Cellular Networks and Mobile
Computing
COMS 6998-8, Spring 2012

Instructor: Li Erran Li
(lierranli@cs.columbia.edu)

http://www.cs.columbia.edu/~coms6998-8/
2/6/2012: Introduction to iOS programming

Outline

10S Overview
Objective-C
Model-View-Controller
Demo

Networking

iICloud

iOS Architecture

* Implemented as a number of
ayers

* Lower layers provide
fundamental services and

tEChnOIOgieS Cocoa Touch
* Higher layers provide more e

sophisticated services Gore Servies

— Builds upon the functionality Core 08

provided by the lower layers

— Provides object-oriented
abstractions for lower layer
constructs

iOS Frameworks

* Frameworks are packages of system
interfaces.
— Each framework contains dynamically shared

libraries and associated resources (header files,
images, etc)

— When a framework is used, they need to be
linked into the project

e Standard frameworks such as Foundation and UIKit are
linked by default, when a template project is started

* Higher level frameworks often build on lower
level frameworks

10S Overview: CoreQOS

CoreQOS is based on Mach

System Framework
— Threading (POSIX)
— Networking (BSD sockets)
— File system
— Service discovery (Bonjour & DNS)
— Memory management
— Math computations

External Accessory Framework and Core
Bluetooth Framework: support for
communicating with hardware accessories

Security Framework: crypto library and
keychain Services (secure storage of passwords,
keys, for one or more users)

Accelerate Framework

— DSP, linear algebra and image processing
optimized for hardware

Cocoa Touch

Media

Core Services

Core OS

10S Overview: Core Services

* High level features

iCloud storage (i0S5)

Automatic reference counting (iOS5)
SQLite: lightweight SQL database
Grand Central Dispatch (GCD): manage

concurrent execution of tasks
 Thread management code moved to the

Cocoa Touch

system level Media
» Tasks specified are added to an appropriate
dispatch queue. Core Services

Block objects: a C-level language construct;

. Core OS
an anonymous function and the data (a

closure or lambda)

In-App purchase: process financial
transactions from iTune account

XML support

iOS Overview: Core Services (Cont’d)

CFNetwork Framework: object-oriented abstractions
for working with network protocols (DNS, http, ftp,
Bonjour services)

Address Book Framework
Core Data Framework
Core Foundation Framework: arrays, sets, string, url,

threads

Foundation Framework: Objective-C wrapper Socoa fouch

Core Media Framework Media

Core Location Framework
Core Telephony Framework

Core Services

Newsstand Kit Framework (iOS5): a central place to Core 0S

read newspapers and magazines

Store Kit Framework: support purchasing from iOS
apps

System Configuration Framework: determine
network configuration

IOS Overview: Media

High level features
— Graphics
e Core graphics
* Core animation
* Core image
OpenGL ES and GLKit
Core text

— Audio/video
* Meida player
* OpenAL
e Core audio
* Core media

— AirPlay: stream audio to Apple TV
and to third-party AirPlay receivers

Cocoa Touch

Media

Core Services

Core OS

iIOS Overview: Media (Cont’d)

Core Audio Framework
Core Graphics Framework

Core Video Framework: provides buffer
and buffer pool support for the Core Media

framework

Core MIDI Framework Cocoa Touch

Core Image Framework _
Media

Core Text Framework

Core Services

Quartz Core Framework: core animation

AV Foundation Framework: Objective-C Core OS

classes for playing audio/video content

Asset Library Framework: query-based
interface for retrieving photos and videos
from user’s device

IOS Overview: Cocoa Touch

* High level features

Storyboards: supplant nib files as the
recommended way to design your
application’s user interface

Document Support: UIDocument class for
managing the data associated with user
documents

Multitasking

Printing: support allows applications to
send content wirelessly to nearby printers

Data protection
Push notification
Gesture recognizers
File-sharing

Peer-to-peer services: over Bluetooth, e.g.

multi-player games

Cocoa Touch

Media

Core Services

Core OS

iOS Overview: Cocoa Touch (Cont’d)

UIKit Framework: storyboard, multi-touch, cut-
copy-paste, multi-tasking, push notification,
accelerometer data, built-in camera, battery
state information, proximity sensor information

Event Kit Ul Framework: calendar related

Address Book Ul Framework: contact

management Cocoa Touch

Game Kit Framework
iIAd Framework: deliver banner-based

Media

advertisements from your application Core Services

Map Kit Framework: a scrollable map interface S

Message Ul Framework: support for composing
and queuing email messages in the user’s
outbox

Twitter Framework

Outline

Objective-C
Model-View-Controller
Demo

Networking
iICloud

Objective-C

A strict superset of ANSI C

Originally used within NeXT’s NEXTSTEP OS (precursor
of Mac OS X)

Single inheritance

Dynamic runtime: everything is looked up and
dispatched at run time

No garbage collection on iPhone, iTouch and iPad
New types

— 1d type: dynamic type to refer to any object

— Selectors: a message and arguments that will (at some
point) trigger the execution of a method

Objective-C

* |Introspection

— An object (class, instance, etc) can be asked at
runtime what type it is

e Can pass anonymous objects to a method, and let it
determine what to do based on the object’s actual type

1sKindOfCLlass: returns whether an object is that
kind of class (inheritance included)
1sMemberOfClass: returns whether an object is that
kind of class (no inheritance)
respondsToSelector:returns whether an object
responds to a given method

Objective-C header file and interface

#import <Foundation/Foundation.h>

@interface Stack :
@property (nonatomic, strong) NSMutableArray snumStack;

—(void) push:
—(double) pop;
@end

NSObject

(double) num;

Objective-C stack.h

header file

* instance variables
are declared as
properties

* By default:

@protected access
e “” denotes instance

define STACKSIZE 10
Class Stack {

methods

@ Ci+ header file

private:
double num[STACKSIZE+1];
int top;
public:
Stack();
void push(double x);
double
Fi
2/6/12 Cellular Networks and Mobile Computing

(COMS 6998-8)

15

Objective-C Properties

Provide access to object attributes
— Shortcut to implementing getter/setter methods

— Instead of declaring “boilerplate” code, have it generated
automatically

Also allow you to specify:

— readonly versus readwrite access memory management
policy
— Memory management: weak and strong

Specify @property in the header (*.h) file

Create the accessor methods by @synthesize the
properties in the implementation (*.m) file

Objective-C Method Declaration

* Each method declaration consists of:
— A nhame
— A return type
— An optional list of arguments (and their data or object
types)

— An indicator to determine if the method is a class or
instance method

—(void) setHeight:(double)h Width: (double)w;

/

Method type: Argument 1 type and name Argument 2 type and name
+ class

- instance
2/6/12

Method name: setHeight:Width:

Cellular Networks and Mobile Computing

(COMS 6998-8) =

Objective-C Implementation

#import "Stack.h"

@implementation Stack

@synthesize numStack = _numStack; —

— (NSMutableArray *) numStack {
if (_numStack==nil)
_numStack = [[NSMutableArray alloc] init];
return _numStack;

(void) push: (double)num { < ————

[self.numStack addObject: [NSNumber numberWithDouble:num]];

— (double) pop {

NSNumber *numObject = [self.numStack lastObject];

if(numObject)
NSLog(@"poped

@end

%@",numObject);
return [numObject doubleValue];

[self.numStack removelLastObject];

2/6/12

Cellular Networks and Mobile Computing
(COMS 6998-8)

Objective-C stack.m file

@synthesize creates
getter and setter
methods

alloc: a class method

Method syntax

self: the instance itself
dot notation to access
setter and getter
method

18

Objective-C Message Syntax

* A square brace syntax

receiver message]

‘receiver message:argument]

receiver message:argl :anonymousArg?2]
receiver message:argl andArg:arg2]

/ T \

Main argument Subsequent named argument

Object receiving

the message
Message itself

Cellular Networks and Mobile Computing

(COMS 6998-8) 19

2/6/12

C++ Implementation

#include "stack.h"

Stack::Stack()
{
index = top;

}

void Stack::push(double x)
{
if(lis_full())
num[top++] = x;

G Method syntax

s
double Stack::pop()
{
if('is_empty())
return num[--top];
else
return -1;
s
2/6/12 Cellular Networks and Mobile Computing

(COMS 6998-8)

20

Objective-C Categories and Extensions

* Categories allows new methods to be added to existing class without

using subclass

— category name is listed within parentheses after the class name and the superclass

isn’t mentioned

* C(Class extensions are like anonymous categories

— @interface MyClass ()

— Methods must be implemented in the main @implementation block for the

corresponding class

#import <Foundation/Foundation.h>
#import "Stack.h"
@interface Stack (emptyFull)

—(BOOL) isEmpty;
—(BOOL) isFull;

#import "StackExt.h"
#define STACK_CAP 100

@implementation Stack(emptyFull)

- (BOOL) isEmpty{
return ([self.numStack countl==0);
}

- (BOOL) isFull{

@end return ([self.numStack count]==STACK_CAP);
¥
1‘ @end 1‘
StacklExt.h StackExt.m
2/6/12 Cellular Networks and Mobile Computing

(COMS 6998-8) 2

Objective-C Protocols

* C(Class and category interfaces declare
methods that are associated with a
particular class

e protocols declare methods that are
independent of any specific class

* Protocols declare methods that can
be implemented by any class.
Protocols are useful in at least three
situations:

— To declare methods that others are
expected to implement

— To declare the interface to an object
while concealing its class

— To capture similarities among
classes that are not hierarchically
related

2/6/12

@protocol MyXMLSupport

@required

- (void) initFromXMLRepresentation:
(NSXMLElement x)XMLElement;

— (NSXMLElement *)XMLRepresentation;

@optional
- (void)anOptionalMethod;
@end

@interface aClass <MyXMLSupport>

@end

@interface aClass(categName)<MyXMLSupport>
@end

@implementation className

if (![receiver conformsToProtocol:@protocol
(MyXMLSupport)]1)

@end

Cellular Networks and Mobile Computing
(COMS 6998-8)

22

Objective-C Protocols (Cont’d)

#import <UIKit/UIKit.h>
@interface CalculatorAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow xwindow;
@end

CalculatorAppDelegate.h

@interface UIApplication (UINewsstand)
— (void)setNewsstandIconImage: (UIImage *)image;
@end

@protocol UIApplicationDelegate<NSObject>

@optional

— (void)applicationDidFinishLaunching: (UIApplication *)application;
— (BOOL)application: (UIApplication x)application

didFinishLaunchingWithOptions: (NSDictionary x)launchOptions
__OSX_AVAILABLE_STARTING(__MAC_NA,__IPHONE_3_0);

— (void)applicationDidBecomeActive: (UIApplication *)application;
@end A

I .. . ,
2/6/12 UlAppllcatlon.h Cellular Net\/\/(ocr(l;;/lasnggl\g/lgo_k;l)le Computing

Objective-C: Associative References

e Associative references

— Simulate the addition of object
instance variables to an existing
class

e Fast enumeration

2/6/12

— The enumeration is considerably
more efficient than, for example,

using NSEnumerator directly.
— The syntax is concise.

— Enumeration is “safe” —the
enumerator has a mutation guard
so that if you attempt to modify
the collection during enumeration,
an exception is raised

Cellular Networks and Mobile Computing
(COMS 6998-8)

@interface UIView (ObjectTagAdditions)
@property (nonatomic, strong) id objectTag;
- (UIView *x)viewWithObjectTag: (id)object;
@end

#import <objc/runtime.h>

static char const x const ObjectTagKey =
"ObjectTag”;

@implementation UIView (ObjectTagAdditions)
@dynamic objectTag;

- (id)objectTag {

return objc_getAssociatedObject(self,
ObjectTagKey);

by

- (void)setObjectTag: (id)newObjectTag {

objc_setAssociatedObject(self,
ObjectTagKey, newObjectTag,
OBJC_ASSOCIATION_RETAIN_NONATOMIC);

¥

@end

24

Objective-C: Fast Enumeration

The enumeration is

considerably more efficient

than, for example, using

NSEnumerator directly, NSArray *array = [NSArray arrayWithObjects:

I i @'one", @"two", @'three",
The syntax is concise. @fourt, nill; ree

Enumeration is Hsafen—the for (NSString *xelement in array) {
enumerator has a mutation |, "Stestectenent: =e, etenent);
guard so that if you

attempt to modify the

collection during

enumeration, an exception

is raised

Objective-C: Foundation Framework

* Root class: allocation, initialization and duplication of objects,
introspection, object encoding and decoding (for archiving /
serialization), message forwarding and message dispatching

— NSObject

* Value objects: encapsulate values of various primitive types
— NSNumber
— NSDate
— NSString
— NSData

* Collections: collections are objects that store other objects
— NSArray, NSMutableArray

— NSDictionary, NSMutableDictionary
— NSSet, NSMutableSet

Cellular Networks and Mobile Computing

(COMS 6998-8) 26

2/6/12

Outline

Model-View-Controller
Demo

Networking

iICloud

MVC Design Pattern

Key objects in iOS apps
« UIApplication controller oge
object \

A
— manages the app event loop l',_ﬁ{ —]4

— coordinates other high-level
app behaviors

— custom app-level logic resides e j Vion

in your app delegate object

* App delegate CUStom ObjeCt: M Application Delegate W
created at app launch time, - (J -

usually by the
UIApplicationMain
[[——

function. The primary job of
thIS ObJECt 15 t O _handle State EL‘c/;?)r;)t [Il View Controller ,._.\[Views and UIObJects]
transitions within the app

el — — — — —

Cellular Networks and Mobile Computing

(COMS 6998-8) 28

2/6/12

App launch cycle

2/6/12

MVC Design Pattern (Cont’d)

Launch Time
[User taps app icon]
v
[main() J

2

—

UIApplicationMain()

v

Your code

application:
didFinishLaunchingWithOptions:

[Load main Ul file]
v

[Initialize the app]

Foreground ‘v;

[Activate the app]<

>[applicationDidBecomeActive:]

v

f_‘é‘z’;‘ ¢ (Handle events)
g
&
[Switch to a different app]
Cellular Networks and Mobile Computing 29

(COMS 6998-8)

MVC: Model

Model: contains the app’s underlying data

* Could correspond to an external data source or
some current model

— iTunes database, stored files, internal state of a game

* Actions on the model manage the app data and
Its state

* Not aware of Ul or presentation

— Leave the interface to the view, and the application
logic to the controller

* Models are reusable

MVC: View

View is what you see on screen

* Canvas, interface elements: buttons, labels,
table views, etc

* No data stored
— Model maintains data
— Updates to model through controller

MVC: Controller

Controller
e Knows both model and view

e Acts as a middleman
— When model changes, inform the view
— When data manipulated by view, update the model
* Build-in iOS controllers
— UIViewController: managing apps with generic views
— UITabBarController: for tabbed applications (e.g. clock)

— UINavigationController: managing hierarchical data
(e.g. email folders)

— UITableController: for lists of data etc (e.g. iTunes tracks)

Cellular Networks and Mobile Computing
2/6/12 (COMS 6998-8) 32

Xcode4

* The latest IDE for
developing MacOSX and iOS __
applications Navigator

selector bar

. . . Jump bars gﬁgsgar

— Single window, supporting .
multiple workspace 2 2 T

— Integrated Interface =8 SEse e e ,
BU||der Broskpoint gutter _.l;:'; SN il S L } — Inspector pane

. . . Focus ribbon : ‘

— Assistant Editor (split pane E |y
that loads related files, el L aee
such as header files etc) Q ae———

— Dynamic syntax checking
and alert

— Version editor with Git or
Subversion integration

L
— LLVM 2.0 editor with Fiter bar Debug ber
support for C, C++ and
Objective-C
— LLDB debugger

S (R ISy ey ey) (R Ay g i gy —

.= |—— Library
(Ut‘iiity B selector bar

area .
N +— Library pane
4 b

Cellular Networks and Mobile Computing

(COMS 6998-8) 33

2/6/12

Networking

 CFNetwork: Core Services framework that provides a
library of abstractions for network protocols.

— Working with BSD sockets

— Creating encrypted connections using SSL or TLS

— Resolving DNS hosts

— Working with HTTP, authenticating HTTP and HTTPS servers
— Working with FTP servers

— Publishing, resolving and browsing Bonjour services:
CFNetServices APl provides access to Bonjour through three
objects

« CFNetService represents a single service on the network

e CFNetServiceBrowser discovers domains and discover network
services within domains.

« CFNetServiceMonitor monitors services for changes to their
TXT records

Networking (Cont’d)

* Core Telephony framework: obtain
information about a user’s home cellular
service provider

— CTCarrier object providesinformation about
the user’s cellular service provider

— CTCall object provides information about a
current call, including a unique identifier and state
information—dialing, incoming, connected, or
disconnected

iCloud

Fundamentally: nothing more than a URL of a shared
directory

 Two storage models

— iCloud document storage: store user documents and app data in
the user’s iCloud account

— iCloud key-value data storage: share small amounts of
noncritical configuration data among instances of your app

e iCloud-specific entitlements required
— Select your app target in Xcode
— Select the Summary tab

— In the Entitlements section, enable the Enable Entitlements
checkbox

iCloud (Cont’d)

Check availability:
URLForUbiquityContainerIdentifier:

All files and directories stored in iCloud must be managed by a file
presenter object, and all changes you make to those files and
directories must occur through a file coordinator object. A file
presenter is an object that adopts the NSFilePresenter
protocol

Explicitly move files to iCloud
Be prepared to handle version conflicts for a file
Make use of searches to locate files in iCloud

Be prepared to handle cases where files are in iCloud but not fully
downloaded to the local device; this might require providing the
user with feedback

Use Core Data for storing live databases in iCloud; do not use
SQLite

Online Resources

* Client side: iOS
— Install Xcode 4: http://developer.apple.com/xcode

— Learning Objective C and iOS development :

http://developer.apple.com/devcenter/ios/
index.action

— Stanford iPhone development course(on
iTunes):
http://www.stanford.edu/class/cs193p/cgi-bin/
drupal/

Cellular Networks and Mobile Computing

2/6/12 (COMS 6998-8)

38

2/6/12

Questions?

Cellular Networks and Mobile Computing
(COMS 6998-8)

39

