Machine Learning

4771

Instructors:

Adrian Weller and Ilia Vovsha

Lecture 9: Statistical Learning Theory (Capacity)

- General model of learning & ERM (Vapnik 0.1-1.11)
- Consistency (Vapnik 3.1-3.2.1)
- Uniform Convergence (Vapnik 3.3, 3.4, 3.7)
- Entropy, Capacity (Vapnik 3.7, 3.10, 3.13)
- Bounds (Vapnik 4.1, 4.8)
- VC Dimension (Vapnik 4.9.1, 4.11)
- Structural Risk Minimization (SRM)

Empirical Processes

 Consider a sequence of random variables which depends both on the pdf and the set of functions:

$$r_{\ell} = \sup_{\alpha} \left| R(\alpha) - R_{emp}(\alpha_{\ell}) \right|$$

$$= \sup_{\alpha} \left| \int L(\mathbf{z}, \alpha) dF(\mathbf{z}) - \frac{1}{\ell} \sum_{i=1}^{\ell} L(\mathbf{z}_{i}, \alpha) \right|$$

$$r_{\ell}^{+} = \sup_{\alpha} \left(R(\alpha) - R_{emp}(\alpha_{\ell}) \right)_{+}$$

$$(u)_{+} = \begin{cases} u & \text{if } u > 0, \\ 0 & \text{otherwise.} \end{cases}$$

- We call this sequence a one-sided (two-sided) empirical process
- Why are we concerned with one-sided process?
- Looking for consistency results in minimizing risk!

Uniform Convergence

- We want conditions for convergence (in probability):
- Two sided:

$$P\left\{\sup_{\alpha}\left|\int L(\mathbf{z},\alpha)\,dF(\mathbf{z}) - \frac{1}{\ell}\sum_{i=1}^{\ell}L(\mathbf{z}_{i},\alpha)\right| > \varepsilon\right\} \xrightarrow{\ell \to \infty} 0$$

• One-sided:

$$P\bigg\{\sup_{\alpha}\bigg(\int L(\mathbf{z},\alpha)\,dF(\mathbf{z})-\frac{1}{\ell}\sum_{i=1}^{\ell}L(\mathbf{z}_{i},\alpha)\bigg)>\varepsilon\bigg\}\xrightarrow{\ell\to\infty}0$$

- We call these relations uniform (two/one-sided) convergence of means to their mathematical expectation over a given set of functions
- Lets just say uniform convergence or U.C
- How do we know that such convergence is equivalent to strict consistency?

Key Equivalence Theorem

• Key Theorem: suppose that for all functions in the set $\{L(\mathbf{z},\alpha)\}$ and all PDFs in the set $\{F(\mathbf{z})\}$ the inequalities below hold true

$$c \le \int L(\mathbf{z}, \alpha) \, dF(\mathbf{z}) \le C$$

Then,

For any pdf in the set $\{F(\mathbf{z})\}$, the ERM method is strictly consistent on $\{L(\mathbf{z},\alpha)\}$

IF AND ONLY IF

For any pdf in the set $\{F(\mathbf{z})\}$, one-sided U.C takes place on the set $\{L(\mathbf{z}, \alpha)\}$

Law of Large Numbers

- Law of Large Numbers (LLN): the sequence of means converges to expectation of a random variable as the number of examples increases
- Strong LLN: A.S convergence
- Weak LLN: convergence in probability
- Uniform LLN: generalization for functions (instead of variables)
- Problem: ULLN applies to one function, we have sets of functions!
 - > LLN can be applied if we fix "alpha". We have a sup over the set of all alphas
 - ➤ Moreover we can have sets with infinite number of elements!
- Solution: need to generalize LLN to functional space
- Note: Glivenko Cantelli theorem shows that ULLN holds for specific sets of functions (with bounds on asymptotic rate of convergence)

Recap

- We are interested in conditions for (strict) consistency of ERM
- Key Theorem proves that we should demonstrate conditions for uniform one-sided convergence
- We already have results (LLN) that demonstrate conditions for two-sided convergence
- But we have a more general case (sets of functions)
- Approach: find conditions for two-sided U.C and then obtain corresponding conditions for one-sided U.C

Road Map (2)

Indicator Functions

- ullet Until now we didn't care about the specific properties of the set $\{L(\mathbf{z}, lpha)\}$
- To describe conditions for (two-sided) U.C, consider indicator functions:

$$L(y,g(\mathbf{x},\alpha)) = \begin{cases} 0 & \text{if } y = g \\ 1 & \text{if } y \neq g \end{cases}$$

• We are now considering convergence of frequencies to probabilities:

$$P\left\{\sup_{\alpha}\left|\int L(\mathbf{z},\alpha)\,dF(\mathbf{z}) - \frac{1}{\ell}\sum_{i=1}^{\ell}L(\mathbf{z}_{i},\alpha)\right| > \varepsilon\right\} \xrightarrow{\ell\to\infty} 0$$

$$P\left\{\sup_{\alpha}\left|P\left\{L(\mathbf{z},\alpha) > 0\right\} - v_{\ell}\left\{L(\mathbf{z},\alpha) > 0\right\}\right| > \varepsilon\right\} \xrightarrow{\ell\to\infty} 0$$

$$P\left\{\sup_{\alpha}\left|p_{L>0} - v_{\ell}\right| > \varepsilon\right\} \xrightarrow{\ell\to\infty} 0$$

Notation

• For indicator functions we assume that g(x, alpha) outputs the class label (not a real value). For simplicity assume its a binary class label $\{0,1\}$.

$$L(y,g(\mathbf{x},\alpha)) = \begin{cases} 0 & \text{if } y = g \\ 1 & \text{if } y \neq g \end{cases}$$

• We are now considering convergence of frequencies to probabilities, therefore by v_{L} we denote the frequencies and by p_{L} the probabilities of $\{L > 0\}$. This is the same as frequencies/probabilities of $\{L = 1\}$ for binary classification, in other words counting the number of mistakes.

$$P\left\{\sup_{\alpha} \left| P\left\{ L(\mathbf{z}, \alpha) > 0 \right\} - v_{\ell} \left\{ L(\mathbf{z}, \alpha) > 0 \right\} \right| > \varepsilon \right\} \xrightarrow[\ell \to \infty]{} 0$$

$$P\left\{\sup_{\alpha} \left| p_{L>0} - v_{\ell} \right| > \varepsilon \right\} \xrightarrow[\ell \to \infty]{} 0$$

Case 1: One Function

• Suppose our set of functions contains just one function (one set of parameters)

$$\alpha \in \Lambda, |\Lambda| = 1 \Rightarrow \sup_{\alpha} \equiv \sup_{\alpha = \alpha^*}$$

- The supremum disappears
- Special case of LLN: just like tossing a coin
- ullet We know that the frequencies converge to the probability as $\ell o \infty$
- Moreover, we know the rate of convergence (Chernoff bound):

$$P\left\{\sup_{\alpha}\left|P\left\{L\left(\mathbf{z},\alpha^{*}\right)>0\right\}-v_{\ell}\left\{L\left(\mathbf{z},\alpha^{*}\right)>0\right\}\right|>\varepsilon\right\}\longrightarrow 0$$

$$P\left\{\left|p_{L>0}-v_{\ell}\right|>\varepsilon\right\}\longrightarrow 0$$

$$P\left\{\left|p_{L>0}-v_{\ell}\right|>\varepsilon\right\}\leq 2\exp\left\{-2\varepsilon^{2}\ell\right\}$$

Chernoff Bounds

- \bullet Consider m independent coin flips (Bernoulli trials). Let S denote the # of heads observed, and let μ denote the expected value of S
 - \triangleright What is the probability that S deviates from its mean by an amount ϵ ?
- Another way to ask the same question: consider success probability p[^] = S/m instead of S (actual number)
 - ➤ How fast does the estimate p[^] converge to p as a function of m?

Additive Form:

$$\Pr[S > (p + \varepsilon)m] \le \exp\{-2\varepsilon^2 m\} \qquad \Pr[S < (p - \varepsilon)m] \le \exp\{-2\varepsilon^2 m\}$$

$$\Pr[S < (p - \varepsilon)m] \Rightarrow \Pr[\frac{S}{m} < (p - \varepsilon)] \Rightarrow \Pr[p^{^{\wedge}} < (p - \varepsilon)] \Rightarrow \Pr[p - p^{^{\wedge}} > \varepsilon]$$

Chernoff Bounds

• Notation:
$$S = X_1 + \ldots + X_m, \ X_i \in \{0,1\}, \ 0 \le \varepsilon \le 1$$

• Additive Form:
$$\Pr[X_i = 1] = p, \quad \mu = E[S] = pm, \quad p^{\hat{}} = \frac{S}{m}$$

$$\Pr[S > (p + \varepsilon)m] \le \exp\left\{-2\varepsilon^2 m\right\} \qquad \Pr[S < (p - \varepsilon)m] \le \exp\left\{-2\varepsilon^2 m\right\}$$

$$\Pr[p^{\hat{}} - p > \varepsilon] \le \exp\left\{-2\varepsilon^2 m\right\} \qquad \Pr[p - p^{\hat{}} > \varepsilon] \le \exp\left\{-2\varepsilon^2 m\right\}$$

$$\Rightarrow \Pr[p - p^{\hat{}} > \varepsilon] = \Pr[p^{\hat{}} - p > \varepsilon] + \Pr[p - p^{\hat{}} > \varepsilon] \le 2\exp\left\{-2\varepsilon^2 m\right\}$$

Case 2: Finite Number of Functions

Suppose our set contains N functions (where N is finite)

$$\alpha_{1,\dots,N} \in \Lambda, |\Lambda| = N \Rightarrow \sup_{\alpha} \equiv \max_{\alpha}$$

• Easy to generalize case 1 using Chernoff bounds:

$$P\left\{\max_{1 \le k \le n} \left| P\left\{ L(\mathbf{z}, \alpha_k) > 0 \right\} - v_{\ell} \left\{ L(\mathbf{z}, \alpha_k) > 0 \right\} \right| > \varepsilon \right\}$$

$$\leq \sum_{k \ge n} P\left\{ \left| p_{L > 0}(k) - v_{\ell}(k) \right| > \varepsilon \right\}$$

$$\leq 2N \exp\left\{-2\varepsilon^2\ell\right\} = 2 \exp\left\{\ln N - 2\varepsilon^2\ell\right\} = 2 \exp\left\{\left(\frac{\ln N}{\ell} - 2\varepsilon^2\right)\ell\right\}$$

• What's the point behind the last manipulation?

Case 3: Infinite Number (idea)

• For U.C to take place we need the relation below to be satisfied

$$P\left\{\max_{1\leq k\leq n}\left|P\left\{L(\mathbf{z},\alpha_{k})>0\right\}-v_{\ell}\left\{L(\mathbf{z},\alpha_{k})>0\right\}\right|>\varepsilon\right\}\leq 2\exp\left\{\left(\frac{\ln N}{\ell}-2\varepsilon^{2}\right)\ell\right\}$$

$$\forall \varepsilon \colon P\{ | \circ | > \varepsilon \} \xrightarrow{\ell \to \infty} 0 \iff \frac{\ln N}{\ell} \xrightarrow{\ell \to \infty} 0$$

- Obviously holds when N is finite. Can we generalize to infinite number of events?
- Lets introduce a new concept:
 - \triangleright Set may contain infinite number of events/functions, but only a finite number of clusters of events is distinguishable for a given sample (of ℓ examples)
 - ➤ Distinguishable if there exist (at least) one element in the sample that belongs to one event but not to the other
 - ➤ Idea: denote number of clusters by N^, show that In(N^) must increase slowly (not exponentially) as the sample size grows for U.C to hold

Entropy (Information Theory)

- Entropy is a measure of uncertainty of a random variable
- Another meaning: expected value of the information contained in a message (introduced by Claude Shannon developing communication theory, 1948)
- For a random variable X with n outcomes {x1,....,xn} the entropy is defined as:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

- Can easily generalize to infinite outcomes (integral instead of sum)
- The higher the entropy value, the more uncertain we are about the outcome of the variable for a given trial/draw

Entropy of a Function Set

- ullet Consider an arbitrary sequence of iid generated vectors $ig\{z_1,...,z_\ellig\}$
- Using our set of indicator functions, determine a set of binary vectors:

$$q(\alpha) = [L(z_1,\alpha),...,L(z_\ell,\alpha)]$$

- For any fixed alpha, q(alpha) determines some vertex of the unit cube
- Denote the number of different vertices induced by the sample & function set as:

$$N^{\wedge}(z_1,...,z_{\ell}) \leq 2^{\ell}$$

• Random Entropy (of the set of indicator functions on the given sample):

$$H^{\wedge}(z_1,...,z_{\ell}) = \ln N^{\wedge}(z_1,...,z_{\ell})$$

• *Entropy* (of the set of indicator functions on samples of size ℓ):

$$H^{\wedge}(\ell) = E[H^{\wedge}(z_1,...,z_{\ell})] = \int H^{\wedge}(z_1,...,z_{\ell})dF(z_1,...,z_{\ell})$$

U.C (2-sided) Theorem

• Theorem:

Two-sided U.C over the set of indicator functions takes place

$$P\left\{\sup_{\alpha}\left|\int L(\mathbf{z},\alpha)\,dF(\mathbf{z}) - \frac{1}{\ell}\sum_{i=1}^{\ell}L(\mathbf{z}_{i},\alpha)\right| > \varepsilon\right\} \xrightarrow{\ell \to \infty} 0$$

IF AND ONLY IF

$$\frac{H^{\wedge}(\ell)}{\ell} \xrightarrow[\ell \to \infty]{} 0$$

Road Map (3)

