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Demand for Scalable Cross-ISA Emulation
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¢ Increasing core counts for emulation guests (typically
high-perf SoC's)
= Hosts (servers) are already many-core
e ISA diversity is here to stay
= e.g x86, ARM/aarch64, POWER, RISC-V

our goal: efficient, correct, multicore-on-
multicore cross-ISA emulation



Scalable Cross-ISA Emulation

Challenges

(1) Scalability of the DBT engine

key data structure: translation code cache

(2) ISA disparities between guest & host:
(2.1) Memory consistency mismatches
(2.2) Atomic instruction semantics

i.e. compare-and-swap vs. load locked-store conditional

Related Work:

e PQEMU [14] and COREMU [33] do not address (2)
e ArMOR [24] solves (2.1)

Our contributions: (1) & (2.2)

[14] ). H. Ding et al. PQEMU: A parallel system emulator based on QEMU. ICPADS, pages 276-283, 2011
[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388-400, 2015
[33] Z. Wang et al. COREMU: A scalable and portable parallel full-system emulator. PPoPP, pages 213-222, 2011



Our Proposal: Pico
Makes QEMU [7] a scalable emulator

Open source: http://gemu-project.org
Widely used in both industry and academia
Supports many ISAs through TCG, its IR:
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Our contributions are not QeMU-specific
They are applicable to Dynamic Binary Translators at large

[7] F. Bellard. QEMU, a fast and portable dynamic translator. Usenix ATC, pages 41-46, 2005
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Emulator Design



Pico's Architecture

cPuo|  |cpPu1 CPUn| | Devices :
f Timer| Disk |... | Serial
e S I o
Host | ' ' N4
vCPUO| |vCPU1 vCPUn /O
thread thread | - | thread thread

Shared data

Translation
Block Buffer Memory Map RAM Buffer

e One host thread per guest CPU
= |nstead of emulating guest CPUs one at a time

e Key data structure: Translation Block Cache (or Buffer)
= See paper for details on Memory Map & CPU state



Translation Block Cache

e Buffers Translation Blocks to minimize retranslation
e Shared by all CPUs to minimize code duplication

m see [12] for a private vs. shared cache comparison

vCPUO
thread

translated block

vCPU1
thread

el translated block

thread

translated block

vCPUn
thread

To scale, we need concurrent code execution

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006
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QEMU's Translation Block Cache
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Problems in the TB Hash Table:
® Long hash chains: slow lookups

——— P |PC, phys-PC, flags|next

= Fixed number of buckets
= hash=h(phys_addr) leads to uneven chain lengths
e No support for concurrent lookups



Pico's Translation Block Cache
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e hash=h(phys_addr, phys_PC, cpu_flags). uniform chain distribution
m e.g. longest chain down from 550 to 40 TBs when booting ARM Linux
e QHT: A resizable, scalable Hash Table



TB Hash Table

Requirements {

Fast, concurrent lookups
Low update rate: max 6% booting Linux

3.
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TB Hash Table

Fast, concurrent lookups
Low update rate: max 6% booting Linux

Candidate #1: ck_hs [1] (similar to [12])

e Open addressing: great scalability under ~0% updates
® |nsertions take a global lock, limiting update scalability

Requirements {

200K keys, 0 % updates 200K keys, 1 % updates
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[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006
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TB Hash Table

Fast, concurrent lookups
Low update rate: max 6% booting Linux

i 41+ ekhsFHHsimH ZEN
Candidate #2: CLHT [13]

e Resizable + scalable lookups & updates
e Wait-free lookups

m However, imposes restrictions on the memory allocator

Requirements {

200K keys, 0 % updates 200K keys, 1 % updates 160 200K keys, 100 % updates
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[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631-644, 2015 3.8



TB Hash Table

Fast, concurrent lookups
Low update rate: max 6% booting Linux

ST 41+ ekhsFHHsimH ZEN
#3: Our proposal: QHT

e [ ock-free lookups, but no restrictions on the mem allocator
= Per-bucket sequential locks; retries very unlikely

Requirements {

200K keys, 0 % updates 200K keys, 1 % updates 200K keys, 100 % updates
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[1] http://concurrencykit.org
[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006
[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures. ASPLOS, p. 631-644, 2015 3.9



QEMU emulation modes

User-mode emulation (QEMU-user)

DBT of user-space code only
System calls are run natively on the host machine
QEMU executes all translated code under a global lock

m Forces serialization to safely emulate multi-threaded code

Full-system emulation (QEMU-system)

Emulates an entire machine
® [ncluding guest OS and system devices

QEMU uses a single thread to emulate guest CPUs using DBT
= No need for a global lock since no races are possible

.10
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e Pico-user is 20-90% faster than QEMU-user due to lock-less TB lookups
= ARM Linux boot results in the paper; Pico-system ~20% faster

e Pico-system's perf is virtually identical to QEMU-system's



Parallel Performance (x86-o0n-x86)

Native —¢—
e Speedup normalized over
Native's single-threaded perf

Pico-user —m—

e Dashed: Ideal scaling
e QEMU-user not shown: does

not scale at all

Speedup

0.1/ .
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Threads
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Parallel Performance (x86-o0n-x86)

Pico-user Native —4—

5 100g 3 100¢ —

4 0.1 g

0.01—+ 1+ JdpppL 1.1l
100¢ —— 100¢ 3 100¢
o 0L 1 10 7 10
2 £/ 1 1L 4 1t ]
4 1’//*‘/'\»
M o1k 4 0.1L .
i dedup ] facesim ferret
01 1 1 1 1 1 001 1 1 1 1 1 001 1 1 1 1 1

100 5 100 —, 100

0_01:| ! ! ! |:0'01:| ! ! ! |_0'01_| ! ! ! 1]

: swaptions 1 E vips .. x264 E
i 1 1 1 1 1 1 i 1 1 1 1 1 1 i 1 1 1 1 1 1
0.0 1 16 32 48 640 0 1 16 32 48 640 0 1 16 32 48 64
hreads Threads Threads

[31] G. Southern and J. Renau. Deconstructing PARSEC scalability. WDDD, 2015

Speedup normalized over
Native's single-threaded perf
Dashed: Ideal scaling
QEMU-user not shown: does
not scale at all

Pico scales better than Native

= PARSEC known not to
scale to many cores [31]

= DBT slowdown merely
delays scalability collapse

Similar trends for server
workloads (Pico-system vs.
KVM): see paper
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Guest & Host
ISA Disparities



Atomic Operations

Two families:
Compare-and-Swap Load Locked-Store Conditional
(CAS) (LL/SC)

bool CAS(type *ptr, type old, type new) {
if (*ptr != old) {
return false;
} do {

ptr = new; val = load exclusive(addr);
return true; val += 1;

} } while (store exclusive(addr, val);

x86/IA-64: cmpxchg Alpha: 1d1_1/stl_c
POWER: lwarx/stwex
ARM: ldrex/strex
aarcho4: ldaxr/strlxr
MIPS: 11l fee
RISC-V: 1r/sc

Challenge: How to correctly emulate atomics in a
parallel environment, without hurting scalability?



Challenge: How to correctly emulate atomics in a
parallel environment, without hurting scalability?

CAS on CAS host: Trivial
CAS on LL/SC: Trivial

LL/SC on LL/SC: Not trivial

Cannot safely leverage the host's LL/SC: operations
allowed between LL and SC pairs are limited

LL/SC on CAS: Not trivial
LL/SC is stronger than CAS: ABA problem

4.
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time

time

ABA Problem

Init; *addr = A;

cpuO

cpui

do {
val = load_exclusive(addr); /* reads A */

} while (store_exclusive(addr, newval);

atomic_set(addr, B);
atomic_set(addr, A);

SC fails, regardless of the contents of *addr

cpu0

cpui

do {
val = atomic_read(addr); /* reads A */

} while (CAS(addr, val, newval);

atomic_set(addr, B);
atomic_set(addr, A);

CAS succeeds where SC failed!

4.
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Pico's Emulation of Atomics

3 proposed options:
1. Pico-CAS: pretend ABA isn't an issue

e Scalable & fast, yet incorrect due to ABA!

= However, portable code relies on CAS only, not on
LL/SC (e.g. Linux kernel, gcc atomics)

2. Pico-ST: "store tracking"

e Correct & scalable
e Perf penalty due to instrumenting regular stores

3. Pico-HTM: Leverages HTM extensions
e Correct & scalable

e No need to instrument regular stores
= But requires hardware support



Pico-ST: Store Tracking

Each address accessed atomically gets an entry of CPU set + lock
= | |/SC emulation code operates on the CPU set atomically

Keep entries in a HT indexed by address of atomic access
Problem: regular stores must abort conflicting LL/SC pairs!
Solution: instrument stores to check whether the address has
ever been accessed atomically

= |If so (rare), take the appropriate lock and clear the CPU set

Optimization: Atomics << regular stores: filter HT accesses with a
sparse bitmap

@ QHT @ if entry exists, acquire
lock + clear all ongoing
—— LL/SC pairs registered
hit | = hit in the entry’s CPU set
— | ==

YA Ty )T
v

’ spinlock t lock

A
vy

... |set t cpu set




Pico-HTM: Leveraging HTM

e HTM available on recent POWER, s390 and x86_64 machines
e Wrap the emulation of code between LL/SC in a transaction

= Conflicting regular stores dealt with thanks to the strong
atomicity [9] in all commercial HTM implementations: "A regular
store forces all conflicting transactions to abort.”

Guest aarch64 code x86_64 Translation Blocks

str x3, [x19, #16]
str x3, [x29, #152] ]

|—» xbeging 0x40062b

mov x1, x3 ..
ldxr x2, [x4] _/ movq (%eax),%rbp
cmp x2, x1

b.ne #+0xc

stixr wo, x19, [x4] ———— | mO\éq %rbp, (%rax)
cbnz w0, #-0x10 xen

e Fallback: Emulate the LL/SC sequence with all other CPUs stopped
e Fun fact: no emulated SC ever reports failure!

[9] C. Blundell, E. C. Lewis, and M. M. Martin. Subtleties of transactional memory atomicity semantics. Computer Architecture Letters, 5(2), 2006.



Atomic emulation perf

X86

SPEC CINT2006

Pico-user, single thread, aarch64-on

2x
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%/Aﬂ//////////é
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AN

IS correct)

no overhead (but only HTM
Virtually all overhead comes from instrumenting stores

e Pico-CAS & HTM

e Pico-ST

highlights the benefits of the bitmap

e Pico-ST-nobm
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Atomic emulation perf

Pico-user atomic_add, multi-threaded, aarch64-on-POWER

struct count {
u6d val;
} aligned(64);

struct count *counts;

while (!test stop) {
int index = rand() % n_elements;
atomic_increment (&counts[index].val);

}

atomic add microbenchmark

e All threads perform atomic increments in a loop
e No false sharing: each count resides in a separate cache line
e Contention set by the n_elements parameter

= j.e.if n_elements =1, all threads contend for the same line
e Scheduler policy: evenly scatter threads across cores



%100 L Pico-CAS
EO 80 " Pico-ST -e-

Atomic emulation perf

Pico-user atomic_add, multi-threaded, aarch64-on-POWER

1 element

= 8 ways/core
Pico-HTM —¢-

1 2 4 8 16 32 6496
Threads

8 elements

1 2 4 8 16 32 6496
Threads

200

1024 elements

4

" [ =8 ways/cogel

16 32 6496
Threads

Trade-off: correctness vs. scalability vs. portability

All Pico options scale as contention is reduced
= QEMU cannot scale: it stops all other CPUs on every atomic

Pico-CAS is the fastest, yet is not correct
Pico-HTM performs well, but requires hardware support

Pico-ST scales, but it is slowed down by store instrumentation
HTM noise: probably due to optimized same-core SMT

transactions

.10



Contributions:

e Scalable DBT design with a shared code cache
e Scalable, correct cross-ISA emulation of atomics



Contributions:

e Scalable DBT design with a shared code cache
e Scalable, correct cross-ISA emulation of atomics

QEMU Integration

e QEMU v2.7 includes our improved hashing + QHT
e QEMU v2.8 includes:
® gtomic instruction emulation
m Support for parallel user-space emulation
e Under review for v2.9: parallel full-system emulation



Thank you
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Linux boot

single thread

QEMU (ineffective hashing+MRU)

e sochash-+MRU
xxhash (no MRU) —e—
14 - xxhash+ck_hs (resizable) —¢— -
xxhash+QHT (resizable

[
w
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—
—
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Bootup+shutdown (s)
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e QHT & ck_hs resize to always achieve the best perf
= put ck_hs does not scale w/ ~6% update rates
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Server Workloads (x86-o0n-x86)

Speedup over KVM

100

Pico-system
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Threads

e Server workloads have higher code footprint [12] and therefore stress

the TB cache
e PostgreSQL: Pico's scalability is inline with KVM's

e Masstree [25], an in-memory Key-Value store, scales better in Pico
= Again, the DBT slowdown delays cache contention

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared software code caches. CGO, pages 28-38, 2006

[25]Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value storage. EuroSys, pages 183-196, 2012
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[24] D. Lustig et al. ArMOR: defending against memory consistency model mismatches in heterogeneous architectures. ISCA, pages 388-400, 2015
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Read-Copy-Update (RCU)

Reader

Reader

Reader
Reader
Reader
Reader
l Reader -
Grace Period

Grace period
extends as
needed.

Credit: Paul McKenney

RCU is a way of waiting for things to finish,
without tracking every one of them
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Sequence Locks

void *ght lookup slowpath(struct ght bucket *b, ght lookup func t func,
const void *userp, uint32 t hash)

{

unsigned int version;
void *ret;

do {

version = seqlock read begin(&b->sequence);

ret = ght do lookup(b, func, userp, hash);
} while (seqlock read retry(&b->sequence, version));
return ret;

Reader: Sequence number must be even, and must remain unaltered. Otherwise, retry

seq=0 seq=3 seq=3 seq=4 seq=4

Reader I Retry I Retry |

seq=1 seq=2 seq=3 eq=4

Writer




CLHT malloc requirement

val t val = atomic_read(&bucket->val[i]);
smp_rmb();

if (atomic_read(&bucket->key [1]) == key && atomic_read(&bucket->val[i]) == val) {

}

11 the memory allocator of the values must guarantee that the
same address cannot appear twice during the lifespan of an
operation.

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent search data structures.

ASPLOS, pages 631-644, 2015
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Multi-copy Atomicity

iriw litmus test

cpu0 cpul cpu2 cpu3
X=1 y=1 r1=x r3=y
r2=y rd=x

e Forbidden outcome:r1=r3=1,r2=r4=0
e The outcome is forbidden on x86
e |t is observable on POWER unless the loads are

separated by a sync instruction

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model.
ACM SIGPLAN Notices, volume 43, pages 68-78, 2008.



