Machine Learning

4771

Instructors:

Adrian Weller and Ilia Vovsha

Lecture 5+6: Perceptron & Neural Networks

- Cross-Validation
- Linear decision surface
- Perceptron (Duda 5.1-5.5)
- Convergence proof
- Neural Networks (Bishop 5.1-5.3.2)
- Network Learning, Lagrange multipliers
- Back-Propagation

Polynomial Function Classes

- Back to 1-dim x (D=1) BUT Nonlinear Function Classes

- Order-P polynomial regression fitting for 1D variable is the same as P-dimensional linear regression!
- $x_i = [x_i^0, x_i^1, x_i^2]^T$ • Construct a multidim x-vector from x scalar:
- More generally any function: $x_i = [\phi_0(x_i), \phi_1(x_i), \phi_2(x_i)]^T$

Underfitting/Overfitting

- Try varying P. Higher P fits a more complex function class
- Observe R(w*) drops with bigger P

Evaluating the Model

- Unfair to use training error to find best order P
- High P (vs. N) can overfit, even linear case!
- min R(w*) not on training but on future data
- Want model to Generalize to future data

• One approach: split data into training / testing portion

$$\{(x_1,y_1),\ldots,(x_{\nu}y_{\nu})\}$$

$$\{(x_{\nu+1},y_{\nu+1}),\ldots,(x_Ny_N)\}$$

• Estimate ω^* with training (empirical) loss:

$$R_{train}(w) = \frac{1}{2v} \sum_{i=1}^{v} (y_i - w^T x_i)^2$$

• Evaluate P with testing loss:

$$R_{test}(w) = \frac{1}{2(N-v)} \sum_{i=v+1}^{N} (y_i - w^T x_i)^2$$

Validation

- Try fitting with different polynomial order P
- Select P which gives lowest R_{test}(w*)

- Think of P as a measure of the complexity of the model
- Higher order polynomials are more flexible and complex

Cross-Validation

- Better idea: split data into three sets (training / validation / test)
- Even better idea: split data into two sets (training / test) but do *K-fold cross-validation* on the training set
 - > K folds, K-1 for training, 1 for testing; repeat process K times; average error
- Best idea (sometimes): *leave-one-out cross-validation* on the training set
 - ➤ N examples, N-1 for training 1 for testing; repeat process N times; average error

The Weierstrass Approximation Theorem

• Theorem (1885):

Suppose f(x) is a continuous real-valued function defined on the real interval [a,b]. For every $\epsilon>0$, there exists a polynomial function p over $\mathbb R$ such that $\forall x\in [a,b]$, we have $|f(x)-p(x)|<\epsilon$, or equivalently, $||f(x)-p(x)||_{\infty}<\epsilon$.

Definition of supremum (infinity) norm:

$$||f(x) - p(x)||_{\infty} = \sup\{|f(x) - p(x)|\}$$

Parametric Paradigm (Philosophy)

- Heyday: 1930 1960's
- Standard assumptions: familiar problem & underlying physical process
- Problem: set of parameters that needs to be estimated
- Approach: adopt the Maximum-Likelihood / MAP / Bayesian method
- Strength:
 - 1. If assumptions are correct, we obtain more accurate estimates
 - 2. Math is simpler & faster to compute.
- Principle: if it works for the *asymptotic* case, should work for a small sample too.

Parametric Paradigm (Beliefs?)

- A. It is possible to find a good approximation to any function with few parameters
 - > Evidence (?): Weierstrass Approximation Theorem
 - Strength: computationally simple
- B. The underlying law behind many real-life problems is the normal law
 - Evidence: Central Limit Theorem
- C. MLE / MAP / Bayesian are good approaches for estimating the parameters
 - > Evidence: conditional optimality (restricted set or asymptotic case)

The Neuron as Regression

- The McCullough-Pitts Neuron is a graphical representation of linear regression:
 - > Edges (synapses): multiply signal by scalar weight
 - ➤ Nodes: sum the inputs
 - \triangleright Parameters: $w_1 \dots w_D = weights <math>w_0 = bias$
 - > Activation function: linear

$$f(\mathbf{x}; \mathbf{w}) = \sum_{i=1}^{D} w_i x_i + w_0$$

The Neuron as Classifier

- The Neuron as a graphical representation of a linear classifier:
 - > Edges (synapses): multiply signal by scalar weight
 - ➤ Nodes: sum the inputs
 - \triangleright Parameters (augmented vector): $\mathbf{w}_0 \dots \mathbf{w}_D$ = weights
 - ➤ Activation function: step function

$$X_A = [1, x]; \quad f(x; w) = \sum_{i=0}^{D} w_i x_i = w^T x$$

Step Function

$$h(z) = \begin{cases} -1 & when \ z < 0 \\ +1 & when \ z \ge 0 \end{cases}$$

$$f(\mathbf{x}; \mathbf{w}) = \sum_{i=0}^{D} w_i x_i = \mathbf{w}^T x$$

$$h[f(x;w)] \Rightarrow \frac{w^T x \ge 0 : assign 1}{w^T x < 0 : assign -1}$$

Linear Decision Surface

- Previously: form of probability densities is known
- Now: form of discriminant/decision surface is known
- The equation $f(x) = w^T x = 0$ defines the decision surface
- Linear surface = hyperplane

Geometry of Linear Surface

- W is normal to any vector lying in the hyperplane H
 - Proof: $x_1, x_2 \text{ on } H \Rightarrow w^T x_1 = 0, w^T x_2 = 0$ $\Rightarrow w^T x_1 - w^T x_2 = 0$ $\Rightarrow w^T (x_1 - x_2) = 0$
- H divides the space into two half spaces.
- Normal vector (w) points to the positive side of H (why?)
- Discriminant function f(x) is proportional to the distance from x to H

• Proof:
$$x = x_{pr} + r \frac{w}{\|w\|} \Rightarrow f(x) = f(x_{pr} + r \frac{w}{\|w\|})$$

$$\Rightarrow f(x) = w^T x_{pr} + r(\frac{w^T w}{\|w\|})$$

$$\Rightarrow f(x) = r(\frac{\|w\|^2}{\|w\|})$$

$$\Rightarrow r = \frac{f(x)}{\|w\|}$$

Linearly Separable 2-Class Problem

Start with training dataset

$$\mathcal{X} = \left\{ \left(x_{_{\! 1}}, y_{_{\! 1}}\right), \left(x_{_{\! 2}}, y_{_{\! 2}}\right), \ldots, \left(x_{_{\! N}}, y_{_{\! N}}\right) \right\} \quad x \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{-1, 1\right\}$$

- Have N (vector, label {-1,1}) pairs
- Find a discriminant function f(x) to predict class (label) from x
- Assume there exists a weight vector w that classifies all samples correctly
 - > Such w is called a solution vector
 - ➤ More than one (infinite #) w: solution region
 - ➤ We say the data is "linearly seperable"
 - ➤ Otherwise "non-separable" (example on the right)

