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Lecture 6: Perceptron

e Neural Networks (Bishop 5.1-5.3.2)



Linearly Separable 2-Class Problem
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e Start with training dataset
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e Have N (vector, label {-1,1}) pairs
e Find a discriminant function f(x) to predict class (label) from x
e Assume there exists a weight vector w that classifies all samples correctly
» Such w is called a solution vector
» More than one (infinite #) w:
» We say the data is “ "
» Otherwise “non-separable” (example on the right)
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Gradient Descent

e We have a set of linear inequalities, we want to find a solution vector
., T
Viiy(w x,)>0

e Approach: define a loss function to minimize

L(y.f(x)) = h(= yf (x)) = step(- yf (x))
L(w) = h(- yw' x) = step(- yw" x)
eWhat if we can’t get minimum in closed form?
» Do gradient descent

» Gradient points in direction of fastest increase

» Take step in the opposite direction



Gradient Descent Algorithm

e General Algorithm (any loss function)

1. Fix step size n and threshold £ to some value
2. Initialize: w® = random vector, k = 0 (counter)
3. Update vector: Wk+l = Wk - T]VR(W)
4. Increment counter: k = k+1
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go to step # 3.

e For appropriate guaranteed to converge to a local minimum



Learning Rate

e Pick the step size scalar (learning rate) well so that each step reduces R(w)
e |f step size is too small = slow. If too large = unstable
e Also, need to avoid flat regions in the space = slow
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e Rate can be time (counter) dependent = large steps early on, small steps closer to
the solution



Perceptron Criterion/Loss

e Recall: to do gradient descent, need reasonable gradients
e Currently have staircase-shaped (piece-wise constant) risk function
» Hard to minimize
» The gradient is zero except at edges when a label flips

L(w) = step(— yw' x)
1
R(w) = NE:SM‘D(_ yw' x,)

e Instead of misclassification count, consider Perceptron loss:

per - _ . T .
R (W) EiEmisclassified(ylw xl)

e Get smooth piece-wise linear risk:




Perceptron Update Rule

e Obtain gradient for perceptron risk & plug in the general algorithm:

Rper(W) - _EiEmisclassified (inTxi)
Vprer(W) = _EIEM YiXi
Wk+1 _ Wk _ T]VRper(W)

k };
=W + X
n iEMy’ !



e Also known as “
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Perceptron Algorithm

”

Fix step size

Initialize: w® = random vector,

and threshold = to some value

= 0 (counter)

Update vector: w=wh 172 y yV.X;
i€

Increment counter: k = k+1

If
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go to step # 3.
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Online Perceptron

e How good is the algorithm?
» Convergence properties:
1. Does it converge to a solution? (consistency)
2. How fast does it converge? (rate of convergence)

e |dea: to simplify the proof of convergence, consider cycling through the examples
one at a time (sequence instead of batch)

» Update rule for each mis-classified point by itself
» Skip correctly classified points (no update)
>

» Fix learning rate (w.l.0.g)



Online Algorithm

”

e Also known as “

1. Initialize: w® = random vector, t=1, k = 0 (counters)

k

2. Ify, is misclassified by wk, update vector: w**' = w* + VX,

' : k k
Otherwise, no update: wh = w
3. Increment counter: t = (t+1) mod N

4. If all examples are classified correctly, stop. Otherwise go back to step 2.



Convergence Proof

e Theorem: assuming conditions {1,2} below are satisfied, the sequence of weight
vectors determined by the online perceptron algorithm will converge to a solution
vector in finite number of steps

1. Assume all data lies inside a sphere of radiusr: ¥ = IIlaXHXl-
i
2. Assume that the data is linearly separable:

Vi yi((W*)T x)zy>0

* Proof: to show convergence we consider the angle between the optimal (w*) &
current (wk) solution. Applying conditions {1,2} we can bound the norm of wk & the
dot product w* ® wk . Algebraic manipulation then yields a finite upper bound on k
(number of steps)

1. Angle between optimal (w*) & current (wk) solution
2. Bound the dot product w* ® wk, and the norm of wk

3. Substitute and manipulate to get upper bound on k



Convergence Proof
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Convergence Proof
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e Step 2 (bound numerator & norm):

(W *)T w" = ky

e Step 1 (angle): COS(W*, Wk) <1
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Perceptron Deficiencies

e Many Deficiencies!

1
2
3
4.
5
6

Multiple (infinite #) solutions, which is best?

Actual solution depends on initialization

Data is not linearly-separable? Algorithm doesn’t converge!

Slow convergence in practice

Algorithm lacks straight-forward generalization to multi-class problems

Can’t solve the XOR problem (more generally nonlinear problems)



Multi-Layer Neural Network (idea)

e 1-layer (perceptron): can’t even handle XOR!

e What if we consider cascading multiple layers of network?
e Each output layer is input to the next layer

e Each layer has its own weights (parameters)

e Each layer adds more flexibility (but more parameters!)

e Each node splits its input space with linear hyperplane
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e Multi-Layer Network can handle more complex decisions
e Note: Without loss of generality, we can use augmented vectors



