Cellular Networks and Mobile Computing COMS 6998-8, Spring 2012

Instructor: Li Erran Li

(lierranli@cs.columbia.edu)

http://www.cs.columbia.edu/~coms6998-8/

3/26/2012: Cellular Network and Traffic Characterization

An Untold Story of Middleboxes in Cellular Networks

Zhaoguang Wang¹

Zhiyun Qian¹, Qiang Xu¹, Z. Morley Mao¹, Ming Zhang²

¹University of Michigan ²Microsoft Research

Background on cellular network

Why carriers deploy middleboxes?

Problems with middleboxes

Challenges and solutions

Policies can be complex and proprietary

 $\sqrt{}$ Design a suite of end-to-end probes

Cellular carriers are diverse
 √ Publicly available client Android app

Implications of policies are not obvious

 $\sqrt{\text{Conduct controlled experiments}}$

Related work

- Internet middleboxes study
 - [Allman, IMC 03], [Medina, IMC 04]
- NAT characterization and traversal
 - STUN[MacDonald et al.], [Guha and Francis, IMC 05]
- Cellular network security
 - [Serror et al., WiSe 06], [Traynor et al., Usenix Security 07]
- Cellular data network measurement
 - WindRider, [Huang et al., MobiSys 10]

Goals

 Develop a tool that accurately infers the NAT and firewall policies in cellular networks

Understand the impact and implications

- Application performance
- Energy consumption
- Network security

The NetPiculet measurement system

Target policies in NetPiculet

Firewall	IP spoofing
	TCP connection timeout
	Out-of-order packet buffering
NAT	NAT mapping type
	Endpoint filtering
	TCP state tracking
	Filtering response
	Packet mangling

Target policies in NetPiculet

Firewall	IP spoofing
	TCP connection timeout
	Out-of-order packet buffering
NAT	NAT mapping type
	Endpoint filtering
	TCP state tracking
	Filtering response
	Packet mangling

Key findings

Firewall	Some carriers allow IP spoofing Create network vulnerability
	Some carriers time out idle connections aggressively Drain batteries of smartphones
	Some firewalls buffer out-of-order packet Degrade TCP performance
NAT	One NAT mapping linearly increases port # with time Classified as random in previous work

Diverse carriers studied

- NetPiculet released in Jan. 2011
 - 393 users from 107 cellular carriers in two weeks

Outline

IP spoofing TCP connection timeout TCP out-of-order buffering NAT mapping

Outline

IP spoofing TCP connection timeout TCP out-of-order buffering NAT mapping

Why allowing IP spoofing is bad?

Test whether IP spoofing is allowed

4 out of 60 carriers allow IP spoofing

Outline

IP spoofing TCP connection timeout TCP out-of-order buffering NAT mapping

Why short TCP timeout timers are bad?

(COMS 6998-8)

Courtesy: Z. Wang et al.

Measure the TCP timeout timer

Time = @0mmin

Short timers identified in a few carriers

4 carriers set timers less than 5 minutes

Short timers drain your batteries

- Assume a long-lived TCP connection, a battery of 1350mAh
- How much battery on keep-alive messages in one day?

Outline

IP spoofing TCP connection timeout TCP out-of-order buffering NAT mapping

TCP out-of-order packet buffering

Fast Retransmit cannot be triggered

TCP performance degradation

Evaluation methodology

- Emulate 3G environment using WiFi
- 400 ms RTT, loss rate 1%

Longer downloading time

More energy consumption

Outline

IP spoofing TCP connection timeout TCP out-of-order buffering NAT mapping

NAT mapping is critical for NAT traversal

What is NAT mapping type?

 NAT mapping type defines how the NAT assign external port to each connection

NAT Cellular Networks and Mobile Computing

Behavior of a new NAT mapping type

- Creates TCP connections to the server with random intervals
- Record the observed source port on server

Lessons learned

Firewall	IP spoofing creates security vulnerability IP spoofing should be disabled
	Small TCP timeout timers waste user device energy Timer should be longer than 30 minutes
	Out-of-order packet buffering hurts TCP performance Consider interaction with application carefully
NAT	One NAT mapping linearly increases port # with time Port prediction is feasible

Conclusion

 NetPiculet is a tool that can accurately infer NAT and firewall policies in the cellular networks

 NetPiculet has been wildly deployed in hundreds of carriers around the world

 The paper demonstrated the negative impact of the network policies and make improvement suggestions

Cellular Data Network Infrastructure Characterization & Implication on Mobile Content Placement

Qiang Xu*, Junxian Huang*, Zhaoguang Wang* Feng Qian*, Alexandre Gerber**, Z. Morley Mao*

*University of Michigan at Ann Arbor

++AT&T Labs Research

Applications Depending on IP Address

- IP-based identification is popular
 - Server selection
 - Content customization
 - Fraud detection

 Why? -- IP address has strong correlation with individual user behavior

This video is not available in your country.

You are trying to access Facebook from with abusive behavior. You may request

Courtesy: Q. Xu et al.

Cellular IP Address is Dynamic

- Cellular devices are hard to geo-locate based on IP addresses
 - One Michigan's cellular device's IP is located to

 /24 cellular IP addresses are shared across disjoint regions

Problem Statement

 Discover the cellular infrastructure to explain the diverse geographic distribution of cellular IP addresses and investigate the implications accordingly

- * The first several IP hops are in GGSN data center
- * Cellular IP addresses are allocated by GGSN data center
- * GGSN data centers could be far away due to wireless hops
- The number of GGSN data centers
- The placement of GGSN data centers
- The prefixes of individual GGSN data centers

Challenges

- Cellular networks have limited visibility
 - The first IP hop (i.e., GGSN) is far away -- lower aggregation levels of base station/RNC/SGSN are transparent in TRACEROUT
 - Outbound TRACEROUTE -- private IPs, no DNS information
 - Inbound TRACEROUTE -- silent to ICMP probing
- Cellular IP addresses are more dynamic [BALAKRISHNAN et al., IMC 2009]
 - One cellular IP address can appear at distant locations
 - Cellular devices change IP address rapidly

Solutions

- Collect data in a new way to get geographic coverage of cellular IP prefixes
 - Build Long-term and nation-wide data set to cover major carriers and the majority of cellular prefixes
 - Combine the data from both client side and server side
- Analyze geographic coverage of cellular IP addresses to infer the placement of GGSN data centers
 - Discover the similarity across prefixes in geographic coverage
 - Cluster prefixes according to their geographic coverage

Previous Studies

- Cellular IP dynamics
 - Measured cellular IP dynamics at two locations [Balakrishnan et al., IMC 2009]
- Network infrastructure
 - Measured ISP topologies using active probing via TRACEROUTE [Spring et al., SIGCOMM 2002]
- Infrastructure's impact on applications
 - Estimated geo-location of Internet hosts using network latency [Padmanabhan et al., SIGMETRICS 2002]
 - On the Effectiveness of DNS-based Server Selection [Shaikh et al., INFOCOM 2001]

- Motivation
- Problem statement
- Previous Studies
- Data Sets
- Clustering Prefixes
- Validating the Clustering Results
- Implication on mobile content placement

Data Sets

DataSource1 (server logs): a location search server

- millions of records
- ▶ IP address, GPS, and timestamp

```
timestamp lat. long. address
1251781217 36.75 -119.75
166.205.130.244
1251782220 33.68 -117.17 208.54.4.78
```

 DataSource2 (mobile app logs): an application deployed on iPhone OS, Android OS, and Windows Mobile OS

- ▶ 140k records
- IP address and carrier

- RouteViews: BGP update announcements
 - BGP prefixes and AS number

```
...|95.140.80.254|31500|166.205.128.0/17|31500 3267 3356 7018 20057|...
...|95.140.80.254|31500|208.54.4.0/24|31500 3267 3356 21928|...
```

Map Prefixes to Carriers & Geographic Coverage

Correlate these data sets to resolve each one's limitations to

- Motivation
- Problem statement
- Previous Studies
- Data Sets
- Clustering Prefixes
- Validating the Clustering Results
- Implication on mobile content placement

Motivation for Clustering --Limited Types of Geographic

 Prefixes with the same geographic coverage should have the same allocation policy (under the same GGSN)

Cluster Cellular Prefixes

- 1. Pre-filter out those prefixes with very few records (todo)
- 2. Split the U.S. into N square grids (todo)
- 3. Assign a feature vector for each prefix to keep # records in each grid
- 4. Use bisect k-means to cluster prefixes by their feature vectors (todo)
- How to avoid aggressive filtering?
 - keep at least 99% records
- ▶ How to choose N?
 - # clusters is not affected by N while N >
 15 && N < 150</pre>
 - ➤ The geographic coverage of each cluster is coarse-grained
- How to control the maximum tolerable SSE?

Clusters of the Major Carriers

All 4 carriers cover the U.S. with only a handful clusters (4-8)

- All clusters have a large geographic coverage
- Clusters have overlap areas
 - Users commute across the boundary of adjacent clusters
 - Load balancing

- Motivation
- Problem statement
- Previous Studies
- Data Sets
- Clustering Prefixes
- Validating the Clustering Results
- Implication on mobile content placement

Validate via local DNS Resolver (DataSource2)

- Identify the local DNS resolvers
 - Server side: log the incoming DNS requests on the authoritative DNS resolver of eecs.umich.edu and record (id_timestamp, local DNS resolver)
- Profile the geographic coverage of local DNS resolvers
 - Device side: request id_timestamp.eecs.umich.edu
 and record the (id_timestamp, GPS)

Validate via Cellular DNS Resolver (Cont.)Clusters of Carrier A's local DNS resolvers

Clusters of Carrier A's prefixes

Courtesy: Q. Xu et al.

Clustering Results

- Goal -- "...discover the cellular infrastructure to explain the diverse geographic distribution of cellular IP addresses..."
 - All 4 major carriers have only a handful (4-8) GGSN data centers
 - Individual GGSN data centers all have very large geographic coverage
- Goal -- "...investigate the Implications accordingly..."
 - Latency sensitive applications may be affected
 - CDN servers may not be able close enough to end users
 - Applications based on local DNS may not achieve higher resolution than GGSN data centers

- Motivation
- Problem statement
- Previous Studies
- Data Sets
- Clustering Prefixes
- Validating the Clustering Results
- Implication on mobile content placement

Routing Restriction: How to Adapt Existing CDN service to Cellular?

- Where to place content?
 - Along the wireless hops: require infrastructure support
 - Inside the cellular backhaul: require support from cellular providers
 - On the Internet: limited benefit, but how much is the benefit?
- Which content server to select?
 - Based on geo-location: finer-grained location may not available
 - Based on GGSN: location of GGSN

Server Selection (DataSource2)

- Approximately locate the server with the shortest latency
 - Based on IP address
 - Based on application level information, e.g., GPS, ZIP code, etc.
 - Compare the latency to the Landmark server (1) closest to device with the latency to the Landmark server (2) closest to

the GGSN

- Estimate the location of GGSN based on TRACEROUT
- Select the content server based on GGSN!

Cellular Networks and Mobile Computing (COMS 6998-8)

Contributions

Methodology

- Combine routing, client-side, server-side data to improve cellular geo-location inference
- Infer the placement of GGSN by clustering prefixes with similar geographic coverage
- Validate the results via TRACEROUTE and cellular DNS server.

Observation

- All 4 major carriers cover the U.S. with only 4-8 clusters
- Cellular DNS resolvers are placed at the same level as GGSN data centers

Implication

- Mobile content providers should place their content close to GGSNs
- Mobile content providers should select the content server closest to the GGSN

Courtesy: Q. Xu et al.

Questions?