
Dealing with Massive Data February 7, 2011

Lecture 3: Counting on Streams

Lecturer: Sergei Vassilvitskii Scribe: Dawei Shi & Yundi Zhang

1 How many times an element appear in a stream?

Problem 1 Given a stream X on n elements total and a specific element i, we ask how
many times did xi appear in the stream?

Formally, let fj be the # of times element j appears. Then we can define frequency
moments:

Definition 1 Fi =
∑
j

f ij .

For example, F0 = # distinct values; F1 = length of the stream; F2 = self join size, etc.
Note that the value of F2 depends on the skew of the distribution of data.

2 Count Min Sketch

Consider the following simple algorithm. Let h : X 7→ [1, k] be a hash function. We will
store estimate counts in a short array:

Algorithm 1 Estimate count
1: for all xi ∈ X do
2: index ← h(xi)
3: count[index] ← count[index] + 1

Observe that Algorithm 1 provides an upper bound on the true counts due to potential
hash value conflicts. For every element xj , count[h(xj)] ≥ fj .

To analyze the algorithm, denote by yij = contribution of element xj to count for xi.

yij =
{
fj if h(i) = h(j)
0 if h(i) 6= h(j)

Note that by definition of the hash function, h(i) = h(j) with probability 1/k. Therefore,
E [yij] = fj/k. Therefore, the expected total overcounting is:

E

∑
j 6=i

yij

 =
∑
j 6=i

fj
k
≤ F1/k.

We need one more tool to complete the analysis.

1

Theorem 1 (Markov’s Inequality) Let Z be a non-negative random variable, then Pr [Z ≥ a · E[Z]] ≤
1
a .

Suppose we set k = 2
ε .Then, we have:

Pr

∑
j 6=i

yij > εF1

 ≤ 1
2
.

2.1 Boosting the success probability

The above analysis tells us that the probability that the estimate is wrong by more than an
additive εF1 factor is at most 1/2. To increase the probability of success even higher, consider
using multiple hash functions. Let h1 : X 7→ [1, k], h2 : X 7→ [1, k], . . . , h` : X 7→ [1, k] be `
independent hash functions. We run ` independent copies of the counter above.

We know that in every count array, Pr[
∑
yij > ε · F1] ≤ 1

2 . Therefore,

Pr
[
∀counts

∑
yij ≥ ε · F1

]
=
(

1
2

)`
.

Therefore, is we look at the minimum estimate to fj : min` count`[h(xj)], it will be
correct with probability 2−`. Putting it together, if we use ` = O(log 1

δ arrays each with k/ε
elements, then with probability 1 − δ each element is counted correctly, up to an additive
εF1 factor.

3 Count Sketch

The drawback of Count Min Sketch is that errors always accumulate. In other words, we
always overestimate. Suppose instead we try to have the errors cancel each other out. Let
g : X 7→ {−1,+1} be a hash function such that for any x ∈ X, Pr[g(x) = 1] = Pr[g(x) =
−1] = 1/2. Consider the following algorithm:

Algorithm 2 Count Sketch
1: for all xi ∈ X do
2: Count[h(xi)] = Count[h(xi)] + g(xi)
3: Z = Z + g(xi)
4: if Look up answer for i then
5: return Count[h(i)]g(i)

We first show that the algorithm produces the correct answer in expectation. Note
that this is a stark difference from the CountMin algorithm which always overestimates the
answer.

Lemma 1 For any element, i, E [Count[h(i)] · g(i)] = fi.

2

Proof. Let S be the set of elements that map to the same bucket as i, that is for any s ∈ S,
h(s) = h(i). Then:

E [Count[h(i)] · g(i)] = E

[∑
s∈S

fsg(s)g(i)

]

= E

 ∑
s∈S,s6=i

fsg(s)g(i) + f(i)g(i)g(i)


=

∑
s∈S,s6=i

fsE[g(s)]E[g(i)] + fiE[g(i)2]

=
∑

s∈S,s6=i
fs · 0 · E[g(i)] + fiE[1]

= fi

2

To see an alternative proof, as before let yij be the contribution of element j to the
count of i. We have:

yij =
{ fj if h(i) = h(j) and g(i) = g(j)
−fj if h(i) = h(j) and g(i) 6= g(j)
0 if h(i) 6= h(j)

Since g(i) = g(j) with probability 1/2 we have that E[yij] = 0.
We have shown that the estimate is unbiased, it remains to show that it produces a

good estimate with high probability. We turn to another way to bound the deviation of a
random variable from its mean.

Theorem 2 (Chebyshev’s Inequality) Assume that Z is a random variable with variance
σ2, then Pr[|Z − E[Z]| ≥ kσ] ≤ 1

k2

In order to use the inequality we need to find the variance of the over-estimate. Recall that
the overestimate for the count of i was

∑
j 6=i yij . Since these are independent,

var

∑
j 6=i

yij

 =
∑
j 6=i

var[yij].

It is easy to see that var[yij] = E[y2
ij]− E2[yij] =

f2
j

k . Therefore,

var

∑
j 6=i

yij

 =
1
k

∑
j 6=i

f2
j ≤ F2/k.

We can now apply Chebyshev’s Inequality with σ =
√

F2
k . Then:

3

Pr[
∑

yij ≥ ε
√
F2] = Pr[

∑
yij ≥ ε

√
kσ] ≤ 1

kε2

if fix k = 3
ε2

, then

Pr[
∑

yij ≥ ε
√
F2] ≤ 1

3
.

At this point we have shown that the estimate is wrong by an additive factor of ε
√
F2

with probability at most 1/3. In order to further reduce the failure probability, we can run
t such estimate. Setting t = O((log 1/δ), we can use Chernoff bounds to show that the total
probability of error drops to δ.

Thus we have given an algorithm that returns an estimate f̂j such that:

Pr[|f̂j − fj | ≥ ε
√
F2] ≤ δ.

The total space used by the algorithm is O(1
ε2

log 1
δ) counters.

As a point of contrast, the previous method has a total space complexity: O(1
ε log 1

δ),
and achieves an additive error of at most εF1

Comparing the methods If the distribution of elements in the stream is approximately
uniform, then the two methods give similar approximation guarantees. For example, if there
are n elements, and each element appears once, then: F1 = n, F2 = Σ12 =n,

√
F2 =

√
n

On the other hand, if the distribution is skewed, then
√
F2 < F1. For example, suppose

element x1 appears n times, x2, . . . , xn appears once, F1 = n + n − 1 = 2n − 1,F2 =
n2 + (n− 1)→

√
F2 = O(

√
n)

4

