Multi-Dimensional Regression

e More elegant/general to do VuR =0 with linear algebra
e Rewrite empirical risk in vector-matrix notation:
e Can add more dimensions by adding columns to X matrix and rows to w vector:
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Multi-Dimensional Regression

«Solving gradient=0 Vs R =0
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oIn Matlab: “t=pinv(X)*y” or “t=X\y” or “t=inv(X*X)*X*y"



Multi-Dimensional Regression

eSolving gradient=0 X'X0 = Xy
. -1
0 = (xTx) X"y
e]n Matlab: “t=pinv(X)*y"” or “t=X\y" or “t=inv(X*X)*X"*y"
oIf the matrix X is skinny, the solution is probably unique

oIf X is fat (more dimensions than points) we get multiple
solutions for theta which give zero error.

eThe pseudeoinverse (pinv(X)) returns the theta with zero
error and which has the smallest norm.
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Radial Basis Functions
eEach training point leads to a bump function
f(x0)=3"0 0, exp[—; X —x,| ]+90 |

eReuse solution from linear regression: 0" = (XTX)_ X'y
eCan view the data instead as Q, a big matrix of size N x N
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eIn this setting, X is invertible ,solution is just 0 = Q'ly



