
Cross-ISA Machine
Emulation for
Multicores

Emilio G. Cota
Paolo Bonzini

Alex Bennée
Luca P. Carloni

Columbia University
Red Hat, Inc.
Linaro, Ltd.
Columbia University

CGO 2017
Austin, TX

1

Demand for Scalable Cross-ISA Emulation

Increasing core counts for emulation guests (typically
high-perf SoC's)

Hosts (servers) are already many-core
ISA diversity is here to stay

e.g. x86, ARM/aarch64, POWER, RISC-V

our goal: efficient, correct, multicore-on-
multicore cross-ISA emulation

2 . 1

Scalable Cross-ISA Emulation

(1) Scalability of the DBT engine

(2) ISA disparities between guest & host:

[14] J. H. Ding et al. PQEMU: A parallel system emulator based on QEMU. ICPADS, pages 276–283, 2011
[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388–400, 2015
[33] Z. Wang et al. COREMU: A scalable and portable parallel full-system emulator. PPoPP, pages 213–222, 2011

Challenges

(2.1) Memory consistency mismatches
(2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional

key data structure: translation code cache

Related Work:
PQEMU [14] and COREMU [33] do not address (2)
ArMOR [24] solves (2.1)

Our contributions: (1) & (2.2)

2 . 2

Our Proposal: Pico

Makes QEMU [7] a scalable emulator
Open source: http://qemu-project.org
Widely used in both industry and academia
Supports many ISAs through TCG, its IR:

Our contributions are not QEMU-specific
They are applicable to Dynamic Binary Translators at large

[7] F. Bellard. QEMU, a fast and portable dynamic translator. Usenix ATC, pages 41–46, 2005
2 . 3

Emulator Design

3 . 1

Pico's Architecture

One host thread per guest CPU
Instead of emulating guest CPUs one at a time

Key data structure: Translation Block Cache (or Buffer)
See paper for details on Memory Map & CPU state

3 . 2

Translation Block Cache
Buffers Translation Blocks to minimize retranslation
Shared by all CPUs to minimize code duplication

see [12] for a private vs. shared cache comparison

To scale, we need concurrent code execution
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006 3 . 3

QEMU's Translation Block Cache

Long hash chains: slow lookups
Fixed number of buckets
hash=h(phys_addr) leads to uneven chain lengths

No support for concurrent lookups

Problems in the TB Hash Table:

3 . 4

hash=h(phys_addr, phys_PC, cpu_flags): uniform chain distribution
e.g. longest chain down from 550 to 40 TBs when booting ARM Linux

QHT: A resizable, scalable Hash Table

Pico's Translation Block Cache

3 . 5

TB Hash Table
Fast, concurrent lookups
Low update rate: max 6% booting LinuxRequirements {

3 . 6

TB Hash Table

[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006

Fast, concurrent lookups
Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])

Open addressing: great scalability under ~0% updates
Insertions take a global lock, limiting update scalability

Requirements {

3 . 7

TB Hash Table

[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631–644, 2015

Fast, concurrent lookups
Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])
Candidate #2: CLHT [13]

Resizable + scalable lookups & updates
Wait-free lookups

However, imposes restrictions on the memory allocator

Requirements {

3 . 8

TB Hash Table

[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631–644, 2015

Fast, concurrent lookups
Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])
Candidate #2: CLHT [13]
#3: Our proposal: QHT

Lock-free lookups, but no restrictions on the mem allocator
Per-bucket sequential locks; retries very unlikely

Requirements {

3 . 9

QEMU emulation modes

User-mode emulation (QEMU-user)

DBT of user-space code only
System calls are run natively on the host machine
QEMU executes all translated code under a global lock

Forces serialization to safely emulate multi-threaded code

Full-system emulation (QEMU-system)

Emulates an entire machine
Including guest OS and system devices

QEMU uses a single thread to emulate guest CPUs using DBT
No need for a global lock since no races are possible

3 . 10

Single-threaded perf (x86-on-x86)

Pico-user is 20-90% faster than QEMU-user due to lock-less TB lookups
Pico-system's perf is virtually identical to QEMU-system's

ARM Linux boot results in the paper; Pico-system ~20% faster
3 . 11

Parallel Performance (x86-on-x86)

Speedup normalized over

Native's single-threaded perf

Dashed: Ideal scaling

QEMU-user not shown: does

not scale at all

3 . 12

Parallel Performance (x86-on-x86)

Speedup normalized over

Native's single-threaded perf

Dashed: Ideal scaling

QEMU-user not shown: does

not scale at all

Pico scales better than Native

PARSEC known not to

scale to many cores [31]

DBT slowdown merely

delays scalability collapse

Similar trends for server

workloads (Pico-system vs.

KVM): see paper
[31] G. Southern and J. Renau. Deconstructing PARSEC scalability. WDDD, 2015

3 . 13

Guest & Host
ISA Disparities

4 . 1

Atomic Operations
Two families:

/* runs as a single atomic instruction */
bool CAS(type *ptr, type old, type new) {
 if (*ptr != old) {
 return false;
 }
 ptr = new;
 return true;
}

Compare-and-Swap
(CAS)

Load Locked-Store Conditional
(LL/SC)

/*
 * store_exclusive() returns 1 if addr has
 * been written to since load_exclusive()
 */
do {
 val = load_exclusive(addr);
 val += 1; /* do something */
} while (store_exclusive(addr, val);

ldl_l/stl_c
lwarx/stwcx
ldrex/strex

ldaxr/strlxr
ll/sc
lr/sc

Challenge: How to correctly emulate atomics in a
parallel environment, without hurting scalability?

Alpha:
POWER:
ARM:
aarch64:
MIPS:
RISC-V:

x86/IA-64: cmpxchg

4 . 2

CAS on CAS host: Trivial

CAS on LL/SC: Trivial

LL/SC on LL/SC: Not trivial
Cannot safely leverage the host's LL/SC: operations
allowed between LL and SC pairs are limited

LL/SC on CAS: Not trivial
LL/SC is stronger than CAS: ABA problem

Challenge: How to correctly emulate atomics in a
parallel environment, without hurting scalability?

4 . 3

ABA Problem

cpu0 cpu1

do {
 val = atomic_read(addr); /* reads A */
 ...
 ...
} while (CAS(addr, val, newval);

atomic_set(addr, B);
atomic_set(addr, A);

tim
e

cpu0 cpu1

do {
 val = load_exclusive(addr); /* reads A */
 ...
 ...
} while (store_exclusive(addr, newval);

atomic_set(addr, B);
atomic_set(addr, A);

Init: *addr = A;

SC fails, regardless of the contents of *addr

CAS succeeds where SC failed!

tim
e

4 . 4

Pico's Emulation of Atomics
3 proposed options:

1. Pico-CAS: pretend ABA isn't an issue

Scalable & fast, yet incorrect due to ABA!
However, portable code relies on CAS only, not on
LL/SC (e.g. Linux kernel, gcc atomics)

2. Pico-ST: "store tracking"

Correct & scalable
Perf penalty due to instrumenting regular stores

3. Pico-HTM: Leverages HTM extensions

Correct & scalable
No need to instrument regular stores

But requires hardware support
4 . 5

Pico-ST: Store Tracking
Each address accessed atomically gets an entry of CPU set + lock

LL/SC emulation code operates on the CPU set atomically
Keep entries in a HT indexed by address of atomic access
Problem: regular stores must abort conflicting LL/SC pairs!
Solution: instrument stores to check whether the address has
ever been accessed atomically

If so (rare), take the appropriate lock and clear the CPU set
Optimization: Atomics << regular stores: filter HT accesses with a
sparse bitmap

4 . 6

Pico-HTM: Leveraging HTM
HTM available on recent POWER, s390 and x86_64 machines
Wrap the emulation of code between LL/SC in a transaction

Conflicting regular stores dealt with thanks to the strong
atomicity [9] in all commercial HTM implementations: "A regular
store forces all conflicting transactions to abort."

[9] C. Blundell, E. C. Lewis, and M. M. Martin. Subtleties of transactional memory atomicity semantics. Computer Architecture Letters, 5(2), 2006.

Fallback: Emulate the LL/SC sequence with all other CPUs stopped
Fun fact: no emulated SC ever reports failure!

4 . 7

Atomic emulation perf
Pico-user, single thread, aarch64-on-x86

Pico-CAS & HTM: no overhead (but only HTM is correct)
Pico-ST: Virtually all overhead comes from instrumenting stores
Pico-ST-nobm: highlights the benefits of the bitmap

4 . 8

Atomic emulation perf
Pico-user atomic_add, multi-threaded, aarch64-on-POWER

atomic_add microbenchmark

All threads perform atomic increments in a loop
No false sharing: each count resides in a separate cache line
Contention set by the n_elements parameter

i.e. if n_elements = 1, all threads contend for the same line
Scheduler policy: evenly scatter threads across cores

struct count {
 u64 val;
} __aligned(64); /* avoid false sharing */

struct count *counts;

while (!test_stop) {
 int index = rand() % n_elements;
 atomic_increment(&counts[index].val);
}

4 . 9

Atomic emulation perf
Pico-user atomic_add, multi-threaded, aarch64-on-POWER

Trade-off: correctness vs. scalability vs. portability

All Pico options scale as contention is reduced
QEMU cannot scale: it stops all other CPUs on every atomic

Pico-CAS is the fastest, yet is not correct
Pico-HTM performs well, but requires hardware support
Pico-ST scales, but it is slowed down by store instrumentation
HTM noise: probably due to optimized same-core SMT
transactions 4 . 10

Contributions:

Scalable DBT design with a shared code cache
Scalable, correct cross-ISA emulation of atomics

Wrap-Up

5 . 1

QEMU Integration

QEMU v2.7 includes our improved hashing + QHT
QEMU v2.8 includes:

atomic instruction emulation
Support for parallel user-space emulation

Under review for v2.9: parallel full-system emulation

Wrap-Up
Contributions:

Scalable DBT design with a shared code cache
Scalable, correct cross-ISA emulation of atomics

5 . 2

Thank you
5 . 3

Backup Slides

6 . 1

Linux boot
single thread

QHT & ck_hs resize to always achieve the best perf
but ck_hs does not scale w/ ~6% update rates

6 . 2

 Server Workloads (x86-on-x86)

Server workloads have higher code footprint [12] and therefore stress
the TB cache
PostgreSQL: Pico's scalability is inline with KVM's
Masstree [25], an in-memory Key-Value store, scales better in Pico

Again, the DBT slowdown delays cache contention

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006
[25] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value storage. EuroSys, pages 183–196, 2012

6 . 3

Memory Consistency
x86-on-POWER

We applied ArMOR's [24] FSMs:

SYNC: Insert a full barrier
before every load or store
PowerA: Separate loads
with lwsync, pretending that
POWER is multi-copy atomic

, and also leveraged

SAO: Strong Access
Ordering

[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388–400, 2015

6 . 4

Read-Copy-Update (RCU)

RCU is a way of waiting for things to finish,
without tracking every one of them

Credit: Paul McKenney

6 . 5

Sequence Locks
void *qht_lookup__slowpath(struct qht_bucket *b, qht_lookup_func_t func,
 const void *userp, uint32_t hash)
{
 unsigned int version;
 void *ret;

 do {
 version = seqlock_read_begin(&b->sequence);
 ret = qht_do_lookup(b, func, userp, hash);
 } while (seqlock_read_retry(&b->sequence, version));
 return ret;
}

Reader

Writer

seq=0 seq=3

seq=1 seq=2

seq=3

Retry

Reader: Sequence number must be even, and must remain unaltered. Otherwise, retry

seq=3 seq=4

RetryRetry
seq=4

6 . 6

seq=4

CLHT malloc requirement
val_t val = atomic_read(&bucket->val[i]);
smp_rmb();
if (atomic_read(&bucket->key [i]) == key && atomic_read(&bucket->val[i]) == val) {
 /* found */
}

6 . 7

“ the memory allocator of the values must guarantee that the
same address cannot appear twice during the lifespan of an

operation.
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures.

ASPLOS, pages 631–644, 2015

Multi-copy Atomicity
iriw litmus test

cpu0 cpu1 cpu2 cpu3
x=1 y=1 r1=x

r2=y
r3=y
r4=x

Forbidden outcome: r1 = r3 = 1, r2 = r4 = 0
The outcome is forbidden on x86
It is observable on POWER unless the loads are
separated by a sync instruction

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model.
ACM SIGPLAN Notices, volume 43, pages 68–78, 2008.

6 . 8

