelerators. We simulate TCAs by substi-
tuting the applications’ core kernel code with special code
blocks that contain latencies back-annotated from the RTL
implementation of the accelerators’ computation blocks. Our
simulator recognizes these special code blocks and freezes the
CPU pipeline for the latency specified in each block. Addi-
tional latency is appropriately added to the freeze if within
a block the modeled accelerator performs memory accesses
that miss in the L1 data cache.

LCAs are simulated by attaching back-annotated SystemC
accelerator code to our event-driven simulation engine. We
synchronize the system’s event queue with SystemC’s event
queue every 100 cycles—this results in a minimal event skew
and provides significant gains in simulation time. LCA in-
terrupt latency is set to 2000 CPU cycles, which is commen-
surate with current Inter-Processor Interrupt (IPI) laten-
cies. DRAM-DMA LCAs are fed from noncacheable mem-
ory buffers.

5. EXPERIMENTAL RESULTS
Performance. Figure 7 reports the speedup for all ac-

celerators over a software implementation running on a sim-
ulated CPU core. The reported speedup is on average much
greater for LCAs than for TCAs. TCAs only outperform
LCAs when the input size is small (i.e. fits in a CPU cache
line), which is due to the fixed cost in setting up LCA
accelerators—i.e. system call latency, I/O access latency and
interrupt latency. TCAs outperform LCAs for small in-
puts of AES and FFT. Note however that in these cases
the speedup over software is not significant (less than 2x),
the reason being that given the small inputs there is not
much computation to do.

Moving to larger input sizes greatly improves performance
for LCAs. In these scenarios the fixed cost of operating
LCAs is amortized by the significant computation through-
put they can sustain thanks to their tailored scratchpads.
However, two causes can limit LCA performance.

First, the limited size of the scratchpad may force the algo-
rithm to abandon ping-pong data buffering when dependent
data chunks outsize the available scratchpad. An example
of this is the FFT: note the drop in performance at N = 11,
where the accelerator is forced to alternate between com-
munication and computation. Second, the high throughput
that the accelerator can sustain may not be sustainable by
DRAM. This leads to a flattening of the speedup with in-
creases in input size. Clear examples of this effect are Sort
(flattening above 30X) and FFT-2D (5X).

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

S
p
ee
d
u
p

Input Parameter N

(a) AES (tiny inputs)

0

5

10

15

20

25

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

S
p
ee
d
u
p

Input Parameter N

(b) AES

1

1.5

2

2.5

3

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

S
p
ee
d
u
p

Input Parameter N

(c) Change Detection

1
2
3
4
5
6
7
8
9

10

0 200 400 600 800 1000 1200

S
p
ee
d
u
p

Input Parameter N

(d) Debayer

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
ee
d
u
p

Input Parameter N

(e) FFT

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

S
p
ee
d
u
p

Input Parameter N

(f) FFT-2D

0

50

100

150

200

250

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

S
p
ee
d
u
p

Input Parameter N

(g) Lucas-Kanade

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

S
p
ee
d
u
p

Input Parameter N

LLC-DMA LCA
DRAM-DMA LCA

TCA

(h) Sort

Figure 7: Speedup over software for all accelerators. Input sizes are parameterized as described in Table 1.

0

5

10

15

20

25

0 10 20 30 40 50 60

S
p
ee
d
u
p

Workload

LLC-DMA LCA
DRAM-DMA LCA

TCA

(a) Perf sorted

0

5

10

15

20

25

0 10 20 30 40 50 60

E
n
er
g
y
re
d
u
ct
io
n

Workload

(b) Energy sorted
Figure 8: Energy reduction over software for all workloads

Whether DRAM becomes a bottleneck is ultimately a
function of the kernel to accelerate. If the kernel has a high
ratio of computation over communication, that is, relatively
short data transfers lead to significant calculation, then an
accelerator with a sufficiently large scratchpad can sustain
high throughput. Lucas-Kanade is an example of this: the
speedup for the largest input set reaches 200X over soft-
ware. Increasing speedups with input size can also be seen
for AES, Change Detection and Debayer, but these are less
pronounced due to the lower computation/communication
ratio.

Energy Efficiency. Figure 8 aggregates speedup and en-
ergy reduction results from the experiments shown in Fig-
ure 7 (which total 55 distinct experiments for each coupling
model), sorting them in monotonically increasing order. The
performance gap between the two LCAs and the TCA be-
comes here even more evident than in Figure 7. Further,
the gap in energy reduction between LLC-DMA and DRAM-
DMA LCAs widens with respect to their gap in performance.
The reason is that LLC-DMA accelerators perform less ac-
cesses to off-chip DRAM, which incur in a significant energy
penalty. It is thus clear that on average, performance and
energy improvements are greater with LLC-DMA LCAs.

LLC-DMA vs DRAM-DMA LCAs. A potential
source of concern with regards to LLC-DMA loosely-coupled
accelerators is cache pollution. To measure this effect we
simulate a 2-core system running omnetpp, a SPEC06 bench-
mark that is sensitive to LLC size around 4 MB [7], together
with a program that runs an LCA-accelerated application

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

IP
C
Im

pr
o
ve
m
en
t

Workload

LLC-DMA LCA
DRAM-DMA LCA

(a) All values

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60

IP
C
Im

pr
o
ve
m
en
t

Workload

(b) Zoomed in
Figure 9: omnetpp IPC increase over running in isolation.

in an infinite loop, where each workload and input size is
a unique pair chosen from the aforementioned set of 55 ex-
periments. We fast-forward simulation for 100M cycles of
omnetpp, and then record omnetpp’s Instructions-Per-Clock
IPC over 256M cycles.

Figure 9 shows the resulting IPC improvements for om-
netpp. The improvement is always below 1, i.e. the in-
terference is always detrimental to performance. The left
plot (all values) shows a dramatic performance reduction for
omnetpp when coexisting with certain DRAM-DMA LCAs.
This is explained by the DRAM bottleneck we alluded to
earlier: these accelerators saturate DRAM bandwidth (sort,
FFT-2D) thereby adding extraordinary latency to omnetpp’s
relatively rare LLC misses. LLC-DMA LCAs do not suffer
from such a severe performance degradation due to the me-
diation of the LLC; off-chip accesses to DRAM from the ac-
celerator are thus kept to a minimum, which leaves enough
DRAM bandwidth to ensure moderate LLC miss latencies.

Note that the interference seen for the first 10 DRAM-
DMA workloads is very noticeable, which is partly due to
the fact that we invoke the accelerator in an infinite loop.
More realistic workloads might not necessarily run acceler-
ators in a loop as tight as ours, which would moderate the
performance degradation. However, many-accelerator sys-
tems are likely to encounter scenarios in which several ac-
celerators execute at the same time, which would bring the
bandwidth demands close to those of our experiments. Our
results show that given an adequately sized LLC, LLC-DMA
LCAs are better equipped to mitigate this effect.

6. RELATED WORK
Most work on accelerator research focuses on the perfor-

mance and energy efficiency improvements that accelerators
can provide [18, 3, 20], rarely considering system-level impli-
cations. Interesting examples of the latter are by Kelm and
Lumetta [8] and Cong et al [4], who focus on software sup-
port for loosely-coupled accelerators. Our study is comple-
mentary to their work; we study a wider range of accelerator
models and a wider set of applications, while also evaluating
the memory-hierarchy interference that results from having
high-throughput accelerators share the die with memory-
intensive software.

Vo et al make an interesting case for OS-friendly accelera-
tors [19]. Our approach differs from theirs in that the appli-
cations we consider show little benefit from tightly-coupled
acceleration since many-ported tailored memories are neces-
sary to sustain high-throughput. Further, our results show
that the software model for device management prevalent in
SoCs is directly applicable to these high-throughput accel-
erators. Stuecheli et al [17] attach accelerators to the PCIe
bus using a cache that is coherent with other CPUs in the
system, thereby removing the need for device drivers. This
is a promising approach for workloads that (1) must be ac-
celerated off-chip, e.g. due to prohibitive area requirements
or need for reconfigurability (e.g. on FPGA), and (2) require
frequent communication with general-purpose cores.

7. CONCLUSIONS AND FUTURE WORK
Summary. This paper considers system integration as

well as programming issues inherent in different accelerator
models. We performed a quantitative comparison of three
such models, tight coupling behind a CPU, loose out-of-
core coupling with DMA to the LLC, and loose out-of-core
coupling with DMA to DRAM. Our experiments on these
accelerators induce a set of observations that can help future
designers and increase understanding of existing designs.

Observations. From our quantitative study we observe
the key role of private memory blocks in high-performance
acceleration. Loosely-coupled accelerators can leverage these
blocks by tailoring SRAM banks to the needs of their com-
putation blocks; the resulting multi-ported memories enable
the exploitation of parallelism inherent in kernels, which is
where the potential for performance and energy efficiency
improvements lies. This potential might not be realized if
the application requires excessive DRAM bandwidth or is
not amenable to sustained computational bursts that fit in
the accelerator’s scratchpad. Equipping accelerators with
direct memory access to the LLC can mitigate this in some
cases, which also reduces the risk of DRAM bandwidth sat-
uration. With regards to software, abstracting these high-
throughput loosely-coupled accelerators using device drivers
similar to those for SoC on-chip devices shows to be a low-
complexity and efficient approach.

Limitations and Future Work. There are potentially
as many accelerators as applications in existence. Therefore
we cannot claim that our observations apply to every appli-
cation imaginable. We instead restrict our scope to high-
throughput applications that (1) have clear memory access
patterns and have input sizes large enough to make vector
processing impractical and (2) are irregular enough to not
map well into GPUs; an exception to this is the FFT, which
we chose for its popularity.

Valuable future work would be to focus on reducing the
impact of limited memory bandwidth and latency while scal-
ing the system to a many-accelerator architecture, consider-
ing additional workloads and accelerator models.

Acknowledgments.
This work is partially supported by the DARPA PERFECT pro-

gram (C#: HR0011-13-C-0003), the NSF (A#: 1219001), and by C-
FAR (C#: 2013-MA-2384), one of the six SRC STARnet centers.

8. REFERENCES
[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and

P. Marwedel. Scratchpad Memory: Design Alternative for
Cache On-chip Memory in Embedded Systems. In Proc. of
CODES+ISSS, pages 73–78, 2002.

[2] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa,
A. Hoisie, D. Kerbyson, J. Manzano, A. Marquez, L. Song,
N. Tallent, and A. Tumeo. PERFECT Benchmark Suite
Manual. Pacific Northwest National Laboratory and Georgia
Tech Research Institute, 2013.

[3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam. DianNao: a Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-Learning. In Proc. of
ASPLOS, pages 269–284, 2014.

[4] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and
G. Reinman. Architecture Support for Accelerator-rich CMPs.
In Proc. of DAC, pages 843–849, 2012.

[5] A. Fog. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs. Copenhagen University College of
Engineering, 2011.

[6] J. Huang, Y. Huang, O. Temam, P. Ienne, Y. Chen, and C. Wu.
A Low-cost Memory Interface for High-throughput
Accelerators. In Proc. of CASES, pages 11:1–11:10, 2014.

[7] A. Jaleel. Memory Characterization of Workloads Using
Instrumentation-Driven Simulation. Web Copy, 2010.

[8] J. H. Kelm and S. S. Lumetta. HybridOS: Runtime Support for
Reconfigurable Accelerators. In Proc. of FPGA, pages 212–221,
2008.

[9] C. D. Kersey, A. Rodrigues, and S. Yalamanchili. A Universal
Parallel Front-End for Execution Driven Microarchitecture
Simulation. In Proc. of RAPIDO, pages 25–32, 2012.

[10] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: an Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures. In Proc. of MICRO, pages 469–480, 2009.

[11] G. Martin and G. Smith. High-Level Synthesis: Past, Present,
and Future. IEEE Design & Test of Computers, 26(4):18–25,
2009.

[12] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing NUCA Organizations and Wiring Alternatives for
Large Caches with CACTI 6.0. In Proc. of MICRO, 2007.

[13] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks.
MachSuite: Benchmarks for Accelerator Design and
Customized Architectures. 2014.

[14] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A
Cycle Accurate Memory System Simulator. Computer
Architecture Letters, 10(1):16 –19, jan.-june 2011.

[15] R. Sampson and T. F. Wenisch. ZCache Skew-ered. In Proc. of
WDDD, 2011.

[16] S. Srinivasan, L. Zhao, R. Illikkal, and R. Iyer. Efficient
interaction between os and architecture in heterogeneous
platforms. ACM SIGOPS Operating Systems Review,
45(1):62–72, 2011.

[17] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. CAPI: A
Coherent Accelerator Processor Interface. IBM Journal of
Research and Development, 59(1):7–1, 2015.

[18] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
Cores: Reducing the Energy of Mature Computations. In Proc.
of ASPLOS, pages 205–218, 2010.

[19] H. Vo, Y. Lee, A. Waterman, and K. Asanovic. A Case for
OS-Friendly Hardware Accelerators. In Proc. of WIVOSCA,
2013.

[20] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross.
Q100: the Architecture and Design of a Database Processing
Unit. In Proc. of ASPLOS, pages 255–268, 2014.

	Introduction
	Accelerator Models
	Target Applications
	Experimental Methodology
	Experimental Results
	Related Work
	Conclusions and Future Work
	References

