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23K 10um
transistors

What did we do with

those 2B+ transistors?

2.3B 45nm
transistors
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Dennard scaling

area reduction

speed increase

less power consumption

[BORKAR 2011]



Dennard scaling
iS N0 more

To mitigate leakage power, threshold
voltage is now increasing, limiting speed

Further, supply voltage scaling is
severely restricted by process variability

Result: below 130nm power
density grows every generation

[BORKAR 2011]



growing power density +
fixed power budgets =

dark silicon



Fighting dark silicon

Process innovations
(!= traditional scaling)

beyond this talk's scope

Increase locality and
reduce bandwidth per op

how inefficient are we right now?



H.264 energy breakdown

"Magic” is a highly specialized implementation

up to 50% of “real” (FU and RF) work

[HAMEED 2010]
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Il Multicore Scalability

Il Heterogeneous architectures
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Memory Hierarchy
Innovations

Scheduling & Placement

Latency reduction on
last-level caches



Memory Controller Scheduling

————————————————————————————————————————————————————————————————————————————————————

i s - Every access must go
- through the row buffer

mmmmmmmmmm

[IMuTLU 2007]



Memory Controller Scheduling

Maximizes row hits
by prioritizing
column accesses
over row ones
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[IMuTLU 2007]



Memory Controller Scheduling

Goal: equalize memory-related
slowdown across threads

Estimate slowdown of each thread
Compute system unfairness
Prioritize commands based on the
slowdowns of their threads

Unfairness: 7.28 2.07 2.08 1.87 1.27

Memory Slowdown

IMuTLU 2007]



Memory Controller Placement

A0
Uniform spread of traffic JHHH
across ports e
BERRREES
Best placement: diamond —=s=
Lowest contention (<33% than rowQ7)
Lowest latency & latency variance %
Better thermal distribution than diag. X %
Best routing: Class-Based

(e) diamond (f) checkerboard

XY request, YX response packets
[ABTS 2009]



Non-Uniform Caches (NUCA)

High latency due to wire delay
Aggressive sub-banking not enough
Port-limited

Small, fast banks over a switched
network

Good average latency

[Kiv 2002]



NUCA slicing in CMPs

ESP-NUCA MeriNo 2010]  Elastic CC [Herrero 2010]
Token-based directory Address-based split of
directory & data

Both: Utility-based spilling of replicas/victims

Distance-aware borrowing from neighbors

CloudCache

Core 4 Core 2
MRU cossovecccsssannanns LRU|[MRU LRU

6
6

Token count 8 6 6 4 4 322
Cachelet capacity 35

Hop distance . - |Z| [LEE 2011]

OS-level allocation: Slice = Phys. PN % (nr. of slices)
[CHO 2006]



Multicore Scalability

Where is the bottleneck?
Coherence

may be too costly to maintain

&
Heterogeneity

could become too hard to manage
e.g. NUMA



Communication Models

Coherent shared memory
Hybrid

Scratchpad
Entirely distributed



Time to give up
coherence?

Cores are already nodes in a network — why not just
exchange messages? [BAUMANN 2009

Most existing code relies on coherence
[MARTIN 2012]

Many programmers' brains would have to be rewired



- But my program doesn't scale today...

Is it the algorithm, the
implementation, or coherence?

7 system applications shown to scale when using
standard parallel programming techniques [Bovp-Wickizer 2010]

[ BOoYD-WICKIZER 2012]

Though lockless mechanisms like RCU are an increasingly
popular alternative to most Reader-Writer locks [CLemENTS 2012]



It seems coherence will live on

Judicious choices can lead to slow growth of traffic,
storage, latency and energy with core count [MARTIN 2012]

Research on these issues still at its infancy

Coherence won't solve all problems

Problems here seem less threatening, but they exist,
e.g. management of memory-controller traffic on NUMA
systems [DASHTI 2013]
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Performance and energy efficiency require

Specialization via Heterogeneity

~1.5x speedup, ~2x power savings over GP

Pose interesting challenge to thread schedulers [Kim 2007]

~No speedup, ~16X energy savings for segments
[GOULDING-HOTTA 2011]

~50X speedup, ~20X energy improv.

[ConG 2012]



Heterogeneity
IS not the only way out

Trade off accuracy for energy [ESMAEILZADEH 2012]

2X energy savings, average error rate 3-10%, peak 80%

70

6X responsiveness gain, 5% less energy .l -
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[RAEWI&S)AVAN 2013]
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Conclusion

In the post-Dennard scaling era,

performance
W is detgrmingd by egergy eﬂmency

Future computer systems WI|| be

parallel & heterogeneous

Various GPCPUs will coexist with
custom logic, GPGPUs and even FPGAs

[ConsorTIUM 2013] [CHUNG 2010)]
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Frankenchip by Ryan Johnson


http://hpts.ws/papers/2009/session5/johnson.pdf
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