
Bootstrapping Energy Debugging on Smartphones:
A First Look at Energy Bugs in Mobile Devices

Abhinav Pathak
Purdue University

pathaka@purdue.edu

Y. Charlie Hu
Purdue University

ychu@purdue.edu

Ming Zhang
Microsoft Research

mzh@microsoft.com

ABSTRACT

This paper argues that a new class of bugs faced by mil-

lions of smartphones, energy bugs or ebugs, have become

increasingly prominent that already they have led to signif-

icant user frustrations. We take a first look at this emerg-

ing important technical challenge faced by the smartphones,

ebugs, broadly defined as an error in the system (applica-

tion, OS, hardware, firmware, external conditions or com-

bination) that causes an unexpected amount of high energy

consumption by the system as a whole. We first present a

taxonomy of the kinds of ebugs based on mining over 39K

posts (1.2M before filtering) from 4 online mobile user fo-

rum and mobile OS bug repositories. The taxonomy shows

the highly diverse nature of smartphone ebugs. We then pro-

pose a roadmap towards developing a systematic diagnosing

framework for debugging ebugs on smartphones.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance Attributes

D.2.5 [Testing and Debugging]: Diagnostics

General Terms Reliability, Measurement, Design.

Keywords Energy, Energy Bug, Ebug.

1. INTRODUCTION

Despite the incredible market penetration of smartphones

and exponential growth of their apps market, their utility

has been and will remain severely limited by their battery

life. Consequently, compared to their desktop counterparts,

smartphones face a new class of abnormal system behav-

iors, namely, energy bugs. In fact, ebugs have become so

prominent that already they have led to significant user frus-

trations. 70% of phones returned to Motorola were related

to energy problems [1].

We define an energy bug, or ebug, as an error in the sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.

Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

tem, either application, OS, hardware, firmware or exter-

nal that causes an unexpected amount of high energy con-

sumption by the system as a whole.1 Unlike traditional soft-

ware bugs, such errors could happen in any of the wide vari-

ety of entities in a phone (e.g., hardware components, app

processes, or the OS), and due to a wide variety of root

causes such as programming errors, inappropriate API us-

age, flaws in the design of applications or the OS (device

drivers), complicated interactions between hardware com-

ponents of smartphones, changing external conditions (e.g.,

remote server crash, or weakened wireless signal strength),

and faulty hardware itself from daily “wear and tear” due

to the portable nature of smartphones (14% of all technical

support calls for Android is related to faulty hardware [2],

9% for WP7 and 8% for iPhone).

Also different from traditional software bugs, ebugs do

not lead to an application crash, or OS screen of death. In

most cases of ebugs, the applications and the whole system

continue to run, providing their intended services normally,

with the exception of consuming unexpectedly large amount

of energy. This makes bug detection and root cause tracing

much more difficult. The end result of an ebug is that mo-

bile devices run out of battery sooner or much sooner than

expected, requiring frequent recharging or resulting in un-

planned device battery outage.

Together, these two unique characteristics of ebugs, diver-

sity in root causes and stealth nature, suggest that they can

be much harder to detect and pinpoint the root causes when

compared to traditional software bugs.

This paper takes a first look at ebugs on smartphones and

calls for the research community to expend research effort to

tackle the associated technical challenges in treating them.

We first present a taxonomy of smartphone ebugs based on

mining over 39K (1.2M before filtering) posts from 4 online

forums. The taxonomy illustrates the diverse nature of pos-

sible ebugs on modern smartphones in terms of their symp-

toms (which hardware component is physically draining en-

ergy) and causes (hardware defect, software bug, or unhan-

1This definition encompasses energy optimization as a special case
which aims at reducing the largely expected though inefficient en-
ergy consumption of applications. However, most of the ebugs dis-
cussed in this paper result in severe battery depletion and conse-
quently considerable user frustration.

dled external events). We then propose a roadmap towards

developing a systematic diagnosing framework for debug-

ging ebugs on this unique, increasingly dominant computing

platforms in the foreseeable future.

2. METHODOLOGY

To gain understanding of ebugs affecting smartphone users,

we crawled Internet forums discussing smartphone energy

problems and bug reports, and performed postprocessing to

extract reported ebugs, and if available, root cause behavior.

Data collection. We pursued a two-pronged approach in col-

lecting ebug data from the Internet. First, we downloaded

bug reports of Android [3] and Maemo OS (Nokia) [4] re-

ported online by users. These bug reports give more definite

information about the ebugs, possible causes and fixes by de-

velopers, but have limited coverage. Second, we crawled In-

ternet forums dedicated to mobile related discussions which

provide much wider and updated coverage of the problems

that users have experienced.

We scrapped 4 popular mobile Internet forums: one gen-

eral forum with discussions covering all mobile devices and

OSes, and three OS/company specific mobile forums. Each

posting thread, or otherwise called discussion or simply post,

is started by a user who observes a specific problem with her

mobile, or wants to discuss a new feature, and is followed

by emails from other users/developers. In all, we down-

loaded over 1.2M posts from the four online forums, with

10 emails per post on average. The posts ranged over 390

mobile devices, including smartphones, tablets, book read-

ers, and PDAs (no laptops or PCs), with the majority related

to smartphones. Over 80% of the posts were posted in the

past 20 months.

Postprocessing. To extract posts related to ebugs from these

forum postings, we first applied simple regex on the text of

the postings to match certain keywords (such as “battery”,

“drain”, “power”, “wake” and “energy”) which results in

39K posts. We next applied k-means [5] clustering to cluster

these 39K posts based on the text contained in their body. We

used the Lemur [6] tool for this purpose which applies stan-

dard Information Retrieval techniques like word stemming,

removing stop words, building index tree, etc., before clus-

tering the documents. We took care to include the name of

the devices in the stop word list to prevent clustering based

on the devices being discussed.

K-means splits the 39K posts into about 1K groups. We

discarded the bottom 500 groups each of which contained

less than 20 posts. We then labeled each group with the

theme of the postings, by manually reading the postings in

the groups. We then (manually) selected those clusters where

the theme encompasses the ebug symptom: unexpected high

battery drain.

3. ENERGY BUGS: A TAXONOMY

We now present a taxonomy of the ebugs, shown in Fig-

ure 1, from digesting the processed trace.

Figure 1: A taxonomy of energy bugs on smartphones. (xx, yy%) de-

notes that there were xx ebug posts related to the topic which amounted

to yy% of all posts.

3.1 Hardware Ebugs

Battery. A large portion of users (2568, 15.71% posts) ob-

served that severe energy depletion was due to faulty bat-

tery. A faulty battery does not hold the complete charge upon

charging. Also, the charge held by the faulty battery drains

internally and results in heating the battery. The posts cited

several reasons for battery turning faulty, including charger

damage, old battery, and water damage. Apart from the

fact that the battery could get damaged resulting in holding

lesser charge, it was observed that in some cases, the mo-

bile device displayed incorrect battery statistics [7], e.g., a

smartphone displays 100% battery charged even though the

battery is charged only 30%, triggering the user to believe

a problem exists somewhere. The faulty battery problems

were either solved by the phone OEM sending a new bat-

tery, or the owner buying a new one, or in some cases, using

a technique called “battery calibration” [8].

Exterior Hardware Damage. Exterior damage to mobile

device hardware could also result in unexplained battery drain

from the device. A hardware damage can be solely respon-

sible for the battery drain or could act as a trigger for other

parts of the phone (like software) to drain battery. For exam-

ple, a damage to external buttons of the phone (209, 1.23%)

caused the “home” button to be oversensitive, and resulted

in random unlocking of the mobile and hence turning on the

backlight and CPU at various times, draining battery. Sim-

ilarly, an external damage to the touchscreen of the phone

rendered it too sensitive to external touches.

SIM. The SIM card of the phone can also cause battery drain

(78, 0.43% posts) in multiple ways. (a) An old SIM can have

several scratches or be bent inwards or outwards, increas-

ing its internal resistance [9] or even leading to bad contacts

shorting and draining battery. (b) Different SIM cards oper-

ate in different voltages (5V, 3V, 1.8V) depending on their

generation and a mismatch could trigger a battery drain. (c)

Usage of micro SIM in newer phones (e.g., iPhone) forces

users to “cut” their normal SIM, which can damage SIM,

shorting its PINs, resulting in unexplained energy drain.

SDCard. An external SDCard can act as a trigger for severe

battery drain. Specifically, a corrupted SDCard or portions

of it could either trigger buggy apps into a looping state,

where they repeatedly try to access the hardware [10], or put

them in a hanging state, while they continue to drain battery

by holding up other components (no sleep bug in § 3.2.2).

External Hardware. External hardware attributed to (787,

4.65%) posts related to battery problems. Out of these, er-

roneous phone chargers were reported as the biggest source

(698, 4.12%). Wall chargers, USB chargers, and car charg-

ers were reported to only partially charge the phone. In some

cases, battery energy depletion was observed after connect-

ing it to the charger which considerably heated the device.

External docks such as music speakers and keyboards were

reported as the sources of battery drain. These external hard-

ware usually contain their own power source or additional

batteries, but were observed to drain power of the mobile

device connected to them, e.g., Eee-pad when connected to

external keyboard was observed to lose energy rapidly.

3.2 Software Ebugs

3.2.1 OS Ebugs

OS updates, by user or forced (e.g., Over-The-Air (OTA)

update), represented the largest fraction (3308, 19.54%posts)

of user complaints regarding ebugs2. IOS updates (4.0 to

4.3.3) (802, 4.74% posts) resulted in severe energy depletion

in Apple mobile devices including iPhone, iPod and iPad.

Android OS updates triggered battery depletion in several

handsets (405, 2.39% posts) like Samsung Galaxy S [12,

13], HTC Evo [14], Nexus One [15, 16], froyo [17]. OTA

updates on Android, e.g., an HTC update [18], also caused

battery drain. Jailbreaking was also reported as the trigger

for energy depletion in (178, 1.05%) posts.

The root cause of battery drain due to an OS update could

be an ebug in the updated OS itself (e.g., a new OS configu-

ration), or in the framework (e.g., the Android framework),

or in one of the apps that accompany the new OS (e.g., wid-

gets and bloatware pushed by phone operators). In most of

the ebug postings related to OS, pinpointing the root cause of

the bug is particularly hard due to the closed-source nature

of some mobile OSes (e.g., IOS). However, in case of other

OSes, user postings indicated two categories of root causes:

OS Processes. Buggy OS processes were observed to cause

battery drain. For example, the “Suspend” process in An-

droid was observed to run in the background keeping the

CPU awake and busy draining battery [14], and the “Sys-

tem Server” process was observed to drain battery in the

background due to high processing [16].

Configuration Changes. OS configuration changes also re-

sulted in high battery drain. For example, a simple con-

figuration change from the tickless to ticked kernel [19] in-

creased power consumption; incorrect profile to SetCPU [20]

for overclocking and underclocking the kernel resulted in

drastic energy depletion. These configurations drained bat-

2The high number of OS update postings is partly due to the fact
that one of the forums used in the study is used by developers to
test/distribute their own version of mobile ROMs, similar to [11],
and users post their experience using the distributed OS versions.

tery due to incorrect utilization of the component or bad

sleeping policies.

3.2.2 Applications and Framework Ebugs

No-Sleep Bug. This is the most prominent ebug (1441, 8.51%)

among application-related ebugs. As the name suggests, “no-

sleep bugs” in applications erroneously do not allow at least

one component of the phone to sleep, resulting in unneces-

sary, prolonged battery drain.

Modern smartphone OSes freeze the system after a short

inactivity timeout to aggressively conserve energy. How-

ever, they provide APIs using which applications can wake

up phone components irrespective of user activities. This

feature is particularly useful in carrying out periodic back-

ground activities like polling and notifications, e.g.,PARTIAL

WAKE LOCK exported by the PowerManager class in Android

helps applications to ensure that the CPU is running irrespec-

tive of user activities. A no-sleep bug is a situation where an

app acquires a wake lock for a component which wakes the

component up, but does not release the lock even after the

job is completed. The no-sleep bug was observed in many

mobile apps, including Facebook [21], location listener [22],

Google latitude [23], Google Calender, email apps [24, 25],

camera app [26] (triggered by camera button), widgets [27],

alarm app [28], dialer app, weather apps, SMS app, GPS

based apps (including Google maps, which turn on GPS and

do not turn it off even after their exit), Gallery app [29] (trig-

gered by “no sleep” of the motion sensor), launcher apps,

and audio over bluetooth [30].

A no-sleep bug is easier to detect by the user in cases

where the switched-on component is easily noticeable, e.g.,

screen (as in the dialer app and SMS app), but much harder

to detect for components whose activities are not easily no-

ticeable, e.g.,GPS and CPU (as in map based apps). The root

cause for a no-sleep bug ranges from a simple programming

mistake (e.g., the programmer forgot to release the lock) to

complicated reasons like race conditions prevented lock re-

lease [31], corner case conditions (e.g.,Android email client

does not release wake locks after data connections get in-

terrupted while syncing over 3G [32]), and sleep conflicts

explained below.

Sleep Conflicts: Sleep conflicts arise due to aggressive sleep-

ing policies of modern day smartphones. These policies

force the CPU to aggressively sleep after an inactivity pe-

riod. If a component is triggered into a high power state, and

the CPU sleeps during this process, the component contin-

ues to draw high power as the ’code logic’ that brings the

component back to a low power state can not run until the

CPU is woken up.

Sleep conflicts can occur in apps, e.g., a map application

turns on GPS and then the CPU sleeps due to inactivity, or in

OS due to low level OEM device driver power management,

e.g., the WiFi NIC enters a high power state followed by a

tail energy state [33, 34], the CPU sleeps, and the driver code

that brings the NIC to a low power state (after a timeout)

cannot run until the CPU wakes up.

Loop Bug:. A loop bug happens where a part of an ap-

plication enters a looping state performing periodic but un-

necessary tasks, draining significant battery. The periodic

task could be either unnecessary network polling, process-

ing, or use of any other component in a loop. A loop bug

could be as simple as a routine calling itself by mistake [35],

or could be complicated like the synchronization issue ob-

served in the sync service in Google Calendar [36] (389,

2.30% posts) where SYNCADAPTER synced its own update

with itself endlessly.

Several loop bugs appear to be triggered by not being able

to handle unexpected external events, such as remote server

crash, email password change, or change in remote software

versions. Such conditions trigger the clients to behave errat-

ically by repeatedly trying to connect to the remote server, or

perform email authentication [37], or ping the server, drain-

ing battery on the phone.

Immortality Bug. An immortality bug is a situation where a

buggy application that drains battery, upon being explicitly

killed by the user, respawns (e.g., by the framework [38]),

enters the same buggy state, and continues to drain battery.

MediaServer [39] and GoogleMaps [40] are some examples.

3.3 Ebugs Triggered by External Conditions

Wireless Signal Strength. Weak wireless signal strength

causes NIC drivers to compensate by increasing its Tx/Rx

power [34] which can significantly increase the energy drain

of apps that perform network activities, e.g., background

processes that perform periodic polling. A total of (1881,

11.11%) posts indicated the weak wireless signal strength

(over 4G, 3G, EDGE, WiFi and GPRS) as the possible root

cause for unusual battery drain spikes (e.g., up to 30-80%

battery drain over a 10-12 hour period on several phones.)

Wireless Handovers. Another problem related to weak wire-

less signal is repeated network handoverswhich can result in

severe battery depletion. In (130, 0.77%) user postings, the

mobile device was observed to drain significantly higher en-

ergy due to repeated network handovers (3G to EDGE and

vice versa), mostly during commutes.

While it is debatable if the above problems due to weak

signal strength belong to the realm of energy optimization,

we argue that the significant energy drain warrants serious

“debugging” efforts.

3.4 Unknown Ebugs
Despite our best effort, the above taxonomy is potentially

incomplete, as a significant portion of the postings only de-

scribed the symptoms without a clear idea of the root causes.

Out of the 5007 such posts, (4000, 23.63%) posts reported

battery problems potentially due to specific apps: browser,

juiceDefender, skype, musicplayers, taskkillers, themes, to

be handset specific, due to tethering, etc., while the remain-

ing (1007, 5.95%) posts were about ebug symptoms for which

users were not able to identify the cause. Such a high per-

centage of ebugs with unknown causes underscores the chal-

lenges faced by debugging ebugs on smartphones.

4. TOWARDS ENERGY DEBUGGING ON

SMARTPHONES
Currently, systematic treatment of ebugs on smartphones

does not exist, and users cope with ebugs in an ad-hoc man-

ner. An ebug is first detected by a user through the obvious

symptom: the battery drain rate suddenly becomes very high

for no apparent reason. This triggers the user to hunt for the

cause. Typically, the user employs task killers to kill a sus-

picious app, hoping to stop the energy drain. If the symp-

tom persists, the process is repeated. A few tools exist to-

day that help user narrow down the suspicious app, either by

providing information such as the fraction of the total sys-

tem energy consumed per process and by the OS (e.g., the

battery tool in Android), or by specialized monitoring (e.g.,

spareparts [41] keeps tracks of CPU wake locks). The forum

posts suggest many users try to use these tools in bug hunt-

ing. However, these tools fall far short in dealing with the

entire diverse spectrum of ebugs (as evident from the posts),

and additionally cannot pinpoint the root cause of ebugs.

4.1 Goals and Challenges
The primary goal of energy debugging on smartphones

is to pinpoint the exact root cause for an unexpected high

rate of energy consumption. The diversity of ebugs exempli-

fied in the taxonomy above suggests that energy debugging

on smartphones faces significant, unique challenges. First,

even narrowing down the user-perceived energy drain symp-

tom to one specific entity is nontrivial as there are so many

candidate entities that can bear the symptom, including the

diverse set of hardware components and external hardware

(e.g., chargers), OS, firmware, framework (e.g., Android),

apps, and external triggers such as wireless signal strength

or misbehavior of remote servers the phone is interacting

with. Second, even after narrowing down an energy drain

to a specific entity, pinpointing the root cause (e.g., which

routine in the app) and developing an eventual fix is a trou-

blesome activity due to the giant structure of the mobile

programming ecosystem, which consists of app developers

(e.g., gmaps), framework developers (e.g., Android), ker-

nel developers (e.g., linux community), firmware developers

(e.g., OEM), hardware manufacturers and wireless network

operators. An ebug could potentially span across multiple

parties in the ecosystem (e.g., sleep conflicts). It is com-

mon for the blame game to spread quickly once an ebug is

reported, i.e., bug reports are bounced from one party to an-

other (e.g., Android OS update ebug got deflected to phone

manufacturer [42]).

4.2 EDB: An Energy Debugging Framework
We make three crucial observations from the ebug tax-

onomy study in Section 3. (1) Although ebugs are diverse,

the natural categorization of them into hardware, OS, frame-

work, firmware, apps, and external triggers suggests a prac-

tical two-step approach: first isolating the bug to a category

and then chasing it within the category. (2) For software

(OS, framework, apps) bugs, there is a need for fine-grained

Figure 2: Components of EDB.

energy profiling and accounting, and for hardware bugs we

need hardware diagnosis and monitoring. (3) Sharing infor-

mation cross parties in the mobile-programming ecosystem

helps to address optimization-oriented ebugs.

Following these observations, we propose a systematic

framework called EDB to diagnose ebugs on smartphones.

EDB has three major components, shown in Figure 2: (1)

for narrowing down the ebug symptom to one entity, (2) for

pinpointing the software module responsible for the ebug,

and (3) automatic tools for detecting root causes. The first

two components are intended to be used by mobile users to

pinpoint the bug source on the mobile, while the third com-

ponent (set of tools) are meant for developers to debug the

apps on servers as they potentially require more processing.

4.2.1 Narrowing Down to One Entity

EDB employs two techniques for sequentially testing all

entities on the smartphone to isolate the entity that bears the

ebug symptom.

HardwareTests. This step consists of two stages: (a) source

tests: This stage verifies whether the source, i.e., battery, is

the problem by using a series of testing tool to test the bat-

tery. These would perform checks ranging from the amount

of charge held by the battery after a complete charge, check-

ing battery gauge at the OS interface and see if calibration is

required, etc. (b) component test: For each of the hardware

bugs in the taxonomy, including SIM, sdcard, bluetooth, we

build a suite of testing tools, much like the hardware system

diagnostics in the traditional BIOS for a desktop machine.

The testing tools would be designed to be specific for each

hardware component to administer its health, e.g., a tool to

check sdcard would exercise the use of the component, read-

ing/ writing different sectors of the card while measuring the

power consumed. It would then match the power consumed

with the expected value.

History-basedDiagnosis for Software. If none of the above

hardware bug testing code catches any ebugs, the ebug must

exist either in the OS (or framework), or in some application

process (semantic bug or triggered by external conditions).

EDB uses history-based diagnosis to narrow down the bug

to one of these entities. The basic idea is to take a snapshot

of the whole phone state information periodically, for exam-

ple, on a daily basis. Upon observing an ebug symptom, i.e.,

unexpected high energy consumption, EDB takes a snapshot

of the current system and calculates the diff from the previ-

ous snapshot. A new entity, or a modified entity (entities) is

(are) the prime suspect(s) of the ebug. For example, a move

to a new area (which changes the wireless signal strength),

an OS update, a configuration change of an app (e.g., pass-

word change), installation of a new app, would be examples

of isolated entities that lead to ebugs. This is similar to tech-

niques where configurations comparisons are used to solve

system problems (e.g., [43]).

4.2.2 Narrowing Down to Software Component

For software ebugs, after narrowing down the ebug to the

particular application or the OS, the next step is localize the

cause to the specific software module.

Need for eprof. For application ebugs, we envision it is es-

sential to develop a general-purpose call-graph energy pro-

filer, eprof, which can be used by an app developer or mobile

user to profile and consequently pinpoint the energy hog of

smartphone apps. Developing such a profiler can directly

leverage various online power models [33, 34, 44]. We envi-

sion the energy profiler to be call-graph-based just like gprof

[45] as an app is typically implemented as a set of subrou-

tines following the widely accepted modular programming

design principle.

Need for eoprof. Finally, for OS (or framework) ebugs (see

Figure 1), an energy profiler for the kernel, eoprof, much like

oprofile [46] for performance profiling the kernel, needs to

be developed. Developing eoprof faces several challenges.

First, it relies on a power model, but an ebug in the ker-

nel or lower level device driver could render power models

such as [34, 33, 44] incorrect as a component’s power con-

sumption logic could itself be buggy. Second, current power

models are designed to target modeling the power consump-

tion of apps and hence can be too course-grained for mod-

eling kernel activities, e.g., they do not capture variations in

kernel configurations. For example, a simple configuration

change from the tickless to ticked kernel could result in sig-

nificant energy drain [19]. To overcome these challenges,

eoprof requires not only calibration of device drivers against

ground truth power dissipation but also fine-grained power

modeling that incorporates kernel/framework configs.

4.2.3 Automatic Tools for Root Cause Detection

Like gprof, the eprof and eoprof tools discussed above are

semi-automatic debugging tools; they finally rely on devel-

opers’ knowledge to uncover the cause that led to why a par-

ticular routine consumes high energy. Developing automatic

energy debugging tools is an important topic but has been

barely explored. We discuss some initial ideas towards treat-

ing the software bugs listed in § 3.2. For “no-sleep bugs”,

the root cause is the mismatch between acquiring and re-

leasing of wake locks, two actions that can be programmed

in different subroutines of an app or in the OS framework.

This resembles concurrency bugs in debugging concurrent

programs (e.g., [47]), and both techniques based on static

analysis (e.g., [48]) and dynamic analysis (e.g., [49]) can be

developed to automatically discover such bugs. For “loop

bugs”, the root causes are often unexpected external events

not properly handled by the application. One approach to de-

tecting such bugs is to apply model checking (e.g., [50, 51])

or symbolic execution (e.g., [52]) previously developed for

or applied to detecting errors in distributed systems to au-

tomatically check for the program behavior under possible

external events.

4.2.4 Cross-Layer Solutions

Addressing optimization-flavored energy problems such

as the wireless signal related ones in §3.3 requires a con-

certed approach acrossmultiple parties in the mobile-programming

ecosystem. For example, under weak signal strength, there

exists a tradeoff between consumingmore energy versus giv-

ing up network connectivity to save energy, and the correct

tradeoff is likely to depend in the importance of the apps

and user preference. This calls for sharing information be-

tween the firmware, the OS, the app, and possibly user con-

figurations. Other examples include sleep conflicts and the

immortality bug.

5. RELATED WORK& CONCLUSION
Energy debugging on smartphones is related to the body

of work on software debugging on desktop and servers and

can draw ideas from this area either on failure diagnosis

techniques such as source code tracing, system logs, and

execution replay [53, 54], and on performance debugging

techniques such as history-based analysis [55], resource ac-

counting [56], and blackbox debugging [57]. Recently, Mo-

bibug [58] was proposed as a diagnosis framework to debug

mobile application crashes.

This paper takes a first look at ebugs, a new class of bugs

faced by millions of smartphones, that have already led to

significant user frustrations. We presented a taxonomy of

the kinds of ebugs based on mining over 39K posts (1.2M

before filtering) from 4 online mobile user forums and mo-

bile OS bug repositories. The taxonomy shows the highly

diverse nature of smartphone ebugs. We further proposed a

roadmap towards developing a systematic diagnosing frame-

work for treating these ebugs. We argue energy debugging

is an important and challenging research area that warrants

significant timely efforts from the research community.

Acknowledgment. Abhinav Pathak was supported in part

by the 2011 Intel PhD Fellowship.

6. REFERENCES
[1] “The bulk of returned motorola phones are the result of applications that cause

performance/energy problems.” URL: http://tinyurl.com/44hns9p
[2] “Android phones more prone to hardware problems.” URL: http://www.pcmag.

com/article2/0,2817,2387493,00.asp
[3] “Android - an open handset alliance project.” URL: http://code.google.com/p/

android/issues/list
[4] “Maemo community.” URL: http://maemo.org/intro/
[5] “k-means clustering.” URL: http://en.wikipedia.org/wiki/K-means clustering
[6] “The lemur project.” URL: http://www.lemurproject.org/
[7] “Incorrect battery reading on droid (2.0).” URL: cgc 5259
[8] “Apple portables: Calibrating your computer’s battery for best performance.”

URL: http://support.apple.com/kb/HT1490
[9] “Meamo.org: Make your battery last longer.” URL: http://wiki.maemo.org/

Make your battery last longer
[10] “Sd card corruption.” URL: cgc 2500
[11] “Cyanogenmod: Android community rom based on froyo.” URL: http://www.

cyanogenmod.com/
[12] “Android os 2.3.3 battery drain.” URL: cgc 16721
[13] “After upgrade galaxy s to gingerbread 2.3.3, suffering a huge battery drain.”

URL: cgc 16562
[14] “”suspend” process runs continually in background at 40% cpu on htc evo 4g.”

URL: cgc 11126

[15] “Heavy battery drain after gingerbread upgrade on nexus one.” URL: cgc
15057

[16] “Cpu is busy and battery drains.” URL: cgc 9733
[17] “The process ”/ init” uses between 70% to 98% cpu - htc legend froyo.” URL:

cgc 13130
[18] “User posting: 2.2 update - htc confirms major problems.” URL: http://

androidforums.com/htc-droid-incredible/
167864-2-2-update-htc-confirms-major-problems.html

[19] S. Siddha, V. Pallipadi, and A. Ven, “Getting maximum mileage out of tickless,”
in Proc. Linux Symposium, 2007.

[20] “Setcpu for root users.” URL: http://www.setcpu.com/
[21] “Facebook 1.3 not releasing partial wake lock.” URL: http://geekfor.me/news/

facebook-1-3-wakelock/
[22] “Using a locationlistener is generally unsafe for leaving a permanent

partial wake lock.” URL: cgc 4333
[23] “Latitude prevents nexus s from sleeping.” URL: cgc 17356
[24] “Email application partial wake lock.” URL: cgc 9307
[25] “E-mail app has a bug which causes a partial wake lock to be held until

manually interrupted.” URL: cgc 6811
[26] “When locked, the camera button wakes up the system causing battery to drain

fast on samsung galaxy.” URL: cgc 4293
[27] “’power control’ widget brightness toggle leaves g1 keyboard backlight on.”

URL: cgc 4211
[28] “After dismissing alarm clock, screen does not timeout.” URL: cgc 6917
[29] “Do you suffer from gallery sensor battery drainage?” URL: http://forum.

xda-developers.com/showthread.php?t=838949
[30] “Huge battery drain because bt-headset sound is not stopped.” URL: https://

bugs.maemo.org/show bug.cgi?id=9640
[31] “Locationmanagerservice: Fix race when removing locationlistener.” URL:

https://review.source.android.com/#/c/12110/
[32] “Email 2.3 app keeps awake when no data connection is available.” URL: http://

www.google.com/support/forum/p/Google+Mobile/thread?
tid=53bfe134321358e8

[33] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and L. Yang,
“Accurate Online Power Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones,” in Proc. of CODES+ISSS, 2010.

[34] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-grained power
modeling for smartphones using system-call tracing,” in Proc. of EuroSys, 2011.

[35] “Fix bugs in audiostreaminalsa::close() and audiostreamoutalsa::close().” URL:
https://review.source.android.com/#/c/13467/

[36] “Google calendar sync problem, continuously tries to sync, drains battery
quickly.” URL: cgc 6107

[37] “Repeated email sync failure eats cpu and battery.” URL: cgc 5424
[38] “Android service.” URL: http://developer.android.com/reference/android/app/

Service.html
[39] “”mediaserver” consuming 100% cpu time after failing to play streaming

videos.” URL: cgc 6765
[40] “Maps continually running causing battery drain.” URL: cgc 10790
[41] “Spare parts.” URL: https://market.android.com/details?id=com.androidapps.

spare parts
[42] “Android os battery use excessive - short battery life.” URL: cgc 14684
[43] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang, C. Yuan, and Z. Zhang,

“Strider: A black-box, state-based approach to change and configuration
management and support,” in LISA, 2003.

[44] M. Dong and L. Zhong, “Self-constructive high-rate system energy modeling
for battery-powered mobile systems,” in Mobisys, 2011.

[45] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A call graph
execution profiler,” in Proc. of ACM PLDI, 1982.

[46] “Oprofile.” URL: http://oprofile.sourceforge.net/news/
[47] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes — a

comprehensive study on real world concurrency bug characteristics,” in
ASPLOS, 2008.

[48] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code later: using
static analysis to find bugs in the real world,” Commun. ACM, 2010.

[49] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa, and Y. Zhou, “Muvi:
automatically inferring multi-variable access correlations and detecting related
semantic and concurrency bugs,” in SOSP, 2007.

[50] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, “Using model checking to
find serious file system errors,” ACM Trans. Comput. Syst., 2006.

[51] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak, “Crystalball: Predicting
and preventing inconsistencies in deployed distributed systems,” in Proceedings
of NSDI, 2009.

[52] O. Crameri, R. Bianchini, and W. Zwaenepoel, “Striking a new balance
between program instrumentation and debugging time,” in Proceedings of
Eurosys, 2011.

[53] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou, “Triage: diagnosing
production run failures at the user’s site,” in SOSP, 2007.

[54] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sherlog: error
diagnosis by connecting clues from run-time logs,” ASPLOS, 2010.

[55] P. Bodik, M. Goldszmidt, A. Fox, D. Woodard, and H. Andersen,
“Fingerprinting the datacenter: Automated classification of performance
crises,” in Eurosys, 2010.

[56] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for request
extraction and workload modelling,” in OSDI, 2004.

[57] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthitacharoen,
“Performance debugging for distributed systems of black boxes,” in SOSP,
2003.

[58] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl, “There’s an app for that, but it
doesn.t work. diagnosing mobile applications in the wild,” in Hotnets, 2010.

*macro cgc = “http://code.google.com/p/android/issues/detail?id=”

http://tinyurl.com/44hns9p
http://www.pcmag.com/article2/0,2817,2387493,00.asp
http://www.pcmag.com/article2/0,2817,2387493,00.asp
http://code.google.com/p/android/issues/list
http://code.google.com/p/android/issues/list
http://maemo.org/intro/
http://en.wikipedia.org/wiki/K-means_clustering
http://www.lemurproject.org/
_cgc_5259
http://support.apple.com/kb/HT1490
http://wiki.maemo.org/Make_your_battery_last_longer
http://wiki.maemo.org/Make_your_battery_last_longer
_cgc_2500
http://www.cyanogenmod.com/
http://www.cyanogenmod.com/
_cgc_16721
_cgc_16562
_cgc_11126
_cgc_15057
_cgc_15057
_cgc_9733
_cgc_13130
_cgc_13130
http://androidforums.com/htc-droid-incredible/167864-2-2-update-htc-confirms-major-problems.html
http://androidforums.com/htc-droid-incredible/167864-2-2-update-htc-confirms-major-problems.html
http://androidforums.com/htc-droid-incredible/167864-2-2-update-htc-confirms-major-problems.html
http://www.setcpu.com/
http://geekfor.me/news/facebook-1-3-wakelock/
http://geekfor.me/news/facebook-1-3-wakelock/
_cgc_4333
_cgc_17356
_cgc_9307
_cgc_6811
_cgc_4293
_cgc_4211
_cgc_6917
http://forum.xda-developers.com/showthread.php?t=838949
http://forum.xda-developers.com/showthread.php?t=838949
https://bugs.maemo.org/show_bug.cgi?id=9640
https://bugs.maemo.org/show_bug.cgi?id=9640
https://review.source.android.com/#/c/12110/
http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
https://review.source.android.com/#/c/13467/
_cgc_6107
_cgc_5424
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
_cgc_6765
_cgc_10790
https://market.android.com/details?id=com.androidapps.spare_parts
https://market.android.com/details?id=com.androidapps.spare_parts
_cgc_14684
http://oprofile.sourceforge.net/news/

	Introduction
	Methodology
	Energy Bugs: A Taxonomy
	Hardware Ebugs
	Software Ebugs
	OS Ebugs
	Applications and Framework Ebugs

	Ebugs Triggered by External Conditions
	Unknown Ebugs

	Towards Energy Debugging on Smartphones
	Goals and Challenges
	EDB: An Energy Debugging Framework
	Narrowing Down to One Entity
	Narrowing Down to Software Component
	Automatic Tools for Root Cause Detection
	Cross-Layer Solutions

	Related Work & Conclusion
	References

