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Lecture 8: Statistical Learning Theory (Intro)

e Uniform Convergence (Vapnik 3.3, 3.4, 3.7)
e Entropy, Capacity (Vapnik 3.7, 3.10, 3.13)

e Bounds

e VC Dimension

e Structural Risk Minimization (SRM)



Parametric Paradigm (Philosophy)

e Heyday: 1930 —1960’s
e Standard assumptions: familiar problem & underlying physical process
e Problem: set of parameters that needs to be estimated
e Approach: adopt the Maximume-Likelihood / MAP / Bayesian method
e Strength:
1. If assumptions are correct, we obtain more accurate estimates
2. Math is simpler & faster to compute.

e Principle: if it works for the case, should work for a small sample too.



Parametric Paradigm (Beliefs?)

A. Itis possible to find a good approximation to any function with few parameters
» Evidence (?): Weierstrass Approximation Theorem
» Strength: computationally simple

B. The underlying law behind many real-life problems is the normal law
» Evidence: Central Limit Theorem

C. MLE / MAP / Bayesian are good approaches for estimating the parameters

» Evidence: conditional optimality (restricted set or asymptotic case)



Parametric Paradigm (Deficiencies?)

A. Singularities of high-dimensional problems (curse of dimensionality)
» Increasing required accuracy > exponentially more resources
» Resources: parameters, degree of polynomial, hidden units
» A small set of functions is not sufficient

B. What if normal law is not applicable?
» Wrong assumption = inaccurate estimates

C. MLE / MAP / Bayesian might not be optimal
» General set of functions

» Small sample case



General Model of Learning

Model of learning from examples:
A. Data generator (G):
» Generates iid vectors according to pdf F(x)
B. Supervisor (target) operator (S):
» Outputs labels for each vector
» Unknown & fixed
C. Learning Machine (LM):

» Receives a training set and constructs an operator
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General Learning Machine

* Goal of LM: construct best approximation to S

* Specific Goals:

> S: construct best predictor of supervisor’s output

> S: construct similar operator
* Practical Goal:
» Imitation is easier, possible to develop

» Choose best approximating function from a set

(small sample) theory



Minimizing Risk from Data

* Goal: among a set of functions, find the one that best satisfies a given quality
criterion

* Problem: how do we choose the “best” function?

* Formal Problem Statement:

A. Specify
» Domain [Z], PDF over Z [F(z)] // where Z is a subset of R", F(z) joint over (x,y)
» Admissible set of functions: {g(z,a)}
» Quality criterion through loss function: L(Z, g(Z,O())

B. Minimize Risk Functional (risk)

)= [ Lz )) dF (z)
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> Expected loss for chosen function “g

» “a” denotes a set of parameters



Empirical Risk Minimization

* Problem: how do we minimize the risk functional?

* Solution: too difficult to do this directly, hence consider empirical risk instead

R(a) = fL(z,a) dF (z)
|

Runl)=7 3, L(z)

to achieve good generalization (test error on unseen
examples), the ERM principle constructs a decision rule that minimizes training error
(empirical risk)

* Task: develop a for this principle

* Approach: develop theory for {0,1} functions (classification), then generalize
to real-valued functions (regression)



General Induction Principle

 Consider applying ERM given a very “expressive” (with high capacity) set of functions
(e.g. the set of polynomials of any degree)

* Might lead to over-fitting, poor generalization

* This observation suggest that we can find conditions on the set of functions which
can guarantee whether ERM is “good” (consistent) or not.

* Note: we sometimes distinguish between sets of loss functions and the set of
admissible functions (e.g. polynomials), though they are implicitly lumped together

* For example, we can consider {0,1} loss functions with the set of admissible
functions {g(x)} being polynomials



ERM Examples

1. Classification: Perceptron

R, (a)= %Eilstep(— yw'x,) =W
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2. Regression: Least Squares
| «v 1 @~
Remp(a) = NEH()’Z' - WTxi)2 = szel(yi — f(xiaa))z
R(a)= [(y- f(x.a))® dF(x.y)

3. Density Estimation: Maximum Log-Likelihood



ERM Examples

1. Classification: Perceptron

ani; <a) B _EiEmisclassified (yinxi) a = W
2. Regression: Least Squares

Rupl@) = S (3= F (3,007

3. Density Estimation: Maximum Likelihood

max p(D | a) = max HN

i=1

= minR,, (a)= —Ezllog p(x; la)
R(a) = —flogp(x,a) dF (x)

p(x; la)



Method Consistency

* What is consistency?
» Convergence to the best solution with increasing number of examples
* Is ERM consistent?
» No guarantee!
* Goal: describe situations under which the method is consistent
e Approach:
1. Findthe for consistency
2. Estimate the quality of the solution (rate of convergence)
* Theory:
1. Theory of consistency (Qualitative)

2. Theory of bounds (Quantitative, characterizes generalization)



Convergence Modes

“Find the for consistency”
» Find conditions for convergence to best rule as / — o0
» Recall: ERM principle defines a decision rule

* Consider a sequence of random variablesr, ... r :

* We say that the sequence converges to a random variable r,
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Convergence Modes

* Consider a sequence of random variables converging to a random variable r:
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* Which convergence mode is stronger?



Convergence Modes

* Consider a sequence of random variables, measuring distance (using the uniform
metric) between random functions and some fixed function:

r, = p(F(x), Fg(x)) = sup ‘F(x) — Fg(x)‘

* We say that the sequence converges in probability to a random variable r,= 0
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Consistency (Definition)

* Definition: we say that the ERM principle is consistent for {L(Z, O{) }, F(Z) if the

following two conditions hold:
P
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* Expected & Empirical risk must converge “in P” to minimal possible value of risk

* Why both achieved & estimated risk need to converge?
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Two Conditions

» Suppose we generated an infinite sample from a given pdf. We fixed the order and
we marked each example in the sample with a number {1...L}. For each iteration from
1 to L (infinity) we use the corresponding sample to do the following:

* Minimize risk on the sample (ERM) and obtain the decision surface (optimal set
of parameters alpha_L) which yields the minimum value.

* Plug the optimal set of parameters into the integral with respect to the entire
distribution and obtain the expected (achieved) risk value.

* Both the achieved & estimated risk need to converge to the smallest possible
risk for a given set of functions (hence infimum or minimum over all alphas)
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Trivial Consistency

* Problem: trivial cases of consistency

* Suppose ERM is not consistent for some set {L(Z,OC)}
» Add one “minorizing” function to the set such that: infL(z,a) > ¢(Z)
» For the extended set, ERM is consistent! ’
» For every case, minimum of risk is attained at (P(Z)

* Problem since we are forced to take specific functions into account (consistency
depends on whether such function exists)

* But we would like conditions that depend on of a set



Strict Consistency

* Definition: we say that the ERM principle is strictly consistent for {L(Z» O()}, F(Z)
if for any nonempty subset S(c) of this set, the convergence below is valid:

S(c) = {a : fL(z,oc) dF (z) = c}
P
o2 Renlt) =i ot Rle)
* Trivial cases are excluded

* NOTE: previously two conditions (expected & empirical) but now just one

* Empirical convergence is sufficient since it implies expected (but not vice versal)
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