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Lecture 2: Distinct Element Counting

Lecturer: Sergei Vassilvitskii Scribe:Ido Rosen & Yoonji Shin

1 Introduction

We begin by defining the stream formally.

Definition 1 A finite data stream, X = x1x2x3...xn, is a sequence of n items chosen from a
set of m ≤ n unique elements, where elements may be repeated, without assuming a specific
underlying distribution. An (offline) adversary may be generating this stream, such that the
adversary may see your algorithm, think for a while, and generate the worst possible stream
if he/she so desires. (We assume the adversary is oblivious, that is he generates the stream
without seeing the outcome of the probabilistic decisions made by the algorithm.)

Some properties of algorithms running on data streams are:

• Sees inputs only once, in sequential order.

• No random access over inputs, except those stored in (relatively small) memory.

• Small, limited amount of memory; can not store everything. (Aim for O(log n) or
smaller.)

Data streams are useful when:

• There is too much much data (information), and thus not enough time or space to
cope.

• Sequential access of data (i.e. streaming) is orders of magnitude faster than accessing
non-sequential data in most cases since no seeking is involved (such as when it is
stored on disks or disk arrays), and since reads are predictable and easily cached
when reading sequentially. (i.e.: I/O bounded algorithms.)

• Sometimes it is not necessary to save all the data, e.g. when counting the number of
events.

2 How many distinct elements are in a stream?

Let’s start with a simple task:

Problem 1 Given a stream X = x1, x2, x3, ..., xn of distinct elements a1, a2, ..., ak. Let
D(X ) be the number of distinct elements. Find D(X ) under the constraints for algorithms
on data streams.

Idea 1 Build a hash table.

1



This requires O(n) space in the worst case, which we do not have.

Remark 1 Whether or not we know how big the stream is ahead of time does not matter.

Idea 2 Maintain a sample.

We will show that we cannot sample uniformly across the stream and expect to get accurate
results.

Example 1 Consider the two possible streams, with n� k:

X1 = a1a1a1...a1︸ ︷︷ ︸
n times

...

X2 = a1...a1︸ ︷︷ ︸
n−k

a2a3...ak+1︸ ︷︷ ︸
k

...

These are hard to differentiate by maintaining a uniform sample across the data.

In the first scenario we have D(X1) = 1, whereas in the second we have D(X2) = k+ 1,
but a random sample from the two streams may look identical. In the case that the sample
looks the same, we will not be able to distinguish between the two streams and must err
when reporting the error on one of them. Suppose we sampled r < n elements from X2.
What is the probability that the sample only has elements a1?

Let s1, s2, . . . , sr be the sampled elements. We have:

Pr[s1 = a1] =
n− k
n

Pr[s2 = a1|s1 = a1] =
n− k − 1
n− 1

...

Pr[si = a1|s1 = a1, ..., si−1 = a1] =
n− k − (i− 1)
n− (i− 1)

∴ Pr[bad event] = Pr[s1 = a1] · Pr[s2 = a1|s1 = a1] · · ·Pr[sr = a1|s1 = a1, ..., sr−1 = a1],

where the last conclusion follows because the samples are drawn independently.

∴ Pr[bad event] =
r∏

i=1

(
n− k − (i− 1)
n− (i− 1)

)

≥
r∏

i=1

(
n− k − r
b− r

)
≥
(
n− k − r
n− r

)r

=
(

1− k

n− r

)r

≥ e−
2kr
n−r (by the useful inequality, below)

Fact 1 For any small 0 ≤ z ≤ 1
2 , (1− z) ≥ e

−2z.
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Now we have a useful lower bound on the probability of a worst-case sample (which
would result in a worst-case answer of D(X ) = 1). This lower bound is very bad even for
large samples.

Choosing generous parameters r = n
10 , k = 4 (5 distinct elements in the stream), we

have:
Pr[bad event] ≥ e−

2kr
n−r ≥ e−

8/10n

9/10n ≥ e−
8
9 (≈ 41%)

This is very bad, especially given that we are sampling 1/10th of the input!, we will err
by at least a factor of 2 almost half the time.

Let’s try another route...

3 The magic of hashing

First, consider a simplification of 1. We are given some number t, and are asked, isD(X )� t
or D(X )� t?

Problem 2 Given a threshold, t, and a stream, X = x1, x2, ..., xn,

If D(X )


≥ t
< t

2
∈ [ t

2 , t]

 , then output


yes
no

anything

 , with probability ≥ 90%.

Suppose we have an ideal hash function h : X 7→ [1, t]. By definition, Pr[h(x) = i] =
1/t.

Algorithm 1 Noisy counter
1: for all xi ∈ X do
2: if h(xi) = t then
3: return YES.
4: return NO.

Algorithm 1 doesn’t quite work to reach our 90% probability goal, but can be boosted
(later).
Proof. Suppose D(X ) ≥ t, if we consider the probability of failure, that we will return
“NO” if the answer was supposed to be “YES”. Recall that Pr[h(ai) = t] = 1/t, therefore
Pr[h(ai) 6= t] = 1− 1

t . We repeat this experiment D(X ) times to obtain:

Pr[failure] =
(

1− 1
t

)(
1− 1

t

)
· · ·
(

1− 1
t

)
︸ ︷︷ ︸

D(X ) times

=
(

1− 1
t

)D(X )

≤
(

1− 1
t

)t

<
1
e

(≈ 37%)

∴ Pr[success] > 60%

Therefore, when D(X ) ≥ t, Algorithm 1 is correct with more than 60% probability.
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Now suppose D(X ) < t/2, and consider the probability of success, that we will return
“NO” if the answer was indeed “NO”. We have that Pr[h(ai) 6= t] = 1 − 1

t , so in this case
for success we have:

Pr[success] =
(

1− 1
t

)(
1− 1

t

)
· · ·
(

1− 1
t

)
︸ ︷︷ ︸

D(X ) times

=
(

1− 1
t

)D(X )

≥
(

1− 1
t

)t/2

> 60% (approximately)

When D(X ) < t/2, Algorithm 1 is correct with more than 60% probability.
Thus, for both cases that matter, Algorithm 1 produces results with greater than 60%

accuracy. 2

How can we further amplify the signal from Algorithm 1 to reach our goal of 90%?

4 Boosting the success probability

Idea 3 Run Algorithm 1 k times (in parallel) using different, independent hash functions,
hj∈{1...k}. If more than 1/2 of the functions say YES, then output YES. Otherwise, output
NO.

Remark 2 h1, ..., hk must be independent of eachother so that we can use the Chernoff
Bound below.

Proof. Let Zi be the event that the ith counter (Algorithm 1 using hi) said YES. Then,
Pr[Zi] ≥ 0.6 from before. Let Z =

∑k
i=1 Zi. The expected value of Z is E[Z] = 0.6k by

definition. We care about the probability that a majority of counters will fail simultaneously:
Pr[Z ≤ k

2 ].

Pr[Z ≤ k/2] = Pr
[
Z ≤ 0.5

0.6
E[Z]

]
Recall from the previous lecture the Chernoff Bound, which in this case is formulated as:

Pr[Z ≤ (1− δ)E[Z]] ≤ e−
E[Z]δ

2 (Chernoff Bound)

Using the Chernoff bound above we have, finally:

Pr[Z ≤ k/2] ≤ e
“
− 1

2
·0.6k·( 0.1

0.6)2
”

Therefore, for a success probability of 1− q, we need to use k = O(log 1
q ) independent hash

functions, and thus we need O(log 1
q ) independent counters in the boosted counter that Idea

3 constructs. 2

We have solved problem 2, of thresholding the number of distinct elements in a stream,
with high (as we desire) probability. How can we then count distinct elements in a stream,
as in problem 1?
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5 Bringing it all together

First, we produced a single counter, as in Algorithm 1, given an ideal hash function h,
to determine if a stream has > t or ≤ t/2 distinct elements with some confidence (≥
60%). Then, we boosted this counter using multiple hash functions to obtain the desired
probability (1− δ) as a function of k, the number of independent hash functions (h1, ..., hk)
we used in parallel. This boosted counter is described in idea 3. Now, we can now use
multiple, independent boosted counters to peg the number of distinct elements in the stream
X , D(X ), into as small a range as memory permits...

Idea 4 Using the boosted counters from idea 3, we now set multiple thresholds t = 2, 4, 8, 16, ..., n,
and use |{t}| many counters. Using powers of 2 up to n yields about O(log n) thresholds.
Each counter needs only one bit of memory to store its result (YES/NO), so we only use
O(log n) space.

6 Uniform, random sampling of distinct elements in a stream

In addition to simply knowing the number of distinct elements, it may be useful to maintain
a uniform sample of the distinct elements.

Problem 3 Given a stream X = x1x2...xn, now let D(X ) be the set of distinct ele-
ments in the stream X . (For example, for the stream Y = a1a1a1a2a1a3a1a1..., D(Y) =
a1, a2, ..., ak+1.) Return a random, uniform sample from D(X ) of some fixed size M .

Remark 3 Due to time constraints in lecture, we sketch a solution, leaving analysis for
next time.

Suppose we have a hash function, g : X 7→ [0,m− 1], that maps elements of X onto the
range from 0 to m−1. Suppose we further have a function, h(x), which returns the leading
0s in the base two representation of g(x). For example, say n = 16, so h is represented in
4 bits. Take g(a1) = 4 which is 0100 in base two, thus h(a1) = 1. For g(a2) = 9 (1001 in
base 2), h(a2) = 0. It is easy to see that:

Pr[h(x) = 0] =
1
2

Pr[h(x) = 1] =
1
4

Pr[h(x) = 2] =
1
8

...

Pr[h(x) = i] =
1

2i+1

How can we use this biased hash function, h, to achieve our goal?

Idea 5 Store elements in different “levels” based on value of h for that element, and in-
crease the minimum required level as the number of elements stored exceeds memory.
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Algorithm 2 Online sampling of distinct elements in a stream
Let M be the maximum amount of memory we may use.
Let h be the weird hash function with the properties described above.
1: current level ← 0
2: for all x ∈ X do
3: level ← h(x)
4: if level ≥ current level then
5: add x to sample S at level h(x)
6: if |S| ≥M (i.e. out of memory) then
7: current level ← current level +1
8: only keep elements in S whose h(x) > current level

Observe that for Algorithm 2:

• The number of distinct elements at level i is D(X )/2i+1.

• The number of distinct elements at level i or higher is D(X )/2i.

• At some level, there is a perfect tradeoff in terms of number of elements in the sample.
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