
Dealing with Massive Data March 24, 2011

Homework 2: Due April 14, 11:59pm

For each of the problems below you must prove your answer correct. You are encouraged
to discuss problems with each other in small groups (2-3 people), as long as you list all
discussion partners on your problem set. Discussion of homework problems may include
brainstorming and verbally walking through possible solutions, but should not include one
person telling the others how to solve the problem. In addition, each person must write
up their solutions entirely on their own; you may not look at another student’s written
solutions. Moreover, all materials you consult must be appropriately acknowledged.

Data

For questions 2 and 3 you will be implementing your algorithm and running it using the
AWS framework. Please submit your code together with a readme file describing how we
should run it using the courseworks interface. You may hand in the written answers using
a hardcopy in class.

The data consists of two real life examples, one being a subset of a webgraph on 700,000
nodes and roughly 7M edges; the other a subset of a social network on 7M nodes and
roughly 70M edges. Each graph is present as a file with one edge per line. An edge (u, v) is
presented as u [tab] v with [tab] representing a tab character. The data is located at:

1. http://coms6998.s3.amazonaws.com/data1.txt

2. http://coms6998.s3.amazonaws.com/data2.txt

You should test your code on smaller examples to ensure correctness before using it on the
large datasets.

1. http://coms6998.s3.amazonaws.com/example1.txt should return 1

2. http://coms6998.s3.amazonaws.com/example2.txt should return 5

Question 1 (MapReduce)

The prefix-sum operator takes an array a1, a2, . . . , an and returns an array s1, s2, . . . , sn

where sn =
∑

j≤i aj . For example starting with an array 17 0 5 32 it returns 17 17 22 54.
Describe how to implement prefix-sum in MapReduce, where the input is stored as 〈i; ai〉.
That is the key is the position in the array and the value is the value at that position. In
your analysis assume that each of your machines has O(nc) memory for some constant c.

1

Question 2 (Large Memory CC)

Finding out the number of connected components in a graph is a key subroutine in many
graph algorithms. Recall the algorithm presented in class. Given a graph G = (V,E),
arbitrarily partition the edges into k non-overlapping groups, E1, E2, . . . , Ek with E = ∪iEi.
In parallel, find the connected components on the graph Gi = (V,Ei) and remove the edges
that do not contribute to the connectivity. Finally, combine all of the remaining edges on
a single machine and find the connected components.

The pseudocode for the algorithm is as follows. We use 〈k; v〉 to represent a key, value
pair.

Algorithm 1 Connected Components(V,E, k)
1: Map 1: Input: edge (u, v) // typically represented as 〈u; v〉.
2: Let r be a random integer between 1 and k.
3: Output: 〈r; (u, v)〉.
4: Reduce 1: Input: set of edges Ei for key i
5: Maintain a new graph Fi = ∅.
6: foreach (u, v) ∈ Ei

7: if (u, v) are connected in Fi then
8: continue
9: else

10: Fi ← Fi ∪ {(u, v)}
11: foreach (u, v) ∈ Fi

12: Output: 〈i; (u, v)〉.
13: Map 2: Input: edge (u, v)
14: Output: 〈$; (u, v)〉 //where $ is a special symbol
15: Reduce 2: Input: set of edges ∪Fi

16: Compute c = number of connected components on H = (V,∪Fi).
17: output 〈$; c〉.

Implement the algorithm and run it on the two datasets given by the TAs. For each
dataset, data1 and data2:

1. (i) Report the total number of connected components

2. (ii) try the algorithm with k = 5, 10, 20, 50 partitions. Report the running time for
each k.

Question 3 (Small Memory CC)

The algorithm presented in class used O(|V |) memory per reducer. Describe and implement
an algorithm that uses o(|V |) memory per reduce instance. That is for any input graph,
the maximum number of values associated with one key at any time during the execution
of the algorithm is less than n. Compare this approach to the algorithm in Question 2. In
particular, give the running times for each dataset.

2

