Cellular Networks and Mobile Computing COMS 6998-8, Spring 2012

Instructor: Li Erran Li

(lierranli@cs.columbia.edu)

http://www.cs.columbia.edu/~coms6998-8/

2/20/2012: Ebugs, Power Models, Profiling and Debuging

Announcements

- To obtain physical access to Gateway Lab, contact mjg2203@columbia.edu
- Contact TA Hemin Merchant to provision your iOS devices
- Contact TA Jiawen Sun to get Amazon EC2 credits (one representative from each project team)
- Programming assignment 1 will be due on Monday, Feb 27th

Outline

- The Rise of Ebugs
- Methods of Measuring Power Usage
- Power Models
 - Usage based
 - System call trace based
- Profiling
- Conclusion

The Rise of Energy Bugs

Single Symptom:

Severe, Unexpected Battery Drain

Apps Need Not Crash No Blue Screen Of Death Common Perception: Kill some apps to fix

User Frustration (Dialer App EBug)

Comment 24 by mgil...@gmail.com, Aug 14, 2011

This defect is a real P.I.T.A. - I don't want to use my phone as a phone because I have to restart it every time. If I forget then it's usually 30-40% battery gone by the end of the day.

Comment 30 by hansheng...@gmail.com, Aug 15, 2011

Bring your charger with you and keep it charged!!! That's the only way the phone can last a day. It's a irritating bug!!!

Comment 239 by egork...@gmail.com, Nov 6 (6 days ago)

GOOGLE!!!!!!!! DO SOMETHING WITH THIS ISSUE!!! FASTER PLEASE!!!!

Crawling Internet Forums

Ebug Taxonomy

Hardware EBug

Hardware 23% **Software** 35% **12% External**

Unknown

Battery

External Hardware

Sim Card

Exterior Hardware Damage

2/20/12

SDCard

Ebug Taxonomy

OS Ebugs

HOT TOPICS APPLE ANDROID GOOGLE REPUBLIC WIRELESS FACEBOOK ADOBE

Why does OS Leak Energy?

iPhone 4S Battery Life Bugs Got You Down?

Hard to infer

Battery life on the iPhone 4S: the new 'death grip'?

By **Doug Gross**, CNN updated 4:17 PM EST, Tue November 1, 2011 | Filed under: **Mobile**

OS Processes

iPhone battery fix coming 'in a few weeks'

By **Doug Gross**, CNN updated 11:19 AM EST, Thu November 3, 2011 | Filed under: **Mobile**

System Configuration

IOS Version: 4.0 – 4.3.3 (5% posts)

(COMS 6998-8)

2.5% posts

Apps EBug: No Sleep Bug

 Aggressive Sleeping Policies: Smartphone OSes freeze system after brief inactivity

 Power <u>encumbered</u> Programming: Programmer has to manage sleep/wake cycle of components

 No Sleep Bug: At least one component is kept awake due to mismanagement

External Conditions

External Services (<1%)

Network Signal Strength (11%)

Wireless Handovers (<1%)

EDB: Energy Debugging Framework

Mobile Programming EcoSystem: The EBug Blame Game

Network Operators

Framework Developers

Cellular Networks and Mobile Computing (COMS 6998-8)

Firmware/OEM Developers

Outline

- The Rise of Ebugs
- Methods of Measuring Power Usage
- Power Models
 - Usage based
 - System call trace based
- Profiling
- Conclusion

Measuring Power Usage

- Approach 1: Use power meter (offline)
 - Buy an expensive equipment (\$770)
 - Problems:
 - Only reports entire device energy consumption

Approach 2: Use built-in battery sensor (online)

iOS Battery API

- Use UIDevice class to obtain information and notifications about
 - charging state (property batteryState)
 - charging level (property batteryLevel)

```
1.
       [[UIDevice currentDevice] setBatteryMonitoringEnabled:YES];
2.
          NSArray *battervStatus = [NSArray arrayWithObjects:
3.
                                       @"Battery status is unknown.".
                                       @"Battery is in use (discharging).",
4.
5.
                                       @"Battery is charging.",
                                       @"Battery is fully charged.", nil];
6.
          if ([[UIDevice currentDevice] batteryState] == UIDeviceBatteryStateUnknown)
7.
              NSLog(@"%@", [batteryStatus objectAtIndex:0]);
8.
9.
          else
10.
11.
              NSString *msg = [NSString stringWithFormat:
                                 @"Battery charge level: %0.2f%\n%@",
[[UIDevice currentDevice] batteryLevel] * 100,
12.
                                [batteryStatus objectAtIndex:[[UIDevice currentDevice]
13.
                                           battervState]];
              NSLog(@"%@", msg);
14.
15.
```

Android Battery API

- Sample updates stored in files:
 - Current: /sys/class/power_supply/battery/batt_chg_current
 - Voltage: /sys/class/power_supply/battery/batt_vol
 - Capacity: /sys/class/power_supply/battery/capacity

```
    File fcur = new File("/sys/class/power_supply/battery/batt_chg_current");
    if (fcur.exists())
    ...
```

- File names are vendor dependent
- Access using Android Debug Bridge (adb)
 - <sdk>platform-tools
 - Command: adb shell

Outline

- The Rise of Ebugs
- Methods of Measuring Power Usage
- Power Models
 - Usage based
 - System call trace based
- Profiling
- Conclusion

Smartphone is Energy Constrained

Energy: One of the most critical issues in

smartphones

Limited battery lifetime

 Battery energy density only doubled in last 15 yrs

- Smartphone capability has increased drastically
 - Multiple Components: GPS, 3G, retina display,

Towards Understanding Energy Drain

- Key Question: Where is energy being spent?
 - Which component/process/thread/function(?)

Generic Power Modeling

Smartphone Power Modeling: Utilization Based (1/3)

Linear Regression (LR) and Superimposition

Model =
$$(Util_{Net})^* E_{Net} + (Util_{CPU})^* E_{CPU} + (Util_{Disk})^* E_{Disk}$$

Smartphone Power Modeling: Utilization Based (2/3)

PowerTutor model

```
\begin{split} &(\beta_{uh} \times \textit{freq}_h + \beta_{ul} \times \textit{freq}_l) \times \textit{util} + \beta_{CPU} \times \textit{CPU\_on} + \beta_{br} \times \textit{brightness} \\ &+ \beta_{Gon} \times \textit{GPS\_on} + \beta_{Gsl} \times \textit{GPS\_sl} + \beta_{Wi\_Fi\_l} \times Wi\_Fi_l \\ &+ \beta_{Wi\_Fi\_h} \times Wi\_Fi_h + \beta_{3G\_idle} \times 3G_{idle} + \beta_{3G\_FACH} \times 3G_{FACH} \\ &+ \beta_{3G\_DCH} \times 3G_{DCH} \\ &\beta : \text{power coefficient.} \\ &\text{util, brightness and etc.: system variables.} \end{split}
```

 Sesame paper has two optimizations: model molding, principle component analysis (PCA)

Smartphone Power Modeling: Utilization Based (3/3)

Model = $(Util_{Net})^* E_{Net} + (Util_{CPU})^* E_{CPU} + (Util_{Disk})^* E_{Disk}$

Fundamental (yet intuitive) assumption

(Only active) Utilization => power consump

Second assumption

Energy scales linearly with amount of

Components power consumption add liv

Courtesy: Pathak et al

Desired Feature

Which process/thread/function? Hard to correlate

(Only active) Utilization => Power Consumption

(a) File Open and Read (on WM6 on Touch)

File open/delete/ close/create change power state

Several components have tail states (3G, disk, wifi, gps)

Energy scales linearly with amount of work

WM6.5 on Tytn II

(1) Send packets @ < 50pkts/s

(2) Send packets @ > 50pkts/s

Components power consumption ad

What have we learnt so far?

Simple (state-of-art) energy modeling assumptions are wrong There exits a notion of power states

What have we hinted so far?

Device drivers have intelligent power control rules

System calls play a role in power consumption

Courtesy: Pathak et al

Challenges in fine-grained power modeling?

Device drivers are closed source (no code/no information)

System Calls As Power Triggers

Key observation: System call is the interface through which an application communicates with the underlying system (hardware) and outside world (Internet, GPS, etc.)

Key Idea: Use System Calls as triggers in power modeling

Advantages:

- Encapsulates utilization based triggers
 - Parameters of system calls
- Captures power behavior of ones that do not necessarily imply utilization
- Can be traced back to process, thread, function
 - Eases energy accounting

Finite-State-Machine (FSM) as Power Model Representation

We Use Finite-State-Machine (FSM)

- Nodes: Power states
 - Base State: No activity on phone
 - Productive state: Actual utilization
 - Tail state: No-useful work
- Edges: Transition rules
 - System calls (start/completion)
 - Workload (Ex: 50 pkts/sec)
 - Timeout

FSM Power Model Construction

- Systematic 'Brute Force' Approach
 - Step 1 : Model Single System Call

Step 2 : Model Multiple System Calls for Same Component

Step 3 : Model Multiple Components (Entire Phone)

- Requires domain knowledge
 - Semantics of system calls

Step 1: Single System Call FSM

WM6.5 on HTC Touch

System call: read (fd, buf, size);

Step 2: Modeling Multiple System Calls of Same Component

 Observation: A component can only have a small finite number of power states

- Methodology
 - Identify and merge similar power states
 - Obey programming order
 - Model concurrent system calls

Step 2: WiFi NIC

SEND

Step 3: Modeling Multiple Components

 Observation: Different components may interact with each other's power consumption

- Methodology
 - Try to reach different combination of states
 - Construct new states and transitions in FSM

Implementation

- Windows Mobile 6.5
 - Extended CeLog

- Android
 - System Tap: Logs kernel events
 - Android debugging framework: Custom logging in Dalvik VM

Evaluation: Handsets Used

HTC Tytn II
Win 6.5 (CE 5.2)

HTC Touch
Win 6.5 (CE 5.2)

HTC Magic Android (Linux 2.6.34)

Snapshot of FSM for Entire Phone

End-To-End Energy Estimation Error

FSM: under 4%

LR: 1% - 20%

Fine-Grained Energy Estimation

CDF of energy estimation error per 50ms time interval

FSM: 80th percentile error less than 10% for all apps

LR: 10th percentile error less than 10% for all apps

Outline

- The Rise of Ebugs
- Methods of Measuring Power Usage
- Power Models
 - Usage based
 - System call trace based
- Profiling
- Conclusion

Energy Profiling

- eprof published in Eurosys 2012
- QCOM Trepn Profiler
 - Trepn leverages hardware sensors built into the Snapdragon MDP
 - Analyze power consumption of hardware blocks in the Snapdragon MDP, including:
 - CPU (system and auxiliary)
 - GPS
 - Bluetooth
 - Camera
 - Audio
 - Memory
 - Network data (optimizes data transfer frequency)

eprof

- Accounting policies for asynchronous power
 - Tail power state energy consumption: attributed to last trigger
 - Concurrent accesses: divided among multiple system calls
 - Wakelocks and exotic components: attributed to the entities that acquired the wakelock

eprof Architecture

eprof Implementation

- SDK routine tracing: extend Android routing profiling framework
 - http://developer.android.com/reference/android/os/ Debug.html
- NDK routine tracing: use gprof port of NDK
 - http://code.google.com/p/android-ndk-profiler/
- System call tracing: insert ADB logging APIs in framework code and log CPU (sched.switch) scheduling event in kernel using systemtap
 - http://www.cyanogenmod.com/

eprof Evaluation

Most energy spent on I/O

App	Run-	#Routine calls	%	3rd-Party Modules	Where is the energy spent inside an app?	
	time	(#Threads)	Battery	Used		
browser	30s	1M (34)	0.35%	-	38% HTTP; 5% GUI; 16% user tracking; 25% TCP cond.	
angrybirds	28s	200K (47)	0.37%	Flurry[7],Khronos[41]	20% game rendering; 45% user tracking; 28% TCP cond.	
fchess	33s	742K (37)	0.60%	AdWhirl[42]	50% advertisement; 20% GUI; 20% AI; 2% screen touch	
nytimes	41s	7.4M (29)	0.75%	Flurry[7],JSON[43]	65% database building; 15% user tracking; 18% TCP cond.	
mapquest	29s	6M (43)	0.60%	SHW[44],AOL,JSON[43]	28% map tracking; 20% map download; 27% rendering	

Performance Optimization

Energy bundle: continuous period of an I/O component actively consuming power

App	Total I/O	Bundles	#I/O Routines					
	Energy		/total routines					
Handset:tytn2 running WM6.5								
pslide	92%	3 (3 Disk)	2/21					
pup	57%	3 (3 NET)	3/32					
Handset:magic running Android								
syncdroid	50%	4 (1 NET, 3 DISK)	8/0.9K					
streamer	31%	3 (3 NET)	4/1.1K					
Handset:passion running Android								
browser	69%	3 (2 Net, 1 GPS)	5/3.4K					
angrybirds	80%	4 (3 NET, 1 GPS)	5/2.2K					
fchess	75%	2 (2 NET)	7/3.7K					
nytimes	67%	2 (1 NET, 1 GPS)	16/6.8K					
mapquest	72%	3 (2 NET, 1 GPS)	14/7.1K					
pup	70%	1 (1 NET)	3/1.1K					

Performance Optimization (Cont'd)

Energy bundle: continuous period of an I/O component actively consuming power

Paper Contains ...

- Detailed FSM construction
 - Handling special cases (CPU Frequency, WiFi Signal Strength)
 - FSM for 3 smartphones
- Detailed Accuracy Results
 - Why our model performs better than state-of-art
- Logging Overhead
 - Under 10% overhead on both the OSes
- Application: Energy Profiler
 - Call-Graph Energy profiler for smartphone apps
 - Generates source code heat map

Conclusion and Future work

- Ebugs need to be dealt with
- Fine-grained energy modeling and profiling very important to pinpoint energy bottleneck and ebugs
 - Accounting is tricky
 - -I/O energy consumption is a major part
- Display energy modeling and profiling is still lacking

Online Resources

- ded: decompiling android application tool
 - http://siis.cse.psu.edu/ded/

Questions?