Cross-ISA Machine Emulation for Multicores

Emilio G. Cota Paolo Bonzini Alex Bennée Luca P. Carloni Columbia University Red Hat, Inc. Linaro, Ltd. Columbia University

Demand for *Scalable* **Cross-ISA Emulation**

- Increasing core counts for emulation guests (typically high-perf SoC's)
 - Hosts (servers) are already many-core
- ISA diversity is here to stay
 - e.g. x86, ARM/aarch64, POWER, RISC-V

our goal: efficient, correct, multicore-onmulticore cross-ISA emulation

Scalable Cross-ISA Emulation Challenges

(1) Scalability of the DBT engine

key data structure: translation code cache

(2) ISA disparities between guest & host: (2.1) Memory consistency mismatches (2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional **Related Work:**

- PQEMU [14] and COREMU [33] do not address (2)
- ArMOR [24] solves (2.1)

Our contributions: (1) & (2.2)

[14] J. H. Ding et al. PQEMU: A parallel system emulator based on QEMU. ICPADS, pages 276–283, 2011
[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388–400, 2015
[33] Z. Wang et al. COREMU: A scalable and portable parallel full-system emulator. PPoPP, pages 213–222, 2011

Our Proposal: Pico

Makes QEMU [7] a scalable emulator

Open source: http://qemu-project.org Widely used in both industry and academia Supports many ISAs through TCG, its IR:

Our contributions are not QEMU-specific

They are applicable to Dynamic Binary Translators at large

Emulator Design

Pico's Architecture

- One host thread per guest CPU
 - Instead of emulating guest CPUs one at a time
- Key data structure: Translation Block Cache (or Buffer)
 - See paper for details on Memory Map & CPU state

Translation Block Cache

- Buffers Translation Blocks to minimize retranslation
- Shared by all CPUs to minimize code duplication
 - see [12] for a private vs. shared cache comparison

To scale, we need concurrent code execution

QEMU's Translation Block Cache

Problems in the TB Hash Table:

- Long hash chains: slow lookups
 - Fixed number of buckets
 - hash=h(phys_addr) leads to uneven chain lengths
- No support for **concurrent lookups**

Pico's Translation Block Cache

• *hash=h(phys_addr, phys_PC, cpu_flags*): uniform chain distribution

- e.g. longest chain down from 550 to 40 TBs when booting ARM Linux
- **QHT**: A resizable, scalable Hash Table

Requirements Fast, concurrent lookups Low update rate: max 6% booting Linux

Requirements

Fast, concurrent lookups Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])

- Open addressing: great scalability under ~0% updates
- Insertions take a global lock, limiting update scalability

Requirements

Fast, concurrent lookups Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12]) Candidate #2: CLHT [13]

- Resizable + scalable lookups & updates
- Wait-free lookups
 - However, imposes restrictions on the memory allocator

[1] http://concurrencykit.org

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631–644, 2015 3.8

 Requirements
 Fast, concurrent lookups

 Low update rate: max 6% booting Linux

 Candidate #1: ck_hs [1] (similar to [12])

 Candidate #2: CLHT [13]

 #3: Our proposal: QHT

• Lock-free lookups, but no restrictions on the mem allocator

Per-bucket sequential locks; retries very unlikely

[1] http://concurrencykit.org

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28–38, 2006

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631–644, 2015 3.9

QEMU emulation modes

User-mode emulation (QEMU-user)

- DBT of user-space code only
- System calls are run natively on the host machine
- QEMU executes all translated code under a global lock
 - Forces serialization to safely emulate multi-threaded code

Full-system emulation (QEMU-system)

- Emulates an entire machine
 - Including guest OS and system devices
- QEMU uses a single thread to emulate guest CPUs using DBT
 - No need for a global lock since no races are possible

Single-threaded perf (x86-on-x86)

- Pico-user is 20-90% faster than QEMU-user due to lock-less TB lookups
- Pico-system's perf is virtually identical to QEMU-system's
 - ARM Linux boot results in the paper; Pico-system ~20% faster

Parallel Performance (x86-on-x86)

- Speedup normalized over Native's single-threaded perf
- Dashed: Ideal scaling
- QEMU-user not shown: does not scale at all

Parallel Performance (x86-on-x86)

[31] G. Southern and J. Renau. Deconstructing PARSEC scalability. WDDD, 2015

- Speedup normalized over Native's single-threaded perf
- Dashed: Ideal scaling
- QEMU-user not shown: does not scale at all
- Pico scales better than Native
 - PARSEC known not to scale to many cores [31]
 - DBT slowdown merely delays scalability collapse
- Similar trends for server workloads (Pico-system vs.
 KVM): see paper

Guest & Host ISA Disparities

Challenge: How to *correctly* emulate atomics in a parallel environment, without hurting *scalability*?

Challenge: How to *correctly* emulate atomics in a parallel environment, without hurting *scalability*?

CAS on CAS host: Trivial

CAS on LL/SC: Trivial

LL/SC on LL/SC: Not trivial

Cannot safely leverage the host's LL/SC: operations allowed between LL and SC pairs are limited

LL/SC on CAS: Not trivial

LL/SC is stronger than CAS: ABA problem

ABA Problem

Init: *addr = A;

cpu0	cpu1
do { val = load_exclusive (addr); /* reads A */ } while (store_exclusive (addr, newval);	atomic_set(addr, B); atomic_set(addr, A);

SC fails, regardless of the contents of *addr

	сри0	cpu1
2	do { val = atomic_read(addr); /* reads A */	
5	····	atomic_set(addr, B); atomic_set(addr, A);
\downarrow	} while (CAS (addr, val, newval);	

CAS succeeds where SC failed!

Pico's Emulation of Atomics

3 proposed options:

1. Pico-CAS: pretend ABA isn't an issue

- Scalable & fast, yet incorrect due to ABA!
 - However, portable code relies on CAS only, not on LL/SC (e.g. Linux kernel, gcc atomics)

2. Pico-ST: "store tracking"

- Correct & scalable
- Perf penalty due to instrumenting regular stores
- 3. Pico-HTM: Leverages HTM extensions
 - Correct & scalable
 - No need to instrument regular stores
 - But requires hardware support

Pico-ST: Store Tracking

- Each address accessed atomically gets an entry of CPU set + lock
 - LL/SC emulation code operates on the CPU set atomically
- Keep entries in a HT indexed by address of atomic access
- **Problem:** regular stores must abort conflicting LL/SC pairs!
- Solution: instrument stores to check whether the address has ever been accessed atomically
 - If so (rare), take the appropriate lock and clear the CPU set
- Optimization: *Atomics << regular stores*: filter HT accesses with a sparse bitmap

Pico-HTM: Leveraging HTM

- HTM available on recent POWER, s390 and x86_64 machines
- Wrap the emulation of code between LL/SC in a transaction
 - Conflicting regular stores dealt with thanks to the strong atomicity [9] in all commercial HTM implementations: "A regular store forces all conflicting transactions to abort."

- Fallback: Emulate the LL/SC sequence with all other CPUs stopped
- Fun fact: no emulated SC ever reports failure!

Atomic emulation perf

Pico-user, single thread, aarch64-on-x86

- Pico-CAS & HTM: no overhead (but only HTM is correct)
- Pico-ST: Virtually all overhead comes from instrumenting stores
- Pico-ST-nobm: highlights the benefits of the bitmap

Atomic emulation perf

Pico-user *atomic_add*, multi-threaded, aarch64-on-POWER

atomic_add microbenchmark

- All threads perform atomic increments in a loop
- No false sharing: each count resides in a separate cache line
- Contention set by the *n_elements* parameter

• i.e. if n_elements = 1, all threads contend for the same line

• Scheduler policy: evenly scatter threads across cores

Atomic emulation perf

Pico-user atomic_add, multi-threaded, aarch64-on-POWER

Trade-off: correctness vs. scalability vs. portability

- All Pico options scale as contention is reduced
 - QEMU cannot scale: it stops all other CPUs on every atomic
- Pico-CAS is the fastest, yet is not correct
- Pico-HTM performs well, but requires hardware support
- Pico-ST scales, but it is slowed down by store instrumentation
- HTM noise: probably due to optimized same-core SMT transactions

Wrap-Up

Contributions:

- Scalable DBT design with a shared code cache
- Scalable, correct cross-ISA emulation of atomics

<u>H</u> elp	Preferences			
ote-tracking 0160611 t ack translat st-qht-part at-bench, a st program s fast, resiz test program module to r sh phys_pc b_hash_fun ad: add sim cessor.h: d name write move optio	g branch 'remotes/rth/tags/pull-tcg-20160611' into staging translate-all: add tb hash bucket info to 'info jit' dump ted blocks with qht to invoke qht-bench from 'check performance benchmark zable and scalable Hash Table m represent frequency distributions of data c, pc Contractibutions of data c, pc Contractibutions: nc5, Contractibutions: nc6, generative to scalable DBT design with belock/unlock to Scalable DBT design with compiler by add OFMUL ALIGNED() to enforce	Peter Maydell <peter.mayde Emilio G. Cota <cota@braap nili G. Cota <cota@braap nili G. Cota <cota@braap nili G. Cota <cota@braap Emilio G. Cota <cota@braap< th=""><th>I @linaro.org> .org></th><th>2016-06-13 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08</th></cota@braap<></cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </cota@braap </peter.mayde 	I @linaro.org> .org>	2016-06-13 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08 2016-06-08
1264aafe47	 Scalable, correct cross-IS 	SA emulation of a	atomics	
seedeef558cf3cf3cf8d847 n Lines of context: G. Cota < hard Hende b7337df52f 4fbd34f4ed er, remote docker-201 -tcg-20160	3 Ignore space change Line diff <cota@braap.org> 2016-06-08 14:55:28 erson <rth@twiddle.net> 2016-06-11 19:10:20 f36cd8d35da496f6d9d009b1 (qdist: add test program) 166fa2450869fb3b384b0a97b (qht: add test program) s/upstream/master and many more (192) 1606 ENUINEGRATION</rth@twiddle.net></cota@braap.org>		 Patch ~ Tree Comments include/qemu/qht.h util/Makefile.objs util/qht.c 	
s fast, re fast, scal are concu s to separ	• OEMU v2.7 includes our in • OEMU v2.7 includes our in Lable chained hash table with optional auto-resizing, urrent with reads and reads/writer that are concurrent rate bekeQEMU v2.8 includes:	nproved hashing	+ QHT	
le with th oing MTTCG om the sin -by: Emili : <1465412 -by: Richa	hese features will be necessary for the scalability s work; befoes atomic instruction emu ngle-threaded speedup that ght also provides. io G. Cota est Support for parallel use 2133-3029-11-git-send-email-cota@braap.org> ard Hender Under review for v2.9: para	lation er-space emulati allel full-system e	on emulation	
	include/qemu/qht.h			5.2

Thank you

Backup Slides

Linux boot single thread

QHT & ck_hs resize to always achieve the best perf
but ck_hs does not scale w/ ~6% update rates

Server Workloads (x86-on-x86)

- Server workloads have higher code footprint [12] and therefore stress the TB cache
- PostgreSQL: Pico's scalability is inline with KVM's
- Masstree [25], an in-memory Key-Value store, scales better in Pico
 Again, the DBT slowdown delays cache contention

Memory Consistency x86-on-POWER

We applied ArMOR's [24] FSMs:

- **SYNC:** Insert a full barrier before every load or store
- **PowerA:** Separate loads with *lwsync*, pretending that POWER is multi-copy atomic

, and also leveraged

• SAO: Strong Access

[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388–400, 2015

Read-Copy-Update (RCU)

RCU is a way of waiting for things to finish, without tracking every one of them

Sequence Locks

Reader: Sequence number must be even, and must remain unaltered. Otherwise, retry

CLHT malloc requirement

```
val_t val = atomic_read(&bucket->val[i]);
smp_rmb();
if (atomic_read(&bucket->key [i]) == key && atomic_read(&bucket->val[i]) == val) {
    /* found */
}
```

II the memory allocator of the values must guarantee that the same address cannot appear twice during the lifespan of an operation.

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures.

ASPLOS, pages 631–644, 2015

Multi-copy Atomicity

iriw litmus test

cpu0	cpu1	cpu2	cpu3
x=1	y=1	r1=x	r3=y
		r2=y	r4=x

- Forbidden outcome: r1 = r3 = 1, r2 = r4 = 0
- The outcome is forbidden on x86
- It is observable on POWER unless the loads are separated by a sync instruction

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. ACM SIGPLAN Notices, volume 43, pages 68–78, 2008.