Cross-ISA Machine
Emulation for

Emilio G. Cota
Paolo Bonzini
Alex Bennée
Luca P. Carloni

Multicores

Columbia University
Red Hat, Inc.

Linaro, Ltd.
Columbia University

CGO 2017
Austin, TX

Demand for Scalable Cross-ISA Emulation

w : v %
N2/, N R v Vs
PN Y4 / Iy D &/ > D 4

¢ Increasing core counts for emulation guests (typically
high-perf SoC's)
= Hosts (servers) are already many-core
e ISA diversity is here to stay
= e.g x86, ARM/aarch64, POWER, RISC-V

our goal: efficient, correct, multicore-on-
multicore cross-ISA emulation

Scalable Cross-ISA Emulation

Challenges

(1) Scalability of the DBT engine

key data structure: translation code cache

(2) ISA disparities between guest & host:
(2.1) Memory consistency mismatches
(2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional

Related Work:

e PQEMU [14] and COREMU [33] do not address (2)
e ArMOR [24] solves (2.1)

Our contributions: (1) & (2.2)

[14]). H. Ding et al. PQEMU: A parallel system emulator based on QEMU. ICPADS, pages 276-283, 2011
[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388-400, 2015
[33] Z. Wang et al. COREMU: A scalable and portable parallel full-system emulator. PPoPP, pages 213-222, 2011

Our Proposal: Pico
Makes QEMU [7] a scalable emulator

Open source: http://gemu-project.org
Widely used in both industry and academia
Supports many ISAs through TCG, its IR:

Alpha
guest code

MIPS
guest code

aarch64
guest code

Alpha
frontend

MIPS

'\ Y/

frontend

aarch64
frontend

\

TCG
Ops

TCG
Optimizer

PowerPC
backend

'\

backend

/

v
=
S

x86
host code

SPARC
host code

Our contributions are not QeMU-specific
They are applicable to Dynamic Binary Translators at large

[7] F. Bellard. QEMU, a fast and portable dynamic translator. Usenix ATC, pages 41-46, 2005

2.

Emulator Design

Pico's Architecture

cPuo| |cpPu1 CPUn| | Devices :
f Timer| Disk |... | Serial
e S I o
Host | ' ' N4
vCPUO| |vCPU1 vCPUn /O
thread thread | - | thread thread

Shared data

Translation
Block Buffer Memory Map RAM Buffer

e One host thread per guest CPU
= |nstead of emulating guest CPUs one at a time

e Key data structure: Translation Block Cache (or Buffer)
= See paper for details on Memory Map & CPU state

Translation Block Cache

e Buffers Translation Blocks to minimize retranslation
e Shared by all CPUs to minimize code duplication

m see [12] for a private vs. shared cache comparison

vCPUO
thread

translated block

vCPU1
thread

el translated block

thread

translated block

vCPUn
thread

To scale, we need concurrent code execution

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006

3.

3

QEMU's Translation Block Cache

PCL_| TB jmp cache .| TB Hash Table
> >
vCPU A A ?

Translation Block Cache

|
J\ (T

translated block |«——

() (U
| |
[|
(e (s
N [

translated block |
vl

i

T

Problems in the TB Hash Table:
® Long hash chains: slow lookups

——— P |PC, phys-PC, flags|next

= Fixed number of buckets
= hash=h(phys_addr) leads to uneven chain lengths
e No support for concurrent lookups

Pico's Translation Block Cache

-]

pcl_ | TB jmp cache Q

\\> > e
vCPU| | = = i

yes

Translation Block Cache

[
(al

AR AR R A R A A

YL g by Gy dd by

translated block

4\\'11111'111"111'1111

lock|seq|D|D Dg# 4P next

g / gt Lol

translated block
| | P |PC, phys-PC, flags

e hash=h(phys_addr, phys_PC, cpu_flags). uniform chain distribution
m e.g. longest chain down from 550 to 40 TBs when booting ARM Linux
e QHT: A resizable, scalable Hash Table

TB Hash Table

Requirements {

Fast, concurrent lookups
Low update rate: max 6% booting Linux

3.

6

TB Hash Table

Fast, concurrent lookups
Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])

e Open addressing: great scalability under ~0% updates
® |nsertions take a global lock, limiting update scalability

Requirements {

200K keys, 0 % updates 200K keys, 1 % updates

450 T T T T T T T T 45
=400 |- . =40
~~ ~
u8»350—9 ./ 8351
= s0f ;L%]
=0 7 = 5 |
3 200 - 1 325
150 | 20T
3 100 e == S 15
= 50| F10F

0 5 '

1 8 16 24 32 40 48 56 64 1 8 16 24 32 40 48 56 64
Threads Threads

[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006

.7

TB Hash Table

Fast, concurrent lookups
Low update rate: max 6% booting Linux

i 41+ ekhsFHHsimH ZEN
Candidate #2: CLHT [13]

e Resizable + scalable lookups & updates
e Wait-free lookups

m However, imposes restrictions on the memory allocator

Requirements {

200K keys, 0 % updates 200K keys, 1 % updates 160 200K keys, 100 % updates

450 T T T T T T T T T
400
~

é_v 350
2 300
=250
3 200
150
=}
_::9 100
— 50
0

| | | | | | | | | | | | | | | 1
1 8 16 24 32 40 48 56 64 1 8 16 24 32 40 48 56 64 01816243240485664
Threads Threads Threads
[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631-644, 2015 3.8

TB Hash Table

Fast, concurrent lookups
Low update rate: max 6% booting Linux

ST 41+ ekhsFHHsimH ZEN
#3: Our proposal: QHT

e [ock-free lookups, but no restrictions on the mem allocator
= Per-bucket sequential locks; retries very unlikely

Requirements {

200K keys, 0 % updates 200K keys, 1 % updates 200K keys, 100 % updates
450 T T T T T T T T T 350 T T T T T T T T T 160 T T T T T T T T
400 - 12300] |
2350 9—g 19 i
°300—8—./— 1920
= = s
=250 7L - :/200 - . |
2 200 - 1 12150} .
= = -
el gy 5 |Em) - -
2 CLHT —e— 1% .| | i
~ 50 ck.hs —@— H{F
0 | | | | | | | | O | | | | | | | 1
1 8 16 24 32 40 48 56 64 1 8 16 24 32 40 48 56 64 1 8 16 24 32 40 48 56
Threads Threads Threads

[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631-644, 2015 3.9

QEMU emulation modes

User-mode emulation (QEMU-user)

DBT of user-space code only
System calls are run natively on the host machine
QEMU executes all translated code under a global lock

m Forces serialization to safely emulate multi-threaded code

Full-system emulation (QEMU-system)

Emulates an entire machine
® [ncluding guest OS and system devices

QEMU uses a single thread to emulate guest CPUs using DBT
= No need for a global lock since no races are possible

.10

.1

| | |
X X X
& = &
— (@)

NINTO 49n0 dnpaadg

—
o0 o
x T T T T T 1 %nep
i 7 - S
c . DI ¢
N A S S ()
c o 2277 R
2 MMM &
S S N B B
(o 5o I
0 =t SN £
7 .
o0 T 1 &S v
. 172222227 Y S\ iy
%ﬁ/aﬁﬁ///////////\d £ 5 & £ 5 Qmu
x - R 2 >
2 R N\ N
' NN\ e s Pl
S — S5 i < o
F S5 : T Q . 7,
i pf; : N I N LKLKL
' v © N | P < O
0O | NN 5§ [Y ¢
S | wwd s |O @ wrrrd ™
d m N & YRR\ N
2 A~ O | A\
O ° IS S P KL
o r???d S & S —
e NS] o
O s "8 . IO ¢
] < S 0 DT
3 R — . O
M &9 R SIS
" O T R
S — G M
2 & A
- W q o s | o
e R — 77777777 © &
) B e e 7 |] -
I PSS v
D x 5 x x x £
_— 2 T2 v
g NI 49n0 dnpaadg . SRS
(] |

e Pico-user is 20-90% faster than QEMU-user due to lock-less TB lookups
= ARM Linux boot results in the paper; Pico-system ~20% faster

e Pico-system's perf is virtually identical to QEMU-system's

Parallel Performance (x86-o0n-x86)

Native —¢—
e Speedup normalized over
Native's single-threaded perf

Pico-user —m—

e Dashed: Ideal scaling
e QEMU-user not shown: does

not scale at all

Speedup

0.1/ .
swaptions

001 1 1 1 1 1
1 16 32 48 64
Threads

.12

Parallel Performance (x86-o0n-x86)

Pico-user Native —4—

5 100g 3 100¢ —

4 0.1 g

0.01—+ 1+ JdpppL 1.1l
100¢ —— 100¢ 3 100¢
o 0L 1 10 7 10
2 £/ 1 1L 4 1t]
4 1’//*‘/'\»
M o1k 4 0.1L .
i dedup] facesim ferret
01 1 1 1 1 1 001 1 1 1 1 1 001 1 1 1 1 1

100 5 100 —, 100

0_01:| ! ! ! |:0'01:| ! ! ! |_0'01_| ! ! ! 1]

: swaptions 1 E vips .. x264 E
i 1 1 1 1 1 1 i 1 1 1 1 1 1 i 1 1 1 1 1 1
0.0 1 16 32 48 640 0 1 16 32 48 640 0 1 16 32 48 64
hreads Threads Threads

[31] G. Southern and J. Renau. Deconstructing PARSEC scalability. WDDD, 2015

Speedup normalized over
Native's single-threaded perf
Dashed: Ideal scaling
QEMU-user not shown: does
not scale at all

Pico scales better than Native

= PARSEC known not to
scale to many cores [31]

= DBT slowdown merely
delays scalability collapse

Similar trends for server
workloads (Pico-system vs.
KVM): see paper

.13

Guest & Host
ISA Disparities

Atomic Operations

Two families:
Compare-and-Swap Load Locked-Store Conditional
(CAS) (LL/SC)

bool CAS(type *ptr, type old, type new) {
if (*ptr != old) {
return false;
} do {

ptr = new; val = load exclusive(addr);
return true; val += 1;

} } while (store exclusive(addr, val);

x86/IA-64: cmpxchg Alpha: 1d1_1/stl_c
POWER: lwarx/stwex
ARM: ldrex/strex
aarcho4: ldaxr/strlxr
MIPS: 11l fee
RISC-V: 1r/sc

Challenge: How to correctly emulate atomics in a
parallel environment, without hurting scalability?

Challenge: How to correctly emulate atomics in a
parallel environment, without hurting scalability?

CAS on CAS host: Trivial
CAS on LL/SC: Trivial

LL/SC on LL/SC: Not trivial

Cannot safely leverage the host's LL/SC: operations
allowed between LL and SC pairs are limited

LL/SC on CAS: Not trivial
LL/SC is stronger than CAS: ABA problem

4.

3

time

time

ABA Problem

Init; *addr = A;

cpuO

cpui

do {
val = load_exclusive(addr); /* reads A */

} while (store_exclusive(addr, newval);

atomic_set(addr, B);
atomic_set(addr, A);

SC fails, regardless of the contents of *addr

cpu0

cpui

do {
val = atomic_read(addr); /* reads A */

} while (CAS(addr, val, newval);

atomic_set(addr, B);
atomic_set(addr, A);

CAS succeeds where SC failed!

4.

4

Pico's Emulation of Atomics

3 proposed options:
1. Pico-CAS: pretend ABA isn't an issue

e Scalable & fast, yet incorrect due to ABA!

= However, portable code relies on CAS only, not on
LL/SC (e.g. Linux kernel, gcc atomics)

2. Pico-ST: "store tracking"

e Correct & scalable
e Perf penalty due to instrumenting regular stores

3. Pico-HTM: Leverages HTM extensions
e Correct & scalable

e No need to instrument regular stores
= But requires hardware support

Pico-ST: Store Tracking

Each address accessed atomically gets an entry of CPU set + lock
= | |/SC emulation code operates on the CPU set atomically

Keep entries in a HT indexed by address of atomic access
Problem: regular stores must abort conflicting LL/SC pairs!
Solution: instrument stores to check whether the address has
ever been accessed atomically

= |If so (rare), take the appropriate lock and clear the CPU set

Optimization: Atomics << regular stores: filter HT accesses with a
sparse bitmap

@ QHT @ if entry exists, acquire
lock + clear all ongoing
—— LL/SC pairs registered
hit | = hit in the entry’s CPU set
— | ==

YA Ty)T
v

’ spinlock t lock

A
vy

... |set t cpu set

Pico-HTM: Leveraging HTM

e HTM available on recent POWER, s390 and x86_64 machines
e Wrap the emulation of code between LL/SC in a transaction

= Conflicting regular stores dealt with thanks to the strong
atomicity [9] in all commercial HTM implementations: "A regular
store forces all conflicting transactions to abort.”

Guest aarch64 code x86_64 Translation Blocks

str x3, [x19, #16]
str x3, [x29, #152]]

|—» xbeging 0x40062b

mov x1, x3 ..
ldxr x2, [x4] _/ movq (%eax),%rbp
cmp x2, x1

b.ne #+0xc

stixr wo, x19, [x4] ———— | mO\éq %rbp, (%rax)
cbnz w0, #-0x10 xen

e Fallback: Emulate the LL/SC sequence with all other CPUs stopped
e Fun fact: no emulated SC ever reports failure!

[9] C. Blundell, E. C. Lewis, and M. M. Martin. Subtleties of transactional memory atomicity semantics. Computer Architecture Letters, 5(2), 2006.

Atomic emulation perf

X86

SPEC CINT2006

Pico-user, single thread, aarch64-on

2x

.4,4$P,E4C4,C,FPZ.QQ@,4,4..4,4,4..4,4,4..

%/Aﬂ//////////é

///////////,/////,////

AN

IS correct)

no overhead (but only HTM
Virtually all overhead comes from instrumenting stores

e Pico-CAS & HTM

e Pico-ST

highlights the benefits of the bitmap

e Pico-ST-nobm

4.8

Atomic emulation perf

Pico-user atomic_add, multi-threaded, aarch64-on-POWER

struct count {
u6d val;
} aligned(64);

struct count *counts;

while (!test stop) {
int index = rand() % n_elements;
atomic_increment (&counts[index].val);

}

atomic add microbenchmark

e All threads perform atomic increments in a loop
e No false sharing: each count resides in a separate cache line
e Contention set by the n_elements parameter

= j.e.if n_elements =1, all threads contend for the same line
e Scheduler policy: evenly scatter threads across cores

%100 L Pico-CAS
EO 80 " Pico-ST -e-

Atomic emulation perf

Pico-user atomic_add, multi-threaded, aarch64-on-POWER

1 element

= 8 ways/core
Pico-HTM —¢-

1 2 4 8 16 32 6496
Threads

8 elements

1 2 4 8 16 32 6496
Threads

200

1024 elements

4

" [=8 ways/cogel

16 32 6496
Threads

Trade-off: correctness vs. scalability vs. portability

All Pico options scale as contention is reduced
= QEMU cannot scale: it stops all other CPUs on every atomic

Pico-CAS is the fastest, yet is not correct
Pico-HTM performs well, but requires hardware support

Pico-ST scales, but it is slowed down by store instrumentation
HTM noise: probably due to optimized same-core SMT

transactions

.10

Contributions:

e Scalable DBT design with a shared code cache
e Scalable, correct cross-ISA emulation of atomics

Contributions:

e Scalable DBT design with a shared code cache
e Scalable, correct cross-ISA emulation of atomics

QEMU Integration

e QEMU v2.7 includes our improved hashing + QHT
e QEMU v2.8 includes:
® gtomic instruction emulation
m Support for parallel user-space emulation
e Under review for v2.9: parallel full-system emulation

Thank you

Backup Slides

Linux boot

single thread

QEMU (ineffective hashing+MRU)

e sochash-+MRU
xxhash (no MRU) —e—
14 - xxhash+ck_hs (resizable) —¢— -
xxhash+QHT (resizable

[
w
|

1

—
—
|

Bootup+shutdown (s)
Mo
|

e
o

[
o

]
16 17 18 19 20 21
Initial log2 number of buckets

O

—
N
—
o1

e QHT & ck_hs resize to always achieve the best perf
= put ck_hs does not scale w/ ~6% update rates

.2

Server Workloads (x86-o0n-x86)

Speedup over KVM

100

Pico-system

—_—
-_—

3 PostgreSQL

|

W

1 16 32 48
Threads

(o))
>

KVM —¢—

0t -7 J
1 4 :
1L 5
0.1k]
E Masstree 3

001 | | | | |
1 16 32 48 64

Threads

e Server workloads have higher code footprint [12] and therefore stress

the TB cache
e PostgreSQL: Pico's scalability is inline with KVM's

e Masstree [25], an in-memory Key-Value store, scales better in Pico
= Again, the DBT slowdown delays cache contention

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006

[25]Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value storage. EuroSys, pages 183-196, 2012

6.

3

s [24] FSMs
ier

Separate loads
with /wsync, pretending that

ied ArMOR
Insert a full barr
before every load or store

We appl
e SYNC:
e PowerA

PowerA

%
]

x86-on-POWER

, ,,.SPEC.CI.N.TZQQG.,,.H.,,.

uau/////////////////,%//%

Memory Consistency

_ . L1
X X X X X X X
Lt MAN O

UMOPMOI|S

L
-
o)
)
(4]
>
o
o)
D
=R
mm
()]
wnn >
—
Rl
L O
WB
(40
O 5
C
(40

ueawy
ywqoue|ex
wcm.ﬁm
youaq|sad
ddisuwo
Jow
wniuenbqt)
Jswwy
$24y9¢Y
jwqoS3

203

¢dizq

Jejse

Strong Access

e SAO

—

,..S.PEC..C.F.P.200.6...4...4...4,..

7
7
/
/
/
’/’
2
7
?
7

///////A%%%/

\\\\\\\\\\\\\\\\\\\
7//////////////////

H \\\\\\\\\\\\\\\\\
//////7/7/7/////////7//7/7/

W/ /272

\\\\\\\\\\\\\\.\w

|

X X
=
i

UMOPMO|

X
—

0x

x
Lo
o

S

ueswy
dwsnaz
JAMm
03u0}

2 ¢xulyds
xa|dos
Aeanod
pweu
oW
PESI|S9)
wqj
Soewo43
ssowe3
[11€=p
X1|nojed
INQYSnIoed

Sonemq

a.Lrgdswey

[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388-400, 2015

6.4

Read-Copy-Update (RCU)

Reader

Reader

Reader
Reader
Reader
Reader
l Reader -
Grace Period

Grace period
extends as
needed.

Credit: Paul McKenney

RCU is a way of waiting for things to finish,
without tracking every one of them

6.

5

Sequence Locks

void *ght lookup slowpath(struct ght bucket *b, ght lookup func t func,
const void *userp, uint32 t hash)

{

unsigned int version;
void *ret;

do {

version = seqlock read begin(&b->sequence);

ret = ght do lookup(b, func, userp, hash);
} while (seqlock read retry(&b->sequence, version));
return ret;

Reader: Sequence number must be even, and must remain unaltered. Otherwise, retry

seq=0 seq=3 seq=3 seq=4 seq=4

Reader I Retry I Retry |

seq=1 seq=2 seq=3 eq=4

Writer

CLHT malloc requirement

val t val = atomic_read(&bucket->val[i]);
smp_rmb();

if (atomic_read(&bucket->key [1]) == key && atomic_read(&bucket->val[i]) == val) {

}

11 the memory allocator of the values must guarantee that the
same address cannot appear twice during the lifespan of an
operation.

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures.

ASPLOS, pages 631-644, 2015

.7

Multi-copy Atomicity

iriw litmus test

cpu0 cpul cpu2 cpu3
X=1 y=1 r1=x r3=y
r2=y rd=x

e Forbidden outcome:r1=r3=1,r2=r4=0
e The outcome is forbidden on x86
e |t is observable on POWER unless the loads are

separated by a sync instruction

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model.
ACM SIGPLAN Notices, volume 43, pages 68-78, 2008.

