
Odessa: Enabling Interactive Perception Applications
on Mobile Devices ∗

Moo-Ryong Ra∗, Anmol Sheth†, Lily Mummert†, Padmanabhan Pillai†,
David Wetherall†‡ and Ramesh Govindan∗

University of Southern California∗ Intel Labs† University of Washington‡

ABSTRACT
Resource constrained mobile devices need to leverage computa-
tion on nearby servers to run responsive applications that recog-
nize objects, people, or gestures from real-time video. The two
key questions that impact performance are what computation to of-
fload, and how to structure the parallelism across the mobile device
and server. To answer these questions, we develop and evaluate
three interactive perceptual applications. We find that offloading
and parallelism choices should be dynamic, even for a given appli-
cation, as performance depends on scene complexity as well as en-
vironmental factors such as the network and device capabilities. To
this end we develop Odessa, a novel, lightweight, runtime that au-
tomatically and adaptively makes offloading and parallelism deci-
sions for mobile interactive perception applications. Our evaluation
shows that the incremental greedy strategy of Odessa converges to
an operating point that is close to an ideal offline partitioning. It
provides more than a 3x improvement in application performance
over partitioning suggested by domain experts. Odessa works well
across a variety of execution environments, and is agile to changes
in the network, device and application inputs.

Categories and Subject Descriptors
D.4.7 [Software]: Operating System—Organization and Design:
Interactive Systems

General Terms
Design, Experiment, Measurement, Performance

∗This research was sponsored by the USC/CSULB METRANS Trans-
portation Center and by the Army Research Laboratory under Cooperative
Agreement Number W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of
the METRANS center, the Army Research Laboratory or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
hereon. In addition, the first author, Moo-Ryong Ra, was supported by An-
nenberg Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’11, June 28–July 1, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0643-0/11/06 ...$10.00.

Keywords
Offloading, Parallel Processing, Mobile Perception Application, Video
Processing, Incremental Partitioning

1. INTRODUCTION
As the processing, communication and sensing capabilities of

mobile devices increase, a new class of mobile interactive per-
ception applications is emerging. These applications use cameras
and other high-data rate sensors to perform perception tasks, like
face or object recognition, and enable natural human-machine in-
terfaces and interactive augmented-reality experiences on mobile
devices [16, 21]. For example, face recognition could be used by
a social networking application that recognizes people as the user
sweeps the camera across a crowded room; a gesture recognition
based natural user interface could be used to control a media appli-
cation running on the mobile device; and object and pose recogni-
tion can be used by an augmented reality shopping application that
overlays information about an object in the user’s hand.

Interactive perception applications have a unique set of require-
ments that stress the capabilities of mobile devices. First, inter-
active applications require crisp response. For example, to feel
responsive, an augmented reality application would need to dis-
play results well under a second. Second, these applications require
continuous processing of high data rate sensors such as cameras to
maintain accuracy. For example, a low frame rate may miss inter-
mediate object poses or human gestures. Third, the computer vision
and machine learning algorithms used to process this data are com-
pute intensive. For example, in one of the applications we study,
extracting features from an image can take 7 seconds on a netbook.
Finally, the performance of these algorithms is highly variable and
depends on the content of the data, which can vary greatly.

These requirements cannot be satisfied on today’s mobile devices
alone. Even though the computing and communication capabilities
of these platforms are improving, interactive perception applica-
tions will continue to push platform limits as new, more accurate
but more compute-intensive algorithms are developed. However,
two techniques can help make mobile interactive perception a re-
ality: offloading one or more of the compute-intensive application
components to an Internet-connected server, and using parallelism
on multi-core systems to improve responsiveness and accuracy of
the applications. Fortunately, interactive perception applications
can be structured for offloading, and provide considerable oppor-
tunities to exploit parallel processing. In this paper, we describe

1Author contact: mra@usc.edu, anmolsheth@gmail.com,
lily@cs.cmu.edu, padmanabhan.s.pillai@intel.com,
djw@cs.washington.edu, ramesh@usc.edu

Sprout
Mobile Device

Stages of Interactive Pe
rception Application

Sprout
Multi-Core Server

Input Video Stream

Network

Odessa

Stages of Interactive Pe
rception Application

Figure 1: Overview of the Odessa runtime system.

a runtime called Odessa that automatically and adaptively deter-
mines how best to use these techniques.

This paper makes three contributions. First, it provides an under-
standing of the factors which contribute to the offloading and par-
allelism decisions. We show through extensive experiments (Sec-
tion 3) on three interactive perception applications that neither of-
floading decisions nor the level of data or pipeline parallelism can
be determined statically and must be adapted at runtime. This is be-
cause both responsiveness and accuracy change dramatically with
input variability, network bandwidth, and device characteristics at
runtime. Our second contribution is the design of Odessa (Fig-
ure 1, Section 4), a lightweight, adaptive runtime for mobile inter-
active perception applications. To our knowledge, Odessa is the
first work to explore the simultaneous adaptation of offloading and
level of parallelism with the goal of jointly improving responsive-
ness and accuracy. The key insight of our work is that the dynamics
and parallelism requirements of interactive perception applications
preclude prior approaches that use offline profiling and optimiza-
tion based partitioning [8, 9]; instead, a simpler greedy and incre-
mental approach delivers good performance. Finally, we provide
experimental results (Section 5) on an implementation of Odessa
that show more than 3x improvement in performance compared to
a configuration by a domain expert, and comparable performance to
an idealized offline configuration computation that assumes infinite
server resources and complete offline performance profiling. Our
results also show that Odessa works well across a variety of exe-
cution environments, and is agile to changes in the network, device
and application inputs.

Odessa is qualitatively different from prior work that uses net-
worked computing infrastructure to enhance the capabilities of mo-
bile devices. It is complementary to work on using offloading for
conserving energy on the mobile device (e.g., MAUI [9]). More-
over, it does not require prior information on application perfor-
mance [9, 23] or a set of feasible candidate partitions [3, 8] to make
offloading decisions.

2. BACKGROUND
In this section, we describe the metrics and methods related to

adaptive offloading and parallelism, we describe the set of inter-

Application # of Stages Avg. Makespan
& Frame Rate

Face Recognition 9 2.09 s, 2.50 fps
Object and Pose Recognition 15 15.8 s, 0.09 fps
Gesture Recognition 17 2.54 s, 0.42 fps

Table 1: Table summarizes the data flow graph of the three
computer vision applications along with average makespan and
frame rate measured when the application is running locally on
netbook platform.

active perception applications studied, and then discuss Sprout, a
distributed programming framework on which our system is based.

2.1 Metrics and Methods for Adaptation
Two measures of goodness characterize the responsiveness and

accuracy requirements of interactive perception applications.
Makespan is the time taken to execute all stages of a data flow

graph for a single frame. The makespan is a measure of the re-
sponsiveness of the application: a low makespan ensures fast com-
pletion of a recognition task and thereby improves user satisfac-
tion. Throughput is the rate at which frames are processed and
is a measure of the accuracy of the application. A low frame rate
may miss intermediate object poses or human gestures. Any run-
time system for interactive perception must simultaneously strive
to minimize makespan and maximize throughput. In general, the
lower the makespan and the higher the throughput the better, but
the applications can become unusable at makespans over a second,
or throughput under 5 fps.

In adapting interactive perception applications on mobile, three
techniques can help improve makespan and throughput. Offloading
moves the most computationally-intensive stages onto the server in
order to reduce makespan. Pipelining allows different stages of the
application (whether running on the mobile device or the server) to
process different frames in parallel, thereby increasing throughput.
Increasing data-parallelism, in which frames are split into multiple
sub-frames that are then processed in parallel (either on a multi-
core mobile device or a server or cluster), can reduce the makespan
by reducing the computation time of a stage. Data and pipeline
parallelism provide great flexibility in the degree to which they are
used. These techniques are not mutually exclusive: pipelining is
possible even when some stages are offloaded, and data-parallel
execution is possible on offloaded stages, etc.

The goal of Odessa is to decide when and to what degree to apply
these techniques to improve both the makespan and throughput of
interactive perception applications.

2.2 Interactive Perception Applications
We use three qualitatively different interactive perception appli-

cations described below, both to motivate the problem and to eval-
uate the efficacy of our solutions. Often computer-vision based
applications are naturally described using a data-flow model. Fig-
ure 2 describes the data-flow graphs for the three applications, as
implemented on Odessa and Sprout.

Face Recognition. Figure 2(a) shows the application graph for face
recognition. The application consists of two main logical blocks
consisting of face detector and the classifier. Face detection is done
using the default OpenCV [4] Haar Classifier. The face classifier
takes as input the detected faces and runs an online semi-supervised

Source	

Display	

Copy	

Tiler	

Feature	 merger	

Graph	 Spli7er	

Reco.	 Merge	

SIFT	
SIFT	
Detect	

matcher	
Classify	

(a) Face Recognition

Source	

Display	

Copy	

Scaler	

Tiler	

Feature	 merger	

Descaler	

Feature	 spli5er	

Match	 joiner	

Cluster	 spli5er	

Cluster	 joiner	

RANSAC	

SIFT	
SIFT	

SIFT	
SIFT	

SIFT	

Model	 matcher	
Model	 matcher	

Model	 matcher	

Clustering	
Clustering	

(b) Object and Pose Recog-
nition

Source	

Display	

Copy	

Scaler	

Tiler	

Feature	 merger	

Descaler	

Copy	

Classify	

Pair	 generator	

SIFT	
SIFT	

SIFT	
SIFT	
mo9onSIFT	

Scaler	

Tiler	

Face	 merger	

Descaler	

SIFT	
SIFT	

SIFT	
Face	 detect	

Copy	

(c) Gesture Recognition

Figure 2: Data flow graph for the three computer vision applications.

learning algorithm [17] to recognize the faces from a data set of 10
people.

Object and Pose Recognition Figure 2(b) shows the data-flow
graph for the object instance and pose recognition application [26].
The application consists of four main logical blocks. As shown
in the figure, each image first passes through a proportional down-
scaler. SIFT features [20] are then extracted from the image, and
matched against a set of previously constructed 3D models for the
objects of interest. The features for each object are then clustered
by position to separate distinct instances. A random sample con-
sensus (RANSAC) algorithm with a non-linear optimization is used
to recognize each instance and estimate its 6D pose.

Gesture Recognition. Figure 2(c) shows the application graph for
a gesture recognition application. Each video frame is sent to two
separate tasks, face detection and motion extraction. The latter ac-
cumulates frame pairs, and then extracts SIFT-like features that en-
code optical flow in addition to appearance [6]. These features,
filtered by the positions of detected faces, are aggregated over a
window of frames using a previously-generated codebook to create
a histogram of occurrence frequencies. The histogram is treated as
an input vector to a set of support vector machines trained for the
control gestures.

2.3 Sprout: A Parallel Processing Framework
Odessa is built on Sprout [25], a distributed stream processing

system designed to make developing and executing parallel ap-
plications as easy as possible by harnessing the compute power
of commodity multi-core machines. Unlike programming frame-
works for parallelizing offline analysis of large data sets (MapRe-
duce [10] and Dryad [15]), Sprout is designed to support contin-
uous, online processing of high rate streaming data. Sprout’s ab-

stractions and runtime mechanisms, described below, are well-suited
to support the Odessa runtime system.

Programming Model. Applications in the Sprout framework are
structured as a data flow graphs; the data flow model is particularly
well suited for media processing applications that perform a series
of operations to an input video or audio stream. The vertices of
the graph are processing steps called stages and the edges are con-
nectors which represent the data dependencies between the stages.
Stages within an application employ a shared-nothing model: they
share no state, and interact only through connectors. This restric-
tion keeps the programming complexity of individual stages com-
parable to that of sequential programming, and allows concurrency
to be managed by the Sprout runtime. This programming model
allows programmers to express coarse-grained application paral-
lelism while hiding much of the complexity of parallel and dis-
tributed programming from the application developer.

Automated data transfer. Sprout connectors define data depen-
dencies and perform data transfer between processing stages. The
underlying implementation of a connector depends on the loca-
tion of the stage endpoints. If the connected stages are running in
the same process, the connector is implemented as an in-memory
queue. Otherwise, a TCP connection is used. The Sprout runtime
determines the connector type, and handles serialization and data
transport through connectors transparently. This allows a process-
ing stage to be written in a way that is agnostic to whether it or
related processing steps have been off-loaded.

Parallelism Support. The Sprout runtime supports coarse-grained
data parallelism and pipeline parallelism. Data parallelism is sup-
ported by having multiple instances of a stage execute in parallel on
separate processor cores. Pipeline parallelism is supported by hav-

ing multiple frames be processed simultaneously by the different
processing stages of the application.

The relationship between Sprout and Odessa. Sprout provides
programmers with mechanisms to dynamically adjust running ap-
plications, change the degree of parallelism, and migrate process-
ing stages between machines. In Odessa, we develop adaptive tech-
niques for determining when and which stages to offload, and de-
ciding how much pipelining and data-parallelism is necessary in
order to achieve low makespan and high throughput, and then lever-
age the Sprout mechanisms to effect the changes.

3. FACTORS AFFECTING APPLICATION
PERFORMANCE

In this section we present experimental results that highlight how
the performance of interactive perception applications is impacted
by multiple factors. We find that:

• Input variability, network bandwidth, and device characteristics
can impact offloading decisions significantly, so such decisions
must be made adaptively and cannot be statically determined at
compile time.

• Once some stages have been offloaded, different choices for data-
parallelism can lead to significantly different application perfor-
mance, and the data-parallelism levels cannot be determined a
priori.

• Finally, even with adaptive offloading and data-parallelism, a
static choice of pipeline-parallelism can lead to suboptimal makespan
or leave the pipeline underutilized.

3.1 Experimental Setup
Hardware. Our experimental setup consists of two different mo-
bile devices and a server. The two mobile devices are a netbook
with a single-core Atom processor (Intel N270 processor) running
at 1.4 GHz with hyper-threading turned off and 0.5 MB of cache,
and a dual-core laptop with each core running at 1.8 GHz (Intel
T5500 processor) that does not support hyper-threading and 2 MB
of cache. The netbook is a surrogate for a future-generation smart-
phone platform. To compare the two devices, we use the ratio of
the sum of frequencies of all available CPU cores, which we call
the relative frequency ratio. The relative frequency ratio between
the two devices is 2.3x. The server is an eight core Intel Xeon pro-
cessor with each core running at 2.13 GHz with 4 MB of cache.
The relative frequency ratio between the server and the two mobile
devices is 12.2x and 4.7x for the netbook and laptop respectively.

Input data set. To ensure repeatability across different experi-
mental runs, the input data for each of the three applications is a
sequence of frames captured offline in typical indoor lighting con-
ditions at 30 fps at a resolution of 640x480 pixels per frame. The
data set used for face recognition consists of 3000 frames in which
10 people each walk up to the camera and make different facial
expressions. The input data set for pose detection consists of 500
frames in which the user is holding a book in one hand and ma-
nipulating the pose of the book while holding the camera pointed
at the book with the other hand. The data for gesture-recognition
consists of roughly 500 frames of a person sitting in front of the
camera performing the different gestures.

Network configurations. We emulate different network conditions
between the mobile device and networked server by varying the

Network Configuration
LAN 100 Mbps
WAN 20 ms 30 Mbps, 20 ms RTT, Loss rate 0%
WAN 40 ms 30 Mbps, 40 ms RTT, Loss rate 0%
LAN 802.11g 25 Mbps, Loss rate 0%, 1%, 2%
LAN 802.11b 5.5 Mbps, Loss rate 0%, 1%, 2%
3G 0.5 Mbps, 500 ms RTT, Loss rate 0%

Table 2: The ten different network conditions emulated by
Dummynet. The WAN bandwidths are symmetric and the RTT
for the LAN configurations were under a millisecond.

delay and bandwidth of the link using Dummynet [5]. The ten
different emulated network conditions are summarized in Table 2.

Application profiler. A lightweight runtime profiler maintains the
following application execution metrics: execution time of each
stage, the amount of data that flows on the connector links and the
network delay time. The profiler also keeps track of the latency (or
makespan) and the frame rate of the application. We describe more
details about the application profiler in Section 4.1.

3.2 Input Data Variability
We begin by characterizing the impact of the scene content on the

execution characteristics of the application. We run all three appli-
cations on the netbook and for each frame we plot the makespan
(Figure 3) and the number of features generated (Figure 4). Our
results show that input scene content can cause large and abrupt
changes in the execution time of different stages, and different ap-
plications respond differently to scene variability. This, in turn, can
impact the decision of whether to offload the stage or not.

Face Recognition. The sources of input variability are based on
the presence of a face in the scene and the similarity between the
test face and the other faces in the training data set. Figures 3(a)
and 4(a) show the makespan for the application and number of
faces detected per frame respectively. We use a single detection
and classification stage for this experiment. When there are no
faces detected in the scene, the makespan is primarily dominated
by the face detection stage (0.29 s with little variability) with the
face classifier stage incurring no overhead. However, when faces
are detected, the makespan can increase by an order of magnitude,
and have high variability with no clear difference between the pro-
cessing time of frames containing one, two or three faces. For ex-
ample, between frames 1000 and 1165 in Figure 3(a) the makespan
is highly bursty and varies between 0.6 s to 1.4 s even when there
is a single person in the scene.

Object and Pose Recognition. The processing time for this ap-
plication is primarily dominated by the feature extraction from the
input scene. A complicated scene containing edges or texture will
generate a large number of SIFT features, resulting in increased
execution times for both the feature extraction and model matcher
stages. Consequently, there is a strong correlation between the
number of features detected and the makespan of the input frame
as shown in Figures 3(b) and 4(b). Beyond frame number 250 both
figures show sharp peaks and valleys. This is caused by the user al-
tering the pose of the notebook that causes a peak when the feature-
rich notebook is occupying most of the input scene and a sudden
valley when the notebook pose is changed to occupy a small frac-
tion of the input scene.

Gesture Recognition. The primary source of input scene variabil-
ity is the extent of user motion in the scene. Figure 4(c) shows

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

Frame Number

M
ak

es
pa

n
(s

)

(a) Face recognition

0 100 200 300 400 500
5

10

15

20

25

30

35

Frame Number

M
ak

es
pa

n
(s

)

(b) Object and pose recognition

0 100 200 300 400 500

2.6

2.8

3

3.2

3.4

Frame Number

M
ak

es
pa

n
(s

)

(c) Gesture recognition

Figure 3: Variation in the per frame makespan.

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

Frame Number

F
ac

es

(a) Face recognition

0 100 200 300 400 500
1000

2000

3000

4000

5000

6000

7000

Frame Number

S
IF

T
 F

ea
tu

re
s

(b) Object and pose recognition

0 100 200 300 400 500
0

20

40

60

80

Frame Number

M
ot

io
nS

IF
T

 fe
at

ur
es

(c) Gesture recognition

Figure 4: Variation in the number of features extracted per frame.

the number of motionSIFT features extracted per frame. The graph
consists of a repeating pattern of two large peaks followed by mul-
tiple smaller peaks. The two large peaks are caused as the attention
gesture requires the user to raise both hands in front of the camera
and the drop them down. This is then followed by a one handed
gesture that typically generates a smaller number of features com-
pared to the attention gesture. The sharp drops in the graph are
caused when the user is not moving in between gestures. Unlike
the previous application, the makespan of the application shown
in Figure 3(c) has a weak correlation with the input features. The
weak correlation is caused by high variability in the face detection
algorithm that is the next compute intensive stage in the application
pipeline.

3.3 Variability Across Mobile Platforms
Another factor contributing to execution time variability, and

hence to the offloading decision, is the contention between the
different application threads for the compute resources (memory
and CPU) available on the mobile platform. To explore the ex-
tent of impact on performance, we first compare the distribution
of execution time of scene-independent stages of the application
graph, then benchmark the aggregate performance of the applica-
tion across both platforms.

Figure 5 shows the distribution in execution time across the two
mobile platforms for three scene-independent stages: the image
source stage for the face recognition application that reads an im-
age from file to memory (Figure 5(a)), the frame copy stage for the
object recognition application that makes copies of the image for
multiple downstream stages (Figure 5(b)), and the image scaling
stage for gesture recognition application that scales the image in
memory (Figure 5(c)).

Ideally, the two devices should demonstrate the same distribu-
tion of completion time with a constant speedup factor of at least
2.3x. However, contention between other memory and compute
intensive threads of the application graph cause a large variation

Application Makespan
(s) Laptop

Makespan
(s) Netbook Speedup

Face Recognition 0.078 0.20 2.94
Object and Pose Rec. 1.67 9.17 5.47
Gesture Recognition 0.54 2.34 4.31

Table 3: Median speedup in the overall application perfor-
mance across the two devices.

in execution time on the netbook platform even though the me-
dian speedup ranges between 2.5-3.0x. The laptop with a dual-core
processor and additional memory exhibits a much smaller variabil-
ity due to the extra memory and isolated execution of the threads
on the multiple processors. This effect, compounded across the
different stages, leads to a significant difference in the aggregate
performance of the application across the two platforms as shown
in Table 3. Instead of the the expected 2.3x speedup, the speedup
ranges between 2.9x for the face recognition application and 5.47x
for the object and pose recognition application.

3.4 Network Performance
Changes in network bandwidth, delay and the packet loss rate,

between the mobile device and the server can each affect interac-
tive performance and trigger stage offloading or parallelization de-
cisions. We characterize the performance of the face recognition
application for two different partitions across the different network
settings described in Section 3.1. The first application partition runs
only the source and display stages locally and offloads all other
stages to the server, requiring the mobile device to upload the en-
tire image to the server. The second application partition reduces
the network overhead by additionally running the face detection
stage locally, requiring the mobile device to upload only the pixels
containing the detected faces to the server.

The tradeoff between the two partitions depends on the network

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Exec Time (s)

C
D

F

Frame Source Laptop
Frame Source Netbook

(a) Face recognition

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

Exec Time (s)

C
D

F

Frame Copy Laptop
Frame Copy Netbook

(b) Object and pose recognition

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Exec Time (s)

C
D

F

Image Scale Laptop
Image Scale Netbook

(c) Gesture recognition

Figure 5: The figures show the variability in the completion time of three example stages running on the laptop and netbook device.
These stages perform a fixed operation on the input image that is independent of the scene content.

of Threads % Frames with faces Mean exec. time (ms)
1 61.66 149.0
2 24.87 15.6
3 38.11 18.0

Table 4: The accuracy and mean execution time of face detec-
tion with increasing number of worker threads.

performance and the time taken to detect faces in the input frame
on the mobile device. Transmitting the entire image incurs a fixed
overhead of 921.6 KB of data per frame taking 73.7 ms over the
LAN network configuration while transmitting only the detected
faces requires transmitting between 31 bytes when no faces are de-
tected and from 39.3 KB to 427.1 KB when one or more faces are
detected in the frame.

Figure 6 shows the makespan and throughput of the application
for the two application partitions. The large image transfer is very
sensitive to even a small amount of delay and loss that significantly
degrades application performance. Transmitting the entire image
to a server on a network with a RTT of 40 ms degrades the frame
rate from about 8 fps to 1.8 fps. Even a loss-less 802.11g link is
bandwidth-bottlenecked and cannot support more than 3 fps.

Transmitting only the detected faces over the network makes the
face detection stage which runs on the mobile device a bottleneck
and requires an average of 189.2 ms to detect faces, limiting the
maximum frame rate to 5.31 fps. Moreover, since the network is
not heavily used this application partition is robust to delay and
bandwidth bottlenecks and packet loss rate on the link. The perfor-
mance of the application shows negligible degradation across the
different network configurations, providing a frame rate of 5.3 fps
and makespan of 680 ms. In the case of the 3G network, the large
network delay (500 ms RTT) significantly degrades the application
performance.

3.5 Effects of Data-Parallelism
Offloading alone may not be sufficient to reduce makespan; in

many mobile perception applications, it is possible to leverage multi-
core technology to obtain makespan reductions through data paral-
lelism (processing tiled sub-images in parallel). However, as we
show in this section, the performance improvement achieved by
data-parallelism can be sub-linear because of scene complexity.
Additionally, for some computer vision algorithms, extensive use
of data-parallelism can degrade application fidelity. This argues for
an adaptive determination of the degree of data-parallelism.

Table 4 shows an experiment in which the face detection stage
is offloaded, and explores the impact of increasing the number of

Offload All Send Detected Faces
0

1

2

3

4

5

6

M
ak

es
pa

n
(s

)

LAN
WAN 20ms
WAN 40ms
11G−0%
11G−1%
11G−2%
11B−0%
11B−1%
11B−2%
3G−0%

(a) Makespan

Offload All Send Detected Faces
0

2

4

6

8

F
P

S

LAN
WAN 20ms
WAN 40ms
11G−0%
11G−1%
11G−2%
11B−0%
11B−1%
11B−2%
3G−0%

(b) Frame Rate

Figure 6: Impact of the network on the performance of the face
recognition application.

face detection threads. Increasing the number of detection threads
reduces the execution time of the stage at the cost of degrading the
fidelity of the face detection algorithm by 36.7% with two threads
and 23.5% with three threads. This drop in fidelity is due to faces
falling across image tile boundaries, which renders them unde-
tectable by the Haar classifier based face detection algorithm. Fur-
thermore, the reason accuracy increases by about 13% from two
threads to three is because the chances that the center tile includes
the face is higher for three tiles than splitting the image in the mid-
dle into two tiles.

Such degradation in the fidelity of the algorithm could be avoided
by using a tiler algorithm that tiles the image for different scales
of the input image or using a face detection algorithm that uses

of Threads Thread 1 (s) Thread 2 (s) Thread 3 (s)
1 1.203 (3323.7) - -
2 0.741 (2124.9) 0.465 (1132.6) -
3 0.443 (1203.6) 0.505 (1543.4) 0.233 (473.0)

Table 5: Average execution time in seconds and number of
SIFT features detected by each thread for the object and pose
recognition application.

SIFT-like scale invariant features that can be combined across the
multiple tiles. However, both of these approaches come at a cost
of either increased algorithmic complexity or higher computational
overhead.

Table 5 shows the impact of input scene content on the average
execution time of the different SIFT feature generator threads along
with the average number of features extracted by each thread for the
object-recognition application. The reason the feature generator
thread execution times vary across image tiles is that SIFT features
are not evenly distributed in the image; the slowest thread becomes
the bottleneck and causes sub-linear speedup. From the table we
observe that the average speedup is limited to 1.6x and 2.3x instead
of the expected 2x and 3x speedup respectively.

3.6 Effects of Pipeline Parallelism
A key challenge in exploiting pipeline parallelism is to maintain

the balance between under-utilizing the pipeline that delivers low
throughput and over-utilizing the pipeline that increases the latency
of the application due to excessive waiting time. In this section, we
show that, for a fixed off-loading strategy, different data-parallelism
decisions can result in different optimal pipelining strategies. This
argues that the degree of pipelining must track adaptations in off-
loading and data-parallelism, otherwise the pipeline can be signifi-
cantly under-utilized or over-utilized.

In Sprout, the degree of pipelining is governed by a bound on the
maximum number of tokens: each token corresponds to an image in
some stage of the pipeline, so the maximum number of tokens gov-
erns the pipeline parallelism in Sprout. Sprout users or application
developers must specify this maximum number.

To understand the impact of the degree of pipelining, we cre-
ate two different configurations of the object and pose recognition
application and measure the impact of increasing the number of to-
kens in the pipeline on the throughput (Figure 7) and the makespan
(Figure 8) of the application. In both configurations, the SIFT fea-
ture generator and the model matcher have been offloaded, but the
configurations differ in the degree of data-parallelism for the two
stages. The configurations F2-M5 and F5-M2 denote the number
of SIFT feature generator threads and number of model matcher
threads used by the application running on the server with eight
cores.

From Figure 7 we observe that for both configurations the through-
put initially increases linearly until the pipeline is full and then lev-
els off beyond four tokens at which point additional tokens gener-
ated end up waiting at the head of the pipeline. The throughput
of the F2-M5 configuration is higher compared to the F5-M2 con-
figuration as the F2-M5 configuration reduces the execution time
of the model matcher stage that is the primary bottleneck of the
application.

Figure 8 shows the makespan response to increasing number of
tokens in the pipeline. For both the configurations we observe
that over-utilizing the pipeline by increasing the number of tokens
beyond four increases the time a frame waits at the head of the
pipeline. Furthermore, comparing the rate of increase of the wait

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 F
P

S

of Tokens

F5−M2
F2−M5

Figure 7: Frame rate with increasing number of tokens.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

of Tokens for F2−M5

A
ve

ra
ge

 M
ak

es
pa

n(
s)

Execution Time
Wait Time

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

of Tokens for F5−M2

Execution Time
Wait Time

Figure 8: Makespan with increasing number of tokens.

time across the two configurations, we find that the wait time for the
F5-M2 configuration increases faster than the F2-M5 configuration.
This is because the F5-M2 configuration has a longer compute time
for the bottleneck stage, though the total execution time is compa-
rable. This causes the makespan to rise sooner with fewer tokens
and more steeply compared to the other configuration.

4. DESIGN AND IMPLEMENTATION
OF ODESSA

Motivated by the findings in the previous section, Odessa adap-
tively exploits pipelining, data-parallelism and offloading to im-
prove performance and accuracy of these applications. The Odessa
runtime runs on the mobile device; this enables Odessa to trans-
parently improve application performance across different mobile
platforms when the mobile is disconnected from the server.

The design the Odessa runtime has three goals, in order of de-
creasing importance:

• It must simultaneously achieve low makespan and high through-
put in order to meet the needs of mobile interactive perception
applications.

• It must react quickly to changes in input complexity, device ca-
pability, or network conditions. This goal ensures that transient
changes in makespan or throughput are minimized or avoided.

• It must have low computation and communication overhead.

Prior approaches for offloading frame the problem using a dis-
crete or graph optimization formulation [9, 13, 19]. For this ap-
proach to be effective, accurate estimates of stage execution time

are required on both the mobile device and the server, which are of-
ten obtained by offline profiling. However, the results in Section 3
show that the execution time can vary significantly and cannot eas-
ily be modeled offline.

Odessa uses a greedy algorithm that periodically acquires infor-
mation from a lightweight application profiler to estimate the bot-
tleneck in the current configuration. Then, its decision engine uses
simple predictors based on nominal processor frequencies, and a
recent history of network measurements, to estimate whether of-
floading or increasing the level of parallelism of the bottleneck
stage would improve performance. This greedy and incremental
approach works very well to improve makespan and throughput,
and incurs negligible overhead (as discussed in Section 5.1). Rarely,
Odessa’s decision may need to be reversed because its estimators
may be off, but it has a built-in self-correcting mechanism to main-
tain stability.

4.1 Lightweight Application Profiler
The primary function of the application profiler is to maintain

the complete application performance profile and make this infor-
mation available to the decision engine running on the mobile de-
vice without impacting the application performance. Our profiler
does not require any additional programmer input, and accounts for
cycles (Figure 2(a)) and parallel sub-tasks (Figure 2(c)) in the ap-
plication graph. For each frame processed by the application graph,
the profiler collects the following information: the execution time
of each stage in the graph, the wait time on every connector, the
volume of data transferred on each connector, and the transfer time
across the network connector edges.

Odessa implements this by having each stage piggyback its run-
time profile information along with the data and forward it to the
downstream stages along each of the output edges. A downstream
stage receiving this profile information appends its own profile in-
formation only if there are no cycles detected and continues for-
warding the data. When a splitter is encountered the profile history
to that point is replicated on each output, and is pruned later on
the joiner stage. The head of the pipeline that receives the aggre-
gated data forwards it to the decision engine. This piggybacking
approach simplifies the design of the decision engine as it receives
all the profile data for the most recently concluded frame execution
in-order and over a single RPC call. The overhead of looking for
cycles and removing redundant data requires a simple linear scan
of the profile data and incurs negligible overhead. Since each stage
eliminates redundant profile information, the decision engine can
easily compute the makespan and throughput of the application.

4.2 Decision Engine
The functionality of the decision engine is split across two threads

running on the mobile device. The first thread manages the data
parallelism and stage offloading. The second thread manages the
pipeline parallelism by dynamically controlling admission into the
pipeline. Both of these threads make use of the application profile
data to make their decisions. The data received from the profiler is
maintained in a heap sorted by the slowest graph element (stage or
connector) that facilitates efficient lookup.

4.2.1 Adapting Data Parallelism and Stage
Offloading

The algorithm in Figure 9 describes how Odessa adapts data par-
allelism and stage offloading. The algorithm runs periodically (ev-
ery 1 second in our implementation) and in each iteration greedily
selects the current bottleneck stage of the application pipeline and
decides to make an incremental improvement by either changing

begin
bottleneck := pick the first entry from the priority heap.
if bottleneck is a compute stage

a. estimate the cost of offloading the stage
b. estimate the cost of spawning more workers

elsif bottleneck is a network edge
a. estimate the cost of offloading the source stage.
b. estimate the cost of offloading the destination stage.

fi
c. take the best choice among a., b., or do-nothing.
d. sleep (decision granularity);

end

Figure 9: Algorithm for adaptive offloading and data-
parallelism

the placement of a stage, increasing its data parallelism or doing
nothing if the performance cannot be further improved. If the bot-
tleneck is a compute stage, the algorithm picks between offload-
ing the stage or increasing the degree of data-parallelism for the
stage. If the bottleneck is a network edge, the algorithm estimates
the cost of moving either the source or destination stage of the net-
work edge.

If Odessa decides to offload or change data-parallelism, it signals
the pipeline admission controller to stop issuing tokens. When the
in-flight tokens have been drained, Odessa invokes Sprout’s stage
migration or thread spawning mechanisms (as appropriate), then
resumes the pipeline once these have finished.

The effectiveness of the algorithms rests on the ability to esti-
mate the impact of offloading the stage or increasing data paral-
lelism. While it is difficult to accurately estimate the impact of the
decision on the performance of the application, Odessa uses simple
cost estimation techniques that are guided by the runtime applica-
tion profiler.

Estimating cost of data parallelism. Odessa uses a simple linear
estimation based cost metric to evaluate the execution time for in-
creasing or decreasing the data parallelism. The linear estimate is
based on the following simple equation: Ei+1 = N

N+1
Ei, where

Ei is current execution time on ith frame and N is a current de-
gree of data parallelism. This assumes linear speedup and uses
the runtime profiler data to estimate the gains. To avoid the un-
bounded increase in the level of data parallelism, Odessa dampens
the performance improvement estimated by the linear equation af-
ter data parallelism has reached a preset threshold. This threshold
is set to twice the number of CPU cores for hyper-threaded CPU
architectures and the scaling factor is N+1

Thresh
for N > Thresh.

As we have discussed in Section 3.5, data parallelism may not al-
ways give linear speedup because of image complexity: if that is
the case, Odessa will re-examine the decision in the next interval
(see below).

Estimating cost of offloading a stage. Moving a compute stage
from the mobile device to the server or vice versa should account
for change in the execution time of the stage as well as the impact of
the change on the network edges. Consider a stage X with a single
input connector and a single output connector. Suppose X and its
predecessor and successor stages are running on the mobile. Now
to estimate the latency that would result from offloading X to the
server, we need to compute (a) the reduced processing time of X on
the server, and (b) the increased latency induced by having its in-
put and output connectors traverse the network between the mobile
and the server. Odessa estimates the reduced processing time as
Tm(X)Fm

Fs
, where Tm(X) is the execution time for X on the mo-

bile, obtained from the application profiler (averaged over the last
10 frames), and Fm and Fs are, respectively, the nominal proces-
sor frequencies on the mobile device and the server, respectively.
Since Odessa also keeps track of the amount of data transmitted on
every connector and has an online estimate of the current network
bandwidth, it can estimate the increased latency of data transfer on
the new network connectors. Combining all of this information,
Odessa can estimate the effective throughput and makespan that
would result from the offloading.

Our current implementation only acts when the resulting esti-
mate would improve both makespan and throughput. We are con-
servative in this regard; a more aggressive choice where an action is
taken if either metric is improved may be more susceptible to errors
in the estimates. That said, because Odessa relies on estimates, an
offloading or data-parallelism decision may need to be reversed at
the next decision point and can result in a stage bouncing between
the mobile and the server. If this occurs (and it has occurred only
once in all our experiments), Odessa temporarily pins the stage in
question until its compute time increases by a significant fraction
(10%, in our implementation).

4.2.2 Adapting Pipeline Parallelism
A pipeline admission controller dynamically maintains the opti-

mal number of frames in the pipeline to increase frame rate while
adapting to the variability in the application performance. The ad-
mission controller is implemented as a simple token generator that
issues tokens to the frame source stage; upon receiving a token, the
frame source stage reads an input image. When an image is com-
pletely processed, its token is returned to the admission controller.
The admission controller ensures that no more than T tokens are
outstanding at any given instant, and T is determined by the fol-
lowing simple equation T = d(M

B
)e where M is the makespan and

B is the execution time of the slowest stage, both averaged over
the 10 most recent frames. Note that the token generator trades
off higher throughput for a slightly higher makespan by using the
ceiling function that may lead to one extra token in the pipeline.

5. EVALUATION
In this section we present an experimental evaluation of Odessa.

Our evaluation methodology uses the setup and data described in
Section 3.1 and addresses the following questions.

• How does Odessa perform on our data sets, and what is the over-
head of the runtime profiler and the decision engine?

• How does Odessa compare with against other candidate strate-
gies that either use domain knowledge for static stage placement
and parallelism, or that use global profiling for optimal place-
ment?

• How does Odessa adapt to changes in network bandwidth avail-
ability or the availability of computing resources?

5.1 Odessa’s Performance and Overhead
We begin by examining the performance of Odessa’s decisions

for our applications, when run both on the netbook and the lap-
top. In these experiments (and those described in the next sub-
section), we used a 100 Mbps network between the mobile device
and the server; in a subsequent subsection, we evaluate the impact
of constraining the network. For the face recognition application,
all stages except the classifier stage begin executing on the mobile
(this stage has a large database for matching); for the other appli-
cations, all stages begin executing on the mobile device. Figure 10
shows the timeline of the different decisions made by Odessa on

Application Stages Offloaded and Instances
Netbook Laptop

Face Recognition Face detection(2) -
3.39

Nothing - 3.99

Object and Pose
Recognition

Object model
matching(3), Fea-
ture generating(10)
- 5.71

Object model
matching(3), Fea-
ture generating(10)
- 5.14

Gesture Recog-
nition

Face detection(1),
extracting Motion
SIFT features(4) -
3.06

Face detection(1),
extracting Motion
SIFT features(9) -
5.14

Table 6: The table shows the stages that were offloaded to the
server and the number of instances of each stage offloaded on
the server by Odessa. The average degree of pipeline paral-
lelism is shown in boldface.

the netbook (graphs for the laptop are qualitatively similar and are
omitted for lack of space), with the circle indicating an offload de-
cision, and a cross indicating the spawning of a thread (increased
data parallelism). Table 6 shows the final stage configurations of
the applications on both the laptop and the netbook.

Face Recognition. Odessa first chooses to offload the detection
thread at frame number 110 and spawns an additional detection
thread immediately. After this change in configuration, the frame
source stage that performs the JPEG decompression of the stored
images is the bottleneck, which Odessa cannot offload: it converges
to a makespan of around 500ms and a throughput of 5 fps on the
netbook. Interestingly, Odessa demonstrates the ability to adapt to
input scene content by offloading and spawning an additional detec-
tion thread only when faces were detected in the input scene. Until
frame number 100, there were no faces detected in the input scene
and the application sends only 31 bytes of data to the classifier that
is running on the server. Beyond frame number 100, as the execu-
tion time of the detection thread increases and the network traffic
increases, Odessa decides to co-locate the detection stage with the
classifier stage on the server. Interestingly, on the laptop, Odessa
does not offload the detection stage: in this configuration, the frame
source stage is the more constraining bottleneck than the detection
stage. Despite this, the laptop is able to support higher pipeline par-
allelism and a frame rate of 10 fps because of its faster multi-core
processor. Thus, from this application, we see that Odessa adapts
to input scene complexity and device characteristics.

Object and Pose Recognition. Odessa achieves a frame rate of
6.27 fps and 7.35 fps on the netbook and laptop respectively and a
makespan of under 900 ms on both platforms. In this application,
Odessa converges to the same final configuration on the netbook
and laptop. Note that Odessa is able to differentiate between the
impact of the two offloaded stages (feature generator and model
matcher); as shown in Figure 10, Odessa continues to increase the
number of feature generator threads beyond frame number 50 as it
increases the frame rate of the application with minor decrease in
the makespan of the application. The final configuration results in
10 SIFT feature generator threads but only 3 for model matching.
From this example, we see that despite device differences, Odessa
ends up (correctly) with the same offloaded stages, and is able to
assign the requisite level of data parallelism for these stages.

Gesture Recognition. In this example, differences in device capa-
bilities result in different Odessa configurations. On the netbook
Odessa offloads the single detection thread and spawns only 4 ad-

50 100 150 200
0

2

4

6
Face Recognition

F
P

S

50 100 150 200
0

500

1000

1500

2000

Frame Number

M
ak

es
pa

n
(m

s)

50 100 150 200
0

5

10
Object and Pose Recognition

50 100 150 200
0

2

4

6

8

x 10
4

Frame Number

50 100 150 200
0

5

10

15
Gesture Recognition

FPS
Offload
Spawn

50 100 150 200
0

2000

4000

6000

8000

Frame Number

Makespan
Offload
Spawn

Figure 10: Figure shows the decisions made by Odessa across the first 200 frames along with the impact on the makespan and frame
rate for the three applications on the netbook.

ditional motionSIFT threads but has a higher average pipeline par-
allelism of 3.06 tokens. Beyond 4 motionSIFT threads, the frame
source stage on the netbook is the bottleneck and Odessa cannot
further improve the performance of the application. However, on
the laptop platform the frame source stage is not the bottleneck due
to the dual core architecture and faster processor speed. Conse-
quently, Odessa spawns a total of 9 motionSIFT threads and more
than doubles the average pipeline parallelism to 5.14. This leads to
a 68% increase in frame rate on the laptop compared to the netbook
platform.

Overhead. Odessa’s overhead is negligible. The size per frame
of measurement data collected by the lightweight profiler ranges
from 4 KB for face recognition to 13 KB for pose detection, or
from 0.1%-0.4% of the total data transferred along the pipeline.
Moreover, the profiler’s compute cost is less than 1.7 ms on each
device, a negligible fraction of the application’s makespan. Finally,
the decision engine takes less than 1.2 ms for an offload or a spawn
decision.

5.2 Comparison With Other Strategies
We now compare Odessa’s performance against three compet-

ing strategies. The first is the Offload-All partition in which only
the video source stage and display stage run locally and a single
instance of all other stages are offloaded to the server. The sec-
ond is the Domain-Specific partition that makes use of the domain
specific knowledge about the application and input from the ap-
plication developer to identify the compute-intensive stages in the
application graph. For this partition only the compute-intensive
stages are offloaded to the server and number of CPU cores are
equally distributed between the different parallelizable compute-
intensive stages. These two strategies help us calibrate Odessa’s
performance: if Odessa’s performance is not significantly better
than these, an adaptive runtime may not be necessary.

We also consider another idealized strategy whose performance
should, in theory, be better than Odessa’s. This strategy, called
the Offline-Optimizer, mimics what an optimized offloading algo-
rithm would have achieved if it could perfectly profile execution
times both on the server and the mobile device. The inputs to this
optimizer are the profiled run times of each stage on both the mo-
bile and the server; the most compute-intensive stages are profiled
with maximum data parallelism. Because execution times can vary

Application Offloaded stages (instances)
Face Recognition Face detection (4), Classifier (4), 2
Object and Pose
Recognition

SIFT Feature Generator (3), Object
model matching (3), Clustering (2), 3

Gesture Recognition Face detection (1), MotionSIFT stage
(8), 2

Table 7: The table shows the instances of the offloaded stages
along with the number of tokens (in boldface) in the pipeline
for the Domain Specific partition of the application graph.

with input complexity, for this experiment we use an input which
consists of a single frame replicated 500 times. The output is an op-
timal configuration, obtained by exhaustively searching all config-
urations and picking those whose makespan and throughput domi-
nate (i.e., no other configuration has a lower makespan and a higher
throughput). The pipeline parallelism is optimally controlled and
the number of tokens are adjusted to fully utilize the pipeline struc-
ture. We compare Odessa against Offline-Optimizer only for the
pose detection algorithm: for the other algorithms, recognition is
done over sequences of frames, so we cannot use frame replication
to ensure consistent input complexity, and any performance com-
parison would be obscured by interframe variability.

Table 7 shows the stages and their instances along with the num-
ber of tokens for the Domain-Specific static partition. Pipeline-
parallelism for the Domain-Specific and Offline-Optimizer parti-
tions is set based on the number of compute intensive stages in
the application graph: the rationale is that, since most of the time
will be spent in the bottleneck stages, adding additional tokens will
cause increased wait times. Thus, the face recognition application
has two tokens, the object and pose recognition application has 3
and the gesture recognition application has 2 tokens.

Figure 11 shows the aggregate performance of Odessa along
with the two static partitions.

Face Recognition. Odessa’s performance is comparable to Offload-
All or Domain-Specific for the netbook; in this case, the frame
source stage is a bottleneck, so Odessa’s choices approximate that
of these two static strategies. However, on the laptop, Odessa’s
throughput is almost twice that of Domain-Specific. This perfor-
mance difference is entirely due to Odessa’s adaptive pipeline ad-

Face Obj. Gesture
0

5

10

15

20
FPS

Our Approach
Strawman I
Strawman II

Face Obj. Gesture
0

1000

2000

3000

4000

5000
Makespan (ms)

(a) Netbook

Face Obj. Gesture
0

5

10

15

20
FPS

Our Approach
Strawman I
Strawman II

Face Obj. Gesture
0

1000

2000

3000

4000

5000
Makespan (ms)

(b) Laptop

Figure 11: Figures shows the frame rate and makespan achieved by Odessa along with two statically partitioned application config-
urations across the two client devices.

Netbook Laptop
0

5

10

15
FPS

Odessa
Offline Opt.

Netbook Laptop
0

200

400

600

800

1000
Makespan(ms)

Odessa
Offline Opt.

Figure 12: Figures shows the frame rate and makespan
achieved by Odessa for pose detection, compared to the Offline-
Optimizer.

mission controller; although, intuitively, 2 tokens seem like a rea-
sonable choice given that this application has two bottleneck stages,
much higher pipelining is possible because data parallelism signif-
icantly reduces the impact of the bottleneck.

Object and Pose Recognition. Odessa significantly outperforms
both static partitions; for example, the frame rate achieved by Odessa
is 4x higher and makespan 2.2x lower than Domain-Specific across
both platforms. Unlike the latter, Odessa chooses to run the clus-
tering algorithm on the local device for both the netbook and laptop
platform which frees up extra CPU resources on the server. Odessa
uses these extra CPU resources to spawn additional SIFT feature
generator stages to reduce the pipeline bottleneck. Another reason
for the performance difference is Odessa’s adaptive parallelism, as
discussed above.

Finally, Figure 12 shows that the Offline-Optimizer has a lower
makespan (about 200-300 ms lower) than Odessa, both on the net-
book and the laptop. This is to be expected, since the offline opti-
mizer does not model two important overheads to makespan: thread
contention when executing 10 threads for each of the compute-
intensive stages, and token waiting time. Encouragingly, Odessa

achieves comparable or better throughput across the pipeline. These
results indicate that, even if it were practical to profile stage exe-
cution times offline and optimize offloading decisions using these
profiled times, the benefit is not significant.

Gesture Recognition. The frame rate achieved by Odessa is 3.4x
and 4.6x higher on the netbook and laptop platform respectively
compared to the static partitioning approaches and the makespan
is under 350 ms for both platforms. Although Odessa achieves
comparable data-parallelism as Domain-Specific on the laptop, it is
again able to achieve much higher levels of pipelining, hence the
performance difference.

5.3 Adapting to Varying Execution Contexts
The execution context of perception applications is primarily

determined by the available computational resources and perfor-
mance of the network. These resources can vary significantly as
the mobile device moves from one execution context to another.
For example, the network performance could vary significantly as
the mobile device moves from an office to a home environment.
Furthermore, the CPU resources available to the application could
also vary if the server is shared by other applications. To address
such sources of variation in available resources it is important for
Odessa to be reactive and adapt the application partition quickly.

5.3.1 CPU Resources
We begin by evaluating the ability of Odessa to respond to events

where additional CPU resources become available on server. We
emulate such an event by changing the number of cores available to
the Odessa decision engine from two to eight during the execution
of the application (frame number 250). Figure 13 shows the appli-
cation throughput and makespan along with the decisions made by
Odessa. The application starts off running locally on the netbook.
By frame number 31, Odessa utilizes the two CPU cores avail-
able on the server by offloading the SIFT feature generator stage
and the model matcher stage and spawning an additional thread for
each of the two stages. This increases the throughput from 0.1 fps
to 2.5 fps. At frame number 250, 6 additional cores are available
on the server. Odessa immediately reacts to this change in CPU re-
sources and spawns 8 additional threads for the SIFT feature gener-
ator and 1 additional thread for the model matcher stage. Note than
even though beyond frame number 260 the makespan does not in-

100 200 300 400 500
0

5

10

15

F
P

S

FPS
Offload
Spawn

100 200 300 400 500
0

2000

4000

6000

Frame Number

M
ak

es
pa

n
(m

s)

Makespan
Offload
Spawn

Figure 13: The ability of Odessa to adapt to abrupt changes
in the number of CPU cores available to the application. The
number of cores are increased from 2 to 8 at frame number
250.

crease, Odessa continues to spawn additional stages to further im-
prove the throughput. Odessa completes adapting the application
partition by frame number 305 after which the average throughput
is 8.4 fps and the makespan is reduced to 490 ms.

5.3.2 Network Performance
We next evaluate the ability of Odessa to adapt to changes in net-

work performance as the mobile device moves from a high band-
width indoor 802.11n network to a low bandwidth outdoor net-
work. The first two graphs in Figure 14 show the throughput and
makespan of the application and the third graph shows the total
amount of network data. The application starts off executing all the
stages running locally on the netbook that is connected to the eight-
core server over a 100 Mbps. At frame 122, Odessa decides to of-
fload the detection stage to the server and spawn another instance
of the detection stage on the server. After this, the image source
stage that performs the jpeg decoding is the bottleneck and the per-
formance cannot be further improved. At frame number 1237 the
bandwidth of the network is dropped to 5 Mbps which makes the
network edge the bottleneck of the application. The network de-
lay significantly increases the makespan of the application and the
throughput reduces significantly. Within 70 frames, Odessa de-
cides to pull back the two detection threads from the remote server
reducing the amount of data being sent over the network and the
throughput increases to about 4 fps.

5.4 Data-Parallelism and Application Fidelity
Odessa increases data-parallelism until makespan and through-

put changes are marginal. However, increasing data-parallelism
may not always be desirable. For face recognition, or object and
pose detection, increasing data parallelism by tiling images may
decrease application fidelity, since, for example, a face may be
split across tiles. Ideally, Odessa’s decision engine should take

200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

F
P

S

FPS
Offload
Spawn

200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

15000

Frame Number

M
ak

es
pa

n
(m

s)

Makespan
Offload
Spawn

0 500 1000 1500 2000
0

0.5

1

1.5

2

M
B

yt
es

Frame Number

Figure 14: Odessa adapting to changes in network perfor-
mance. The network bandwidth is reduced from 100 Mbps to
5 Mbps at frame number 1237. Odessa pulls back the offloaded
stages from the server to the local machine to reduce the data
transmitted over the network.

application fidelity into account when deciding the level of data-
parallelism; we have left this to future work.

However, Figure 15 quantifies the impact of Odessa’s current
design on application fidelity. On each graph, the x-axis shows
the number of threads used (the level of data-parallelism) and the
y-axis shows the total number of faces or features detected.

Face Recognition. In our current implementation, the Face detec-
tor uses a Haar classifier, which is unlikely to detect a face when
the face is fragmented. Hence, the more an input image is divided,
the fewer faces are detected (Figure 15(a)). In some cases, our im-
age splitter adds redundant overlapping image tiles so that the loss
of fidelity by tesselation is mitigated. More generally, however,
a robustly parallelizable face detection algorithm might avoid this
degradation.

Object and Pose Recognition. This application demonstrates such
robustness. Its parallelizable stage, SIFT feature extraction, is scale-
invariant [20], so the total number of detected features is relatively
unchanged as a function of the number of threads (Figure 15(b)).
The small fluctuations in fidelity can be explained by the loss of fea-
tures at the edges of tiles. It may be possible to mitigate these fluc-
tuations by overlapping tiles, which we have left to future work.

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

of detection threads

of

 fa
ce

s

(a) Face recognition

0 2 4 6 8 10 12
0

0.5

1

1.5

2

x 10
6

of feature generation threads

of

 fe
at

ur
es

(b) Object and Pose Detection

Figure 15: The number of features detected across different
number of detection worker threads.

6. RELATED WORK
To our knowledge, no prior work has explored the joint auto-

matic adaptation of offloading, pipelining and data parallelism.
The idea of offloading computation to networked computing in-

frastructure to overcome the limited capabilities of a wireless mo-
bile device was proposed a decade ago [1, 2, 7, 27]. Since then, a
variety of approaches for offloading computation to improve appli-
cation performance or reduce resource usage have been proposed.
Prior work makes use of three primary techniques to offload com-
putation from the mobile device. The application partitioning is
done either statically at compile time by Wishbone [23] and Coign
[14], dynamically based on programmer specified partitions as in
Spectra [11] and Tactics [3], or dynamically based on a run-time
optimizer that uses integer-linear programming (as in MAUI [9]
and CloneCloud [8]), or graph-based partitioners [13, 19, 24]. These
pieces of work occupy different points in the design space relative
to Odessa in terms of their approach. Some have significantly dif-
ferent goals (like conserving energy on the mobile device) from
ours. Crucially, many of these pieces of work use a history of
performance measurements, collected before execution, to predict
stage execution times for the offloading decision. Narayanan et al.
[22] show that history-based online learning of resource utilization
outperforms other static methods, and more recently CloneCloud [8]
shows the effectiveness of static analysis of Java code to dynami-
cally partition applications. In contrast, Odessa uses a greedy and
incremental approach guided by the application profiler and simple
predictors that works very well to improve makespan and through-
put.

Odessa’s partitioning for makespan has a similarity with multi-
processor scheduling with precedence constraints, which has been
studied extensively (see [18] for a survey). The problem is NP-
complete even in the case of two processors and non-uniform exe-
cution times [12], so heuristics are typically used. Through an of-
fline analysis we show that the performance achieved by Odessa’s
greedy heuristic is comparable to an offline optimal decision ob-
tained with complete profiling information. Yigitbasi et al. [31]
demonstrate placement techniques to minimize makespans of in-
teractive perception applications on general sets of heterogeneous
machines. Like Odessa, they use fast heuristics and online pro-
filing, but do not consider tuning of data parallelism or pipeline
depth.

The System S distributed stream processing system provides op-
erators capable of dynamically adjusting the level of data paral-
lelism [29]. These elastic operators vary based on changes in work-
load and computational resources. Unlike in Sprout, the level of
data parallelism does not extend beyond the boundaries of a single
machine. Zhu et al. [32] describe an automatic tuner that operates
on developer specified application parameters including the level
of operator parallelism. The tuner learns application characteristics
and effects of tunable parameters online to maximize application
fidelity for a given latency constraint.

Also related to our work are parallel processing frameworks like
MapReduce [10] and Dryad [15] for offline analysis of large datasets.
While their runtimes schedule data-parallel tasks to optimize through-
put or fairness to users, the setting is very different from ours (data-
centers vs. mobile, large stored datasets vs. streams) that the details
of the solutions vary. Finally, other work has looked at more gen-
eral VM-based offloading mechanisms [28, 30], while ours relies
on the mechanisms provided by Sprout framework.

7. CONCLUSION
In this paper, we have explored the design of a runtime, called

Odessa, that enables interactive perception applications on mobile
devices. The unique characteristics of the applications drive many
of the design decisions in Odessa, whose lightweight online pro-
filer and simple execution time predictors help make robust and
efficient offloading and parallelization decisions. Our evaluation
of Odessa shows that it can provide more than 3x improvement in
performance compared to application configurations by domain ex-
perts. Additionally, Odessa can adapt quickly to changes in scene
complexity, compute resource availability, and network bandwidth.
Much work remains, including exploring the performance of Odessa
under a broader range of applications, extending it to take advan-
tage of the public cloud, and exploring easy deployability on mo-
bile devices by leveraging modern browser architectures.

Acknowledgements
We would like to thank our shepherd, Rajesh Balan, and the anony-
mous referees, for their insightful suggestions for improving the
technical content and presentation of the paper.

8. REFERENCES
[1] R. K. Balan. "Simplifying Cyber Foraging". PhD thesis,

2006. (In CMU-CS-06-120).
[2] R. K. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen,

and H.-I. Yang. "The case for cyber foraging". In ACM
SIGOPS European Workshop, 2002.

[3] R. K. Balan, M. Satyanarayanan, S.-Y. Park, and T. Okoshi.
"Tactics-Based Remote Execution for Mobile Computing".

In International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2003.

[4] G. Bradski and A. Kaehler. "Learning OpenCV: Computer
Vision with the OpenCV Library". O’Reilly Media, 2008.

[5] M. Carbone and L. Rizzo. "Dummynet revisited".
SIGCOMM Computer Communincation Review,
40(2):12–20, 2010.

[6] M. Chen and A. Hauptmann. "MoSIFT: Recognizing Human
Actions in Surveillance Videos". In CMU-CS-09-161,
Carnegie Mellon University, 2009.

[7] J. Cheng, R. K. Balan, and M. Satyanarayanan. "Exploiting
Rich Mobile Environment". Technical Report
CMU-CS-05-199, Carnegie Mellon University, 2005.

[8] B.-G. Chun and P. Maniatis. "CloneCloud: Elastic Execution
between Mobile Device and Cloud". In Proceedings of the
6th European Conference on Computer Systems (EuroSys),
2011.

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. "MAUI: Making
Smartphones Last Longer with Code Offload". In
International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2010.

[10] J. Dean and S. Ghemawat. "MapReduce: simplified data
processing on large clusters". Communications of the ACM
(CACM), 51(1):107–113, 2008.

[11] J. Flinn, S. Park, and M. Satyanarayanan. "Balancing
Performance, Energy, and Quality in Pervasive Computing".
In International Conference on Distributed Computing
Systems (ICDCS), 2002.

[12] M. R. Garey and D. S. Johnson. "Computers and
Intractability: A Guide to the Theory of NP-Completeness".
W. H. Freeman and Company, New York, 1979.

[13] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and
K. Nahrstedt. "Adaptive Offloading for Pervasive
Computing". IEEE Pervasive Computing, 3(3):66 – 73, 2004.

[14] G. C. Hunt and M. L. Scott. "The Coign automatic
distributed partitioning system". In Symposium on Operating
Systems Design and Implementation (OSDI), 1999.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
"Dryad: distributed data-parallel programs from sequential
building blocks". In European Conference on Computer
Systems, 2007.

[16] M. Kolsch. "Vision based hand gesture interfaces for
wearable computing and virtual environments". PhD thesis,
2004. (In 0-496-01704-7).

[17] B. Kveton, M. Valko, M. Philipose, and L. Huang. "Online
Semi-Supervised Perception: Real-Time Learning without
Explicit Feedback". In IEEE Online Learning for Computer
Vision Workshop, 2010.

[18] Y.-K. Kwok and I. Ahmad. "Static Scheduling Algorithms
for Allocating Directed Task Graphs to Multiprocessors".
ACM Computing Surveys, 31(4):406–471, 1999.

[19] Z. Li, C. Wang, and R. Xu. "Task Allocation for Distributed
Multimedia Processing on Wirelessly Networked Handheld
Devices". In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2002.

[20] D. Lowe. "Distinctive Image Features from Scale-Invariant
Keypoints". International Journal on Computer Vision
(IJCV), 60(2):91–110, 2004.

[21] E. Miluzzo, T. Wang, and A. T. Campbell. "EyePhone:
Activating Mobile Phones With Your Eyes". In Workshop on

Networking, Systems, Applications on Mobile Handhelds
(MobiHeld). ACM, 2010.

[22] D. Narayanan and M. Satyanarayanan. "Predictive Resource
Management for Wearable Computing". In International
Conference on Mobile Systems, Applications, and Services
(MobiSys), 2003.

[23] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden. "Wishbone: Profile-based Partitioning for
Sensornet Applications". In Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

[24] S. Ou, K. Yang, and J. Zhang. "An effective offloading
middleware for pervasive services on mobile devices".
Pervasive and Mobile Computing, 3(4):362–385, 2007.

[25] P. S. Pillai, L. B. Mummert, S. W. Schlosser, R. Sukthankar,
and C. J. Helfrich. "SLIPstream: Scalable Low-latency
Interactive Perception on Streaming Data". In ACM
International Workshop on Network and Operating System
Support for Digital Audio and Video, 2009.

[26] A. C. Romea, D. Berenson, S. Srinivasa, and D. Ferguson.
"Object Recognition and Full Pose Registration from a
Single Image for Robotic Manipulation". In IEEE
International Conference on Robotics and Automation, 2009.

[27] M. Satyanarayanan. "Pervasive Computing: Vision and
Challenges". IEEE Personal Communications, 8(4):10–17,
2001.

[28] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. "The
Case for VM-Based Cloudlets in Mobile Computing". IEEE
Pervasive Computing, 8(4):14–23, 2009.

[29] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu.
"Elastic Scaling of Data Parallel Operators in Stream
Processing". In IEEE International Parallel and Distributed
Processing Symposium, 2009.

[30] Y.-Y. Su and J. Flinn. "Slingshot: Deploying Stateful
Services in Wireless Hotspots". In International Conference
on Mobile Systems, Applications, and Services (MobiSys),
2005.

[31] N. Yigitbasi, L. Mummert, P. Pillai, and D. Epema.
"Incremental Placement of Interactive Perception
Applications". In ACM Symposium on High Performance
Parallel and Distributed Computing (HPDC), 2011.

[32] Q. Zhu, B. Kveton, L. Mummert, and P. Pillai. "Automatic
Tuning of Interactive Perception Applications". In
Conference on Uncertainty in Artificial Intelligence (UAI),
2010.

