Cellular Networks and Mobile Computing
COMS 6998-8, Spring 2012

Instructor: Li Erran Li
(lierranli@cs.columbia.edu)

http://www.cs.columbia.edu/~coms6998-8/

3/26/2012: Cellular Network and Traffic Characterization
An Untold Story of Middleboxes in Cellular Networks

Zhaoguang Wang
Zhiyun Qian, Qiang Xu, Z. Morley Mao, Ming Zhang

1University of Michigan 2Microsoft Research
Background on cellular network
Why carriers deploy middleboxes?
Problems with middleboxes

Smartphone energy cost?

Application performance?

P2P?

Policies?

Internet

Courtesy: Z. Wang et al.
Challenges and solutions

• Policies can be complex and proprietary
 √ Design a suite of end-to-end probes

• Cellular carriers are diverse
 √ Publicly available client Android app

• Implications of policies are not obvious
 √ Conduct controlled experiments

Courtesy: Z. Wang et al.
Related work

- Internet middleboxes study
 - [Allman, IMC 03], [Medina, IMC 04]
- NAT characterization and traversal
 - STUN [MacDonald et al.], [Guha and Francis, IMC 05]
- Cellular network security
 - [Serror et al., WiSe 06], [Traynor et al., Usenix Security 07]
- Cellular data network measurement
 - WindRider, [Huang et al., MobiSys 10]
Goals

• Develop a tool that accurately infers the NAT and firewall policies in cellular networks

• Understand the impact and implications
 – Application performance
 – Energy consumption
 – Network security
The NetPiculet measurement system
Target policies in NetPiculet

<table>
<thead>
<tr>
<th>Firewall</th>
<th>NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP spoofing</td>
<td>NAT mapping type</td>
</tr>
<tr>
<td>TCP connection timeout</td>
<td>Endpoint filtering</td>
</tr>
<tr>
<td>Out-of-order packet buffering</td>
<td>TCP state tracking</td>
</tr>
<tr>
<td></td>
<td>Filtering response</td>
</tr>
<tr>
<td></td>
<td>Packet mangling</td>
</tr>
</tbody>
</table>
Target policies in NetPiculet

<table>
<thead>
<tr>
<th>Firewall</th>
<th>NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP spoofing</td>
<td>NAT mapping type</td>
</tr>
<tr>
<td>TCP connection timeout</td>
<td>Endpoint filtering</td>
</tr>
<tr>
<td>Out-of-order packet buffering</td>
<td>TCP state tracking</td>
</tr>
<tr>
<td>NAT</td>
<td>Filtering response</td>
</tr>
<tr>
<td></td>
<td>Packet mangling</td>
</tr>
</tbody>
</table>

Cellular Networks and Mobile Computing (COMS 6998-8)

 Courtesy: Z. Wang et al.
Key findings

| Firewall | Some carriers allow IP spoofing
Create network vulnerability |
|----------|--|
| | Some carriers time out idle connections aggressively
Drain batteries of smartphones |
| | Some firewalls buffer out-of-order packet
Degrade TCP performance |
| NAT | One NAT mapping linearly increases port # with time
Classified as random in previous work |
Diverse carriers studied

• NetPiculet released in Jan. 2011
 – 393 users from 107 cellular carriers in two weeks

Technology

- 91% UMTS
- 9% EVDO

Continent

- Europe: 43%
- Asia: 24%
- North America: 19%
- South America: 10%
- Africa: 2%
- Australia: 2%

Courtesy: Z. Wang et al.
Outline

1. IP spoofing
2. TCP connection timeout
3. TCP out-of-order buffering
4. NAT mapping
Outline

1. IP spoofing
2. TCP connection timeout
3. TCP out-of-order buffering
4. NAT mapping
Why allowing IP spoofing is bad?

Cellular Core Network

SRC_IP = 10.9.9.101

10.9.9.202

DST_IP = 10.9.9.101

Internet

Courtesy: Z. Wang et al.
Test whether IP spoofing is allowed

SRC_IP = 10.9.9.202
PAYLOAD = 10.9.9.101

Allow IP spoofing!

Courtesy: Z. Wang et al.
4 out of 60 carriers allow IP spoofing

IP spoofing should be disabled

- Allow: 7%
- Disallow: 93%

Courtesy: Z. Wang et al.
Outline

1. IP spoofing
2. TCP connection timeout
3. TCP out-of-order buffering
4. NAT mapping
Why short TCP timeout timers are bad?
Measure the TCP timeout timer

Time = 10 min

Internet

Cellular Core Network

NetPiculet Client

Is alive?

NetPiculet Server

5 min < Timer < 10 min

Yes!

Is alive?

Courtesy: Z. Wang et al.
Short timers identified in a few carriers

4 carriers set timers less than 5 minutes

- < 5 min: 5%
- 5 - 10 min: 10%
- 10 - 20 min: 8%
- 20 - 30 min: 11%
- > 30 min: 66%

Cellular Networks and Mobile Computing (COMS 6998-8)

Courtesy: Z. Wang et al.
Short timers drain your batteries

- Assume a long-lived TCP connection, a battery of 1350mAh
- How much battery on keep-alive messages in one day?
Outline

1. IP spoofing
2. TCP connection timeout
3. TCP out-of-order buffering
4. NAT mapping
TCP out-of-order packet buffering

Cellular Core Network

NetPiculet Client

Cellular Networks and Mobile Computing (COMS 6998-8)

Packet 6

NetPiculet Server

Buffering out-of-order packets

Courtesy: Z. Wang et al.
Fast Retransmit cannot be triggered

Degrade TCP performance!

Sequence number

Server (sender)
Phone (receiver)

Time (sec)

14 16 18 20 22 24

1 2

RTO

Courtesy: Z. Wang et al.
TCP performance degradation

• Evaluation methodology
 – Emulate 3G environment using WiFi
 – 400 ms RTT, loss rate 1%

Cellular Networks and Mobile Computing (COMS 6998-8)

 Courtesy: Z. Wang et al.
Outline

1. IP spoofing
2. TCP connection timeout
3. TCP out-of-order buffering
4. NAT mapping

Cellular Networks and Mobile Computing
(COMS 6998-8)
NAT mapping is critical for NAT traversal.

Use NAT mapping type for port prediction.

Cellular Networks and Mobile Computing (COMS 6998-8)

Courtesy: Z. Wang et al.
What is NAT mapping type?

• NAT mapping type defines how the NAT assign external port to each connection

12 TCP connections

Cellular Networks and Mobile Computing (COMS 6998-8)

Courtesy: Z. Wang et al.
Behavior of a new NAT mapping type

- Creates TCP connections to the server with random intervals
- Record the observed source port on server

Treated as random by existing traversal techniques. Thus, impossible to predict port.

Port prediction is feasible. Not random!

Courtesy: Z. Wang et al.
Lessons learned

| Firewall | IP spoofing creates security vulnerability
| | IP spoofing should be disabled |
| | Small TCP timeout timers waste user device energy
| | Timer should be longer than 30 minutes |
| | Out-of-order packet buffering hurts TCP performance
| | Consider interaction with application carefully |
| NAT | One NAT mapping linearly increases port # with time
| | Port prediction is feasible |

Courtesy: Z. Wang et al.
Conclusion

• NetPiculet is a tool that can accurately infer NAT and firewall policies in the cellular networks

• NetPiculet has been wildly deployed in hundreds of carriers around the world

• The paper demonstrated the negative impact of the network policies and make improvement suggestions
Cellular Data Network Infrastructure Characterization & Implication on Mobile Content Placement

Qiang Xu*, Junxian Huang*, Zhaoguang Wang*
Feng Qian*, Alexandre Gerber**, Z. Morley Mao*

*University of Michigan at Ann Arbor
**AT&T Labs Research
Applications Depending on IP Address

• IP-based identification is popular
 – Server selection
 – Content customization
 – Fraud detection

• Why? -- IP address has strong correlation with individual user behavior
Cellular IP Address is Dynamic

• Cellular devices are hard to geo-locate based on IP addresses
 – One Michigan’s cellular device’s IP is located to far away places

• /24 cellular IP addresses are shared across disjoint regions

Courtesy: Q. Xu et al.
Problem Statement

• Discover the cellular infrastructure to explain the diverse geographic distribution of cellular IP addresses and investigate the implications accordingly

– The number of GGSN data centers
– The placement of GGSN data centers
– The prefixes of individual GGSN data centers

* The first several IP hops are in GGSN data center
* Cellular IP addresses are allocated by GGSN data center
* GGSN data centers could be far away due to wireless hops
Challenges

• Cellular networks have limited visibility
 – The first IP hop (i.e., GGSN) is far away -- lower aggregation levels of base station/RNC/SGSN are transparent in TRACEROUTE
 – Outbound TRACEROUTE -- private IPs, no DNS information
 – Inbound TRACEROUTE -- silent to ICMP probing

• Cellular IP addresses are more dynamic [BALAKRISHNAN et al., IMC 2009]
 – One cellular IP address can appear at distant locations
 – Cellular devices change IP address rapidly
Solutions

• Collect data in a new way to get geographic coverage of cellular IP prefixes
 – Build Long-term and nation-wide data set to cover major carriers and the majority of cellular prefixes
 – Combine the data from both client side and server side

• Analyze geographic coverage of cellular IP addresses to infer the placement of GGSN data centers
 – Discover the similarity across prefixes in geographic coverage
 – Cluster prefixes according to their geographic coverage
Previous Studies

• Cellular IP dynamics
 – Measured cellular IP dynamics at two locations [Balakrishnan et al., IMC 2009]

• Network infrastructure
 – Measured ISP topologies using active probing via TRACEROUTE [Spring et al., SIGCOMM 2002]

• Infrastructure’s impact on applications
 – Estimated geo-location of Internet hosts using network latency [Padmanabhan et al., SIGMETRICS 2002]
 – On the Effectiveness of DNS-based Server Selection [Shaikh et al., INFOCOM 2001]
Outline

• Motivation
• Problem statement
• Previous Studies

• **Data Sets**
• Clustering Prefixes
• Validating the Clustering Results
• Implication on mobile content placement
Data Sets

- **DataSource1 (server logs):** A location search server
 - millions of records
 - IP address, GPS, and timestamp

- **DataSource2 (mobile app logs):** An application deployed on iPhone OS, Android OS, and Windows Mobile OS
 - 140k records
 - IP address and carrier

- **RouteViews:** BGP update announcements
 - BGP prefixes and AS number

Cellular Networks and Mobile Computing (COMS 6998-8)
Courtesy: Q. Xu et al.
Map Prefixes to Carriers & Geographic Coverage

- Correlate these data sets to resolve each one's limitations to get more visibility.

<table>
<thead>
<tr>
<th>Address</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.205.130.244</td>
<td>36.75</td>
<td>-119.75</td>
</tr>
<tr>
<td>208.54.4.11</td>
<td>33.68</td>
<td>-117.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.205.128.0/17</td>
<td>36.75</td>
<td>-119.75</td>
</tr>
<tr>
<td>208.54.4.0/24</td>
<td>33.68</td>
<td>-117.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.205.130.51</td>
<td>AT&T</td>
</tr>
<tr>
<td>208.54.4.11</td>
<td>T-Mobile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.205.128.0/17</td>
<td>AT&T</td>
</tr>
<tr>
<td>208.54.4.0/24</td>
<td>T-Mobile</td>
</tr>
</tbody>
</table>

DataSource1
RouteViews
DataSource2

Cellular Networks and Mobile Computing (COMS 6998-8)

Courtesy: Q. Xu et al.
Outline

• Motivation
• Problem statement
• Previous Studies
• Data Sets

• Clustering Prefixes
• Validating the Clustering Results
• Implication on mobile content placement
Motivation for Clustering -- Limited Types of Geographic Coverage

- Prefixes with the same geographic coverage should have the same allocation policy (under the same GGSN)
Cluster Cellular Prefixes

• 1. Pre-filter out those prefixes with very few records (todo)
• 2. Split the U.S. into N square grids (todo)
• 3. Assign a feature vector for each prefix to keep # records in each grid
• 4. Use bisect k-means to cluster prefixes by their feature vectors (todo)

How to avoid aggressive filtering?
- keep at least 99% records

How to choose N?
- # clusters is not affected by N while N > 15 && N < 150
 - The geographic coverage of each cluster is coarse-grained

How to control the maximum tolerable SSE?
Clusters of the Major Carriers

All 4 carriers cover the U.S. with only a handful clusters (4-8)
• All clusters have a large geographic coverage
• Clusters have overlap areas
 – Users commute across the boundary of adjacent clusters
 – Load balancing

Courtesy: Q. Xu et al.
Outline

- Motivation
- Problem statement
- Previous Studies
- Data Sets
- Clustering Prefixes
- Validating the Clustering Results
- Implication on mobile content placement
Validate via local DNS Resolver (DataSource2)

• Identify the local DNS resolvers
 – Server side: log the incoming DNS requests on the authoritative DNS resolver of eecs.umich.edu and record (id_timestamp, local DNS resolver)

• Profile the geographic coverage of local DNS resolvers
 – Device side: request id_timestamp.eecs.umich.edu and record the (id_timestamp, GPS)
Validate via Cellular DNS Resolver

(Cont.)

• Clusters of Carrier A’s local DNS resolvers

• Clusters of Carrier A’s prefixes
Clustering Results

• Goal -- “...discover the cellular infrastructure to explain the diverse geographic distribution of cellular IP addresses...”
 – All 4 major carriers have only a handful (4-8) GGSN data centers
 – Individual GGSN data centers all have very large geographic coverage

• Goal -- “...investigate the Implications accordingly...”
 – Latency sensitive applications may be affected
 • CDN servers may not be able close enough to end users
 • Applications based on local DNS may not achieve higher resolution than GGSN data centers
Outline

- Motivation
- Problem statement
- Previous Studies
- Data Sets
- Clustering Prefixes
- Validating the Clustering Results

- Implication on mobile content placement
Routing Restriction: How to Adapt Existing CDN service to Cellular?

- Where to place content?
 - Along the wireless hops: require infrastructure support
 - Inside the cellular backhaul: require support from cellular providers
 - On the Internet: limited benefit, but how much is the benefit?

- Which content server to select?
 - Based on geo-location: finer-grained location may not available
 - Based on GGSN: location of GGSN
Server Selection (DataSource2)

• Approximately locate the server with the shortest latency
 – Based on IP address
 – Based on application level information, e.g., GPS, ZIP code, etc.
• Compare the latency to the Landmark server (1) closest to device with the latency to the Landmark server (2) closest to the GGSN
 – Estimate the location of GGSN based on TRACEROUT

→ Select the content server based on GGSN!
Contributions

• Methodology
 – Combine routing, client-side, server-side data to improve cellular geo-location inference
 – Infer the placement of GGSN by clustering prefixes with similar geographic coverage
 – Validate the results via TRACEROUTE and cellular DNS server.

• Observation
 – All 4 major carriers cover the U.S. with only 4-8 clusters
 – Cellular DNS resolvers are placed at the same level as GGSN data centers

• Implication
 – Mobile content providers should place their content close to GGSNs
 – Mobile content providers should select the content server closest to the GGSN
Questions?