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Lecture 9: Statistical Learning Theory (Capacity)

e General model of learning & ERM (Vapnik 0.1-1.11)
e Consistency (Vapnik 3.1-3.2.1)

e Bounds (Vapnik 4.1, 4.8)
e VC Dimension (Vapnik 4.9.1, 4.11)

e Structural Risk Minimization (SRM)



Empirical Processes

e Consider a sequence of random variables which depends both on the pdf and the set
of functions:
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e We call this sequence a
e Why are we concerned with one-sided process?

e Looking for consistency results in minimizing risk!



Uniform Convergence

e We want conditions for convergence (in probability):

e Two sided:
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e \We call these relations
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* How do we know that such convergence is equivalent to strict consistency?



Key Equivalence Theorem

e Key Theorem: suppose that for all functions in the set {L(Z, O{)} and all PDFs in the
set {F(Z)} the inequalities below hold true

C < fL(z,a) dF(z)<C
Then,
For any pdf in the set {F(Z)} , the ERM method is strictly consistent on{L(Z, O{)}
IF AND ONLY IF

For any pdf in the set {F(Z)} , one-sided U.C takes place on the set {L(z, a)}



Law of Large Numbers

. : the sequence of means converges to expectation of a
random variable as the number of examples increases

J : A.S convergence
. : convergence in probability
. : generalization for functions (instead of variables)

e Problem: ULLN applies to one function, we have sets of functions!
» LLN can be applied if we fix “alpha”. We have a sup over the set of all alphas
» Moreover we can have sets with infinite number of elements!

e Solution: need to generalize LLN to functional space

e Note: Glivenko — Cantelli theorem shows that ULLN holds for specific sets of
functions (with bounds on asymptotic rate of convergence)



Recap

e We are interested in conditions for (strict) consistency of ERM

e Key Theorem proves that we should demonstrate conditions for uniform one-sided
convergence

e We already have results (LLN) that demonstrate conditions for two-sided
convergence

e But we have a more general case (sets of functions)

e Approach: find conditions for two-sided U.C and then obtain corresponding
conditions for one-sided U.C
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Indicator Functions

e Until now we didn’t care about the specific properties of the set {L(Z, Ot)}

* To describe conditions for (two-sided) U.C, consider indicator functions:

L(y,g(x,a)) = {

0 if y=¢
1 ify=g

e We are now considering convergence of frequencies to probabilities:
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Notation

e For indicator functions we assume that g(x, alpha) outputs the class label (not a real
value). For simplicity assume its a binary class label {0,1}.

0 ify=g
I ify=g
e We are now considering convergence of frequencies to probabilities, therefore by
v_{L} we denote the frequencies and by p_{L} the probabilities of {L > 0}. This is the

same as frequencies/probabilities of {L = 1} for binary classification, in other words
counting the number of mistakes.
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Case 1: One Function

e Suppose our set of functions contains just one function (one set of parameters)

o € A,

A|=1=> sup = sup

a  o=a
e The supremum disappears

e Special case of LLN: just like tossing a coin

e We know that the frequencies converge to the probability as / — ©

* Moreover, we know the rate of convergence ( ):
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Chernoff Bounds

e Consider m independent coin flips (Bernoulli trials). Let S denote the # of heads
observed, and let u denote the expected value of S

» What is the probability that S deviates from its mean by an amount €?

e Another way to ask the same question: consider success probability p" = S/m instead
of S (actual number)

» How fast does the estimate p" converge to p as a function of m?

* Notation: S=X+..+X , X.€{0,1}, O<e=<lI
Pr(X.=1]=p, u=E[S]=pm, p =S/m

Pr[S>(p+ée)m] = exp{—Zezm} Pr[S<(p-¢e)m] < exp{—Zezm}
\)

Pr[S < (p-€)m]=Pr[—<(p-€)]=Pr[p <(p-€)]=Pr[p-p >¢
m



Chernoff Bounds

eNotation: S=X+..+X , X.€{0,1}, O<e=<lI

)
Pr[Xl =1]=p, M= E[S]=pm, p =%

Pr[§>(p+ée)m] =< exp{—Zazm} Pr[S < (p-¢)m] < exp{—282m}
Pr[p - p>¢]< exp{—Zszm} Pr[p-p >¢]< exp{—Zszm}
= Pr[p-p'|> el =Pr(p’ - p> e+ Prlp- p' > ] < 2exp{-2¢’'m}



Case 2: Finite Number of Functions

e Suppose our set contains N functions (where N is finite)

a € A,

A‘=N=>supsmax
a a
e Easy to generalize case 1 using Chernoff bounds:

P{ max |P{L(z,e,) >0} -v,{L(z,0,) >0} ‘ > 8}

I<k<n

< Y P{|po(b)-v,(k) |> ¢}

1

<2N exp{—Zszf} = Zexp{lnN = 2826} = Zexp{(lngN — 282)€ }

e What’s the point behind the last manipulation?



Case 3: Infinite Number (idea)

e For U.C to take place we need the relation below to be satisfied

P{ max P{L(z.a;)>0}-v,{L(z,,) > O} ‘>8}S2€Xp (mZV—ZSZ)Z
Ve: Pllo|>e}———0 < IHKN —0

e Obviously holds when N is finite. Can we generalize to infinite number of events?

e Lets introduce a new concept:

» Set may contain infinite number of events/functions, but only a finite number
of clusters of events is distinguishable for a given sample (of / examples)

» Distinguishable if there exist (at least) one element in the sample that belongs
to one event but not to the other

» ldea: denote number of clusters by N#, show that In(N”*) must increase slowly
(not exponentially) as the sample size grows for U.C to hold



Entropy (Information Theory)

e Entropy is a measure of uncertainty of a random variable

e Another meaning: expected value of the information contained in a message
(introduced by Claude Shannon developing communication theory, 1948)

e For a random variable X with n outcomes {x1,....,xn} the entropy is defined as:

H(X)=-)" p(x,)logp(x)

e Can easily generalize to infinite outcomes (integral instead of sum)

e The higher the entropy value, the more uncertain we are about the outcome of the
variable for a given trial/draw



Entropy of a Function Set

e Consider an arbitrary sequence of iid generated vectors {Zl,,,,,zg}
e Using our set of indicator functions, determine a set of binary vectors:
g(a) =|L(z,,@),....L(z,,0)]
e For any fixed alpha, g(alpha) determines some vertex of the unit cube
e Denote the number of different vertices induced by the sample & function set as:
NMzpenz,) <2
(of the set of indicator functions on the given sample):

H/\(zl,...,zg) = lnN/\(zl,...,zg)

. (of the set of indicator functions on samples of size f):

H/\(K) = E[H’\(zl,...,zg)] = fH’\(zl,...,zf)dF(zl,...,zg)



U.C (2-sided) Theorem

e Theorem:

Two-sided U.C over the set of indicator functions takes place

] &
P{ sup fL(z,a) dF(z)—ZEHL(zi,a)
IF AND ONLY IF
HA(()
/ =

{ —>00

>()




COMS4771, Columbia University

Road Map (3)

Uniform two-sided Entropy
Convergence Condition

Goal: Imitate S

Necessary & Sufficient

Minimize Risk

Simplify

Consistency

General Properties

Strict Uniform one-sided

Convergence

Key Theorem

Consistency

Means to Expectations
over Sets of Functions

9.19



