Cellular Networks and Mobile Computing COMS 6998-8, Spring 2012

Instructor: Li Erran Li

(lel2139@columbia.edu)

http://www.cs.columbia.edu/~coms6998-8/

4/9/2012:OS Support for Energy and Sensor Management (or Rethinking Mobile OS)

Rethinking Mobile OS

- What abstraction should mobile OS provide to apps?
 - Should the OS provide fine-grained battery power management?
 - Should the OS provide high level contextual information inferred from low level sensor information?
 - Should social network apps be in the OS? An OS system call to send a tweet is much more efficient.

Energy Management in Mobile Devices with the Cinder Operating System

Arjun Roy, Stephen M. Rumble, *Ryan Stutsman*,
Phil Levis, and David Mazières
Stanford University

Nickolai Zeldovich MIT CSAIL

The State of Smartphones

- Smartphones are a dominant computing platform
- Energy is the limiting resource on smartphones
- OSes don't provide any control over it

Cinder: Rethinking the Mobile OS

Track application energy consumption

- Fine-grained energy control primitives
 - For users
 - Limit application energy consumption
 - For applications
 - Use app specific knowledge to manage energy
 - Even within process boundary

Real-world Implementation

- Runs on the HTC Dream (T-Mobile G1)
- Based on HiStar
- ~15,000 lines of code excluding drivers
- Working
 - Display, keyboard
 - Texting
 - 3G Data Radio
 - Answering/Placing Calls (no audio)
- Also runs on x86_64 desktops/laptops

Existing Approaches

- Android
 - Provides visibility
 - Estimates energy consumption for apps
 - No control
- Prior research (ECOSystem)
 - Similar visibility
 - Simple control
 - Try to meet target battery lifetime on a laptop

Outline

- New Abstractions for Control
- Examples
- The Problem of Closed Platforms
- Cinder-Linux

HiStar Overview

Make all state explicit, track all communication

Unix

HiStar

HiStar Overview (Cont'd)

- Narrow kernel interface, few comm. channels
 - Minimal mechanism: enough for a Unix library
 - Strong control over information flow
- Unix support implemented as user-level library
 - Unix communication channels are made explicit, in terms of HiStar's mechanisms
 - Provides control over the gamut of Unix channels

HiStar kernel objects

HiStar kernel objects

Power modeling

- Active research area
- Measure offline in isolation
 - Device states
 - System calls
- Bill threads online using offline analysis
 - CPU
 - Data radio
 - GPS
 - Etc.

13

Energy Control Policies

- Reserves limit quantity of energy use
 - Subdivision and isolation between apps

- Taps limit rate of energy use
 - Enforces "lifetime" type policies

- Virtualized batteries
 - Subdivide energy

- Virtualized batteries
 - Subdivide energy

10 kJ

- All threads run in the context of a reserve
 - Accounting
 - Control

- All threads run in the context of a reserve
 - Accounting
 - Control

- All threads run in the context of a reserve
 - Accounting
 - Control
- De-schedule threads
 with exhausted reserves

A rate transfer between reserves

A rate transfer between reserves

- A rate transfer between reserves
- Allows hierarchies

- A rate transfer between reserves
- Allows hierarchies

- A rate transfer between reserves
- Allows hierarchies

- A rate transfer between reserves
- Allows hierarchies

- A rate transfer between reserves
- Allows hierarchies
- Backward taps prevent hoarding

Battery

Consumption

Throttling

• Throttle consumption

– Taps

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves

Prevent Hoarding

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves
- Prevent hoarding
 - Backward Taps

Fine-grained App Control

- Throttle consumption
 - Taps
- Allow bursty apps
 - Reserves
- Prevent hoarding
 - Backward Taps
- Fine-grained, app specific policies
 - Nesting

Subdivision & Isolation

- "Virtualized batteries"
- Guarantee energy to certain apps

Outline

- New Abstractions for Control
- Examples
- The Problem of Closed Platforms
- Cinder-Linux

ewrap

ewrap 60 ./spin

ewrap

ewrap 100 bash -c \

"ewrap 60 ./spin &

ewrap 70 ./spin &"

Background Apps

Meet users' expectations

 Apps they can't see on screen shouldn't cause battery drain

Background Apps

 Meet users' expectations

 Apps they can't see on screen shouldn't cause battery drain

Background Apps

 Meet users' expectations

 Apps they can't see on screen shouldn't cause battery drain

Outline

- New Abstractions for Control
- Examples
- The Problem of Closed Platforms
- Cinder-Linux

HTC Dream Design

- ARM11 CPU
 - Runs applications
- "Secure" ARM9
 - Controls devices
- Binary blob shared object to interact
- Difficult to reverse engineer the protocol

Developing for a Mobile Phone

- Getting worse
 - Locked bootloaders, software integrity checks
 - Research OSes on phones at all in the future?

- Evolution allowed, but not revolution
 - Can tweak apps, OS; cannot replace OS
- Dominant user computing platform
 - Systems research community is locked out

Outline

- New Abstractions for Control
- Examples
- The Problem of Closed Platforms
- Cinder-Linux

Cinder-Linux

- Implemented reserves and taps on Linux
 - Source code:

http://www.scs.stanford.edu/histar/src

Easier access to devices

 Allow experimentation with more sophisticated workloads

The Problem with IPC

- Apps request service from daemons
- Daemons do work for the app
 - OS must bill the app correctly

Not a problem on Cinder because of "gates"

Gates

- The basis for IPC
- A named entry point in an address space
- To request service, client threads enter the address space of a server
- Simplifies tracking

Cinder-Linux

- Must augment all IPCs across processes
 - Logic scattered throughout userspace

Conclusions

- + Users can control app energy use
- + Apps can leverage developer knowledge
- + Energy tracking works across boundaries
- + Easy to write "energy aware" applications

- Fighting manufacturer lock down
- Many knobs, may require sophistication

What's Next?

- Incorporate sophisticated energy modeling research, e.g. eprof
- Abstractions on Linux
 - Augment userspace code for energy tracking or do we need it?
 - eprof states most energy are consumed for accessing peripheral devices
- Android on Cinder

Mobile Apps: It's Time to Move Up to ConDOS

ConDOS: the Context Dataflow OS

david chu• aman kansal• jie liu• feng zhao• microsoft research redmond• microsoft research asia•

APPS

camera

microphone (x2)

microphone

magnetometer

infrared camera

barometer

GPS camera (x2)

accelerometers

light sensors

NFC

health sensors

gyroscopes

SENSORS

Cellular Networks and Mobile Computing (COMS 6998-8)

thermometer

OfficeFit app

contextual fitness reminders in the office

– "Don't slouch while sitting."

– "You've been at your desk for too long."

- "Take the stairs instead of the elevator."

- how it works
 - motion from IMU + sound from mic → various fitness activities
 - do this continuously

context data from sensors

- key pieces are ready
 - sensor hardware
 - application scenarios

- Motion State Logical Location Interruptible sitting, walking, runninghome, office, mall yes, no
- algorithms (high accuracy inference, signal processing, db, etc.)
- where is the context?
- who is responsible for context?
 - individual apps
 - ... but mobile OSs limit apps to foreground
 - ... or apps can run anything in the background(!)
 - the cloud
 - ... but energy cost of TX/RX is high
 - the mobile OS

ConDOS design proposal

- export Context Data Units (CDUs) rather than raw sensor data
 - higher-level abstraction than bytes
 - apps query or subscribe to CDUs

- each CDU is defined by a CDU Generator: a graph of processing components
 - combine Generators into composite context dataflow (like packet dataflow [kohler '00])
 - provide a base CDU vocabulary (that is extensible)

benefits of OS-managed context

1. System services can use context

system services can use context

- memory management
 - preload calendar, email when in the office

Context	Preload Action
in the office	Email, Calendar
at a party	Twitter, Facebook

- I/O
 - ring volume adjusted based on conversation
 - networking params dictated by movement [Balakrishnan '10]

system services can use context

- security
 - auto password unlock when at home
 - lend your phone to others easily [liu '09]

Security

- energy management
 - predict time-to-recharge based on context

benefits of OS-managed context

2. Privacy enforced by OS protection

better sensor privacy

- mobile privacy is under attack [TaintDroid]
 - protecting raw sensor data is "trust the FULA"
 - 2/3 of popular apps use your data suspiciously
 - no idea what your raw data might be used for
- OS-managed context lets us do better
 - app install time: per CDU type access control
 - ... vs. per sensor type access control
 - app run time: visual inspection of CDUs shared [Howell '10]
 - ... vs. no comprehension of what is being shared
 - enforcement is low overhead

4/9/12

- mobile OSs that don't make sense make no sense
 - ConDOS offers context as a primary app-OS interface
- apps, OS services and User Privacy may all benefit

Closing Thoughts

- Reserve and tap in Cinder enable fine grained control on application energy consumption.
 - But there is no easy answer on when to use them?

- When to generate contextual information?
 - A high overhead is incurred to acquire it.

What else need OS support?