Cellular Networks and Mobile Computing COMS 6998-8, Spring 2012

Instructor: Li Erran Li

(lel2139@columbia.edu)

http://www.cs.columbia.edu/~coms6998-8/

1/23/2012: Class Introduction

Outline

- Introduction
- Course content
- Course goals and structure
- Example projects

Introduction

- Researcher at Bell Labs, Alcatel-Lucent
- Ph.D. from Dept. of CS, Cornell, 2001
- Research interest: cellular networks, mobile computing, cloud computing
- Research Goal: improve our mobile user experience through innovation in cellular network architecture, network services, and mobile cloud computing

Introduction (Cont'd)

- Current research projects:
 - cPlane: a cellular information plane for mobile applications and network management
 - mCloud: mobile cloud computing
 - Software-defined cellular networks
 - LAWN: scaling up cellular networks using a large number of antennas

Who Are you?

- Please briefly introduce yourself
 - Name
 - Program and year at Columbia
 - What do you want to learn from this course?

Course Content

- Why study cellular networks and mobile computing together?
 - Mobile apps with no knowledge of cellular networks can perform poorly
 - Pandora consumes 46% radio energy on periodic transfers of 0.2% received user data
 - Cellular networks with no knowledge of mobile apps can perform poorly, e.g. poor traffic planning, high latency for delay sensitive traffic

Course Content (Cont'd)

- This course has three themes revolving around improving mobile user experience
 - Understand current cellular networks and their interaction with mobile apps through measurements
 - Improve the interplay of cellular networks and mobile computing through new cellular network services (e.g. proxy, caching), cellular aware mobile app design, redesign of cellular networks
 - Improve mobile apps through cloud computing such as novel cloud platform services (e.g. iCloud, Amazon Silk Split Browser, push notification server)

Course Goals and Structure

 Basics: brief overview of cellular networks and mobile OS and development platforms

- Recent literature: review recent research on cellular network measurements, and mobile computing
 - Paper presentation, summary, and discussion
- Learn by doing: work on a research project

Recent Literature

- Will read about 22 papers that identify or address challenges in cellular networks and mobile computing
- Papers covered will be in networking, systems and security; topics include
 - Understanding the interplay of cellular networks and mobile computing through measurements
 - Mobile application aware cellular networks
 - Cellular aware mobile application design
 - Mobile cloud computing
 - Future cellular network trends

Recent Literature (Cont'd)

- Your duties:
 - Read all assigned papers before class
 - Participate in class discussions
 - Present and summarize 1 or 2 papers

Research Project

- Topic
 - Choose from a list of topics
 - Come up with your own topic
 - Must be related to cellular networks or mobile computing
 - Must contain some research element
- Teams of 2 to 3 students
- Final deliverables
 - Project report (research paper format, 10 to 12 pages)
 - Project presentation and demo

Research Project (Cont'd)

- Precisely define the project
- Understand related work
- Propose novel techniques or systems
 - Creativity will be evaluated
- System implementation
 - Client side: iOS or Android
 - Server side: Google AppEngine or Amazon EC2
 - Networking component: measurement, modeling

Research Project (Cont'd)

- Evaluate your solution, e.g. performance, scalability
 - Thoroughness will be evaluated
- Write up and present your projects
 - Evaluated using professional paper review criterions
- Project timelines
 - Feb. 6: Form final project team
 - Feb. 13: project description
 - March 5: progress report
 - April 2: preliminary project report
 - April 30: final presentation and demo
 - May 2: final project report
- I will meet with you regularly

Grading

- Project reports: 50%
- Project presentation and demo: 20%
- Paper presentation and summary: 15%
- Class discussion participation: 15%

Class Resources

 Web page: schedule, project timelines, list of potential projects, etc

 For any questions or concerns: email me at lel2139@columbia.edu

Example projects

- Ideal project criterions
 - Solves a real problem in cellular networks and mobile computing
 - Has a research component, e.g. scalable system design, novel inference algorithm of cellular network properties
 - Real implementation at client side running iOS or Android, and at server side using public cloud platforms such as Google AppEngine or Amazon EC2

Example project 1: cPlane

- Goal: build a cellular information plane for mobile apps
- Research: scalable probing, inference, system architecture
- Implementation: client side probing agent, server side inference, data store and query processing engine

Example project 2: data locker for mobile devices

- Goal: p2p file sharing running on mobile devices consume lots of resources; the goal is to serve the files from in-network data locker
- Research: scalable design of data lockers
- Implementation: client side IETF DECADE protocol, server DECADE protocol and data locker management

Questions?