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Lecture 5+6: Perceptron & Neural Networks

e Convergence proof
e Neural Networks (Bishop 5.1-5.3.2)
e Network Learning, Lagrange multipliers

e Back-Propagation



Polynomial Function Classes
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e Order-P polynomial regression fitting for 1D variable is the same as
P-dimensional linear regression!

. 0 L1 .2
e Construct a multidim x-vector from x scalar: x; =[x}, x;,xf]7

e More generally any function: xi = [bo(x:),d10x:), d2(x:)]7




e Try varying P. Higher P fits a more complex function class

Underfitting/Overfitting

e Observe R(w*) drops with bigger P
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Evaluating the Model

5
* Unfair to use training error to find best order P R
e High P (vs. N) can overfit, even linear case! St
* min R(w*) not on training but on future data or ., (,\»i ‘
e Want model to to future data ,i:' Wi o
-A [ .
Expected (true) loss: Rexpected(w) = jL(y, Sl w))P(x,y)dxdy s . 5

e One approach: split data into training / testing portion
{Ger, 1), ()} {(xr. 1y Yy Dyeony (x,,\ryy)}

e Estimate w* with training (empirical) loss: Ruan() = =3 (i — wix,)?
ramn 2.‘ i=1 i i

e Evaluate P with testing loss: Rt (W) = — Z\ ;= wTx,)?
les - 2(N-v) =yl i i



Validation

e Try fitting with different polynomial order P
e Select P which gives lowest R, __.(w*)

test

Loss

Rtrain (W*)

» P

< underfitting | overfitting 2>

best P

e Think of P as a measure of the complexity of the model
e Higher order polynomials are more flexible and complex



Cross-Validation

* Better idea: split data into three sets (training / validation / test)
e Even better idea: split data into two sets (training / test) but do
on the training set
» K folds, K-1 for training, 1 for testing; repeat process K times; average error
e Best idea (sometimes): on the training set
» N examples, N-1 for training 1 for testing; repeat process N times; average error

R.ia(W)

Loss

Rtrain (W*)

» P

< underfitting | overfitting 2>

best P



The Weierstrass Approximation Theorem

e Theorem (1885):

Suppose f(x) is a continuous real-valued function defined on the
real interval [a,b]. For every € > 0, there exists a polynomial
function p over R such that vx € [a,b], we have [f{x) — p(x)| < €,
or equivalently, | flx) - p(x) | < €.

e Definition of (infinity) norm:

%) = p) |l .. = sup{lflx) — p(x)|}



Parametric Paradigm (Philosophy)

e Heyday: 1930 —1960’s
e Standard assumptions: familiar problem & underlying physical process
e Problem: set of parameters that needs to be estimated
e Approach: adopt the Maximume-Likelihood / MAP / Bayesian method
e Strength:
1. If assumptions are correct, we obtain more accurate estimates
2. Math is simpler & faster to compute.

e Principle: if it works for the case, should work for a small sample too.



Parametric Paradigm (Beliefs?)

A. Itis possible to find a good approximation to any function with few parameters
» Evidence (?): Weierstrass Approximation Theorem
» Strength: computationally simple

B. The underlying law behind many real-life problems is the normal law
» Evidence: Central Limit Theorem

C. MLE / MAP / Bayesian are good approaches for estimating the parameters

» Evidence: conditional optimality (restricted set or asymptotic case)



The Neuron as Regression

e The McCullough-Pitts Neuron is a graphical representation of linear regression:
» Edges (synapses): multiply signal by scalar weight
» Nodes: sum the inputs
» Parameters: w; ... wp = weights w, = bias
» Activation function: linear

D
f(x;w) = Ei=1wixi + W,

Sort of what a neuron
looks like
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The Neuron as Classifier

e The Neuron as a graphical representation of a linear classifier:

» Edges (synapses): multiply signal by scalar weight i
» Nodes: sum the inputs 0
» Parameters ( ): W, ... Wy = weights 4
» Activation function: 0 0 0

X,=[l,x]; f(xw)= Eiowixi =w'x




Step Function

-1 when z<0

h(7) =
(2) +1 when z=0

flxw)= Eiowixi —wy

T .
w x=0: assignl

h[ f (x;w)] =

T .
w x<0: assign-1




Linear Decision Surface

e Previously: form of probability densities is known
e Now: form of discriminant/decision surface is known
* The equation f(X) = WTX = () defines the decision surface

e Linear surface =
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Geometry of Linear Surface

e W is normal to any vector lying in the hyperplane H
e Proof: x,,x,on H=w"x,=0,w'x,=0
=w'x,-w'x,=0
=w' (x,-x,)=0
e H divides the space into two half spaces.
e Normal vector (w) points to the positive side of H (why?)
e Discriminant function f{(x) is proportional to the distance from x to H

*Proof: x=x, +r = f(x)= f(x, +r )

= f(x) = wapr + r(w—;w

nd f()C) = r(wvaz)
J(x)

==
[w]




Linearly Separable 2-Class Problem

e Start with training dataset

X — {(33;,3/1)’(%’?/2)’”"(xgxf’y.-v)} zeR” ye¢ {—1,1}

e Have N (vector, label {-1,1}) pairs
e Find a discriminant function f(x) to predict class (label) from x
e Assume there exists a weight vector w that classifies all samples correctly
» Such w is called a solution vector
» More than one (infinite #) w:
» We say the data is “ "
» Otherwise “non-separable” (example on the right)
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