Machine Learning

4771

Instructors:

Adrian Weller and Ilia Vovsha

Lecture 3+4: Parametric Approaches to Statistical Inference

- Bayesian Decision Theory (Duda 2.1-2.4)
- Gaussian Distribution (Duda 2.5)
- Classification with Gaussians (Duda 2.6)
- Regression
- Polynomial Approximation (Bishop 1.1)
- Application to text classification.
- Multinomial and bag-of-words models.

Bayesian Decision Theory

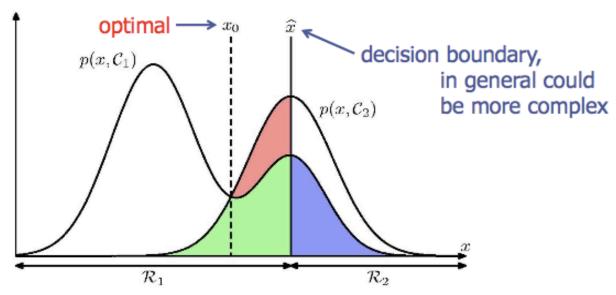
- Previously: dealing with uncertainty
- Assumption: probability values are known
- Given input & labels, obtain pdf
 - \triangleright p(x) from \mathcal{D}
 - ➤ Difficult problem!
- Instead lets do prediction:
 - ▶ prediction ≈ decision (action)
 - > Decision is trivial after inference

Bayesian Decision Theory

- Initially assume just 2 classes C₁, C₂
- Given input data x we want to determine which class is optimal
- Various possible criteria
- Need p(C_k | x) either directly (discriminative)
- Or by Bayes, $p(C_k \mid x) = \frac{p(x, C_k)}{p(x)} = \frac{p(x \mid C_k)p(C_k)}{p(x)}$ (generative)
- Divide input space into decision regions R₁, R₂ separated by decision boundaries such that x∈ R_k ⇒ assign C_k
- How might we choose boundaries?

COMS4771, Columbia University (Bishop PRML 1.5)

Criterion 1: Minimize Misclassification Rate



assign class 1 but should be 2 assign class 2 but should be 1
$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) \, \mathrm{d}\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) \, \mathrm{d}\mathbf{x}.$$
$$p(\mathbf{x}, \mathcal{C}_k) = p(\mathcal{C}_k \mid \mathbf{x}) p(\mathbf{x})$$

Criterion 2: Minimize Expected Loss

Example loss matrix:

classify medical images as 'cancer' or 'normal'

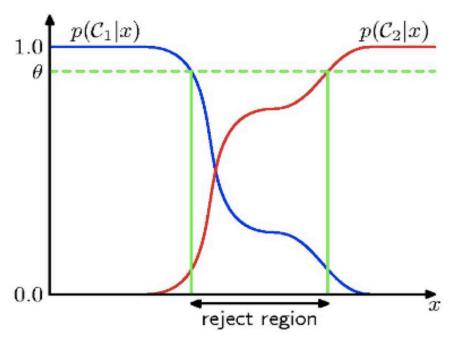
$$\begin{array}{c}
\text{Decision} \\
\text{cancer normal} \\
\text{cancer} \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}
\end{array}$$

Now
$$\mathbb{E}[L] = \sum_k \sum_j \int_{\mathcal{R}_j} L_{kj} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x}$$

Choose regions R_i to minimize Expected Loss

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

Reject Option



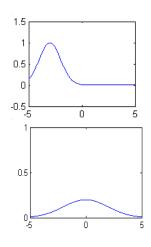
If $p(C_1 | x) \approx p(C_2 | x)$ then less confident about assigning class.

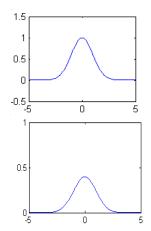
One possibility is to reject or refuse to assign.

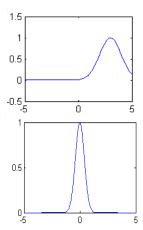
Gaussian Distribution

- Most popular continuous distribution (why?)
- Recall 1-dimensional form:
 - > Mean parameter μ translates Gaussian left & right
 - \triangleright Variance parameter σ^2 widens or narrows the Gaussian

$$p(x \mid \mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\mu)^2\right)$$
 $p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$







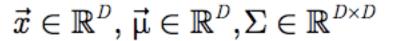
Note:
$$\int_{-\infty}^{\infty} p(x)dx = 1$$

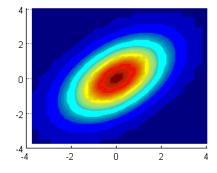
Multivariate Gaussian

- Gaussian can extend to D-dimensions
- Gaussian mean parameter μ vector, it translates the bump
- ullet Covariance matrix Σ stretches and rotates bump

$$pig(ec{x}\midec{\mu},\Sigmaig)=rac{1}{\left(2\pi
ight)^{D/2}\sqrt{|\Sigma|}}\expigg(-rac{1}{2}ig(ec{x}-ec{\mu}ig)^{\!T}\,\Sigma^{-1}ig(ec{x}-ec{\mu}ig)igg)$$

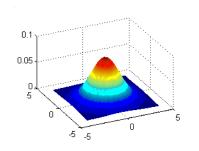
- Mean is any real vector
- Max and expectation = μ
- Variance parameter is now Σ matrix
- Covariance matrix is positive definite
- Covariance matrix is symmetric
- Need matrix inverse (inv)
- Need matrix determinant (det)
- Need matrix trace operator (trace)

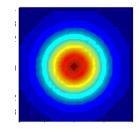


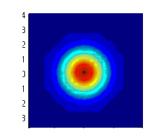


Multivariate Gaussian

• Spherical:
$$\Sigma = \sigma^2 I = \left[\begin{array}{ccc} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{array} \right]$$







- Diagonal Covariance:
 - > Dimensions of x are independent
 - ➤ Product of multiple 1d Gaussians

$$p\left(\vec{x}\mid\vec{\mu},\Sigma\right) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi}\vec{\sigma}(d)} \exp\left(-\frac{\left(\vec{x}(d) - \vec{\mu}(d)\right)^2}{2\vec{\sigma}(d)^2}\right) \begin{bmatrix} \vec{\sigma}\left(1\right)^2 & 0 & 0 & 0 \\ 0 & \vec{\sigma}\left(2\right)^2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \vec{\sigma}\left(D\right)^2 \end{bmatrix}$$

Multivariate Gaussian

- Diagonal Covariance:
 - > Dimensions of x are independent

> Product of multiple 1d Gaussians
$$p\left(\vec{x}\mid\vec{\mu},\Sigma\right) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi}\vec{\sigma}(d)} \exp\left(-\frac{\left(\vec{x}(d) - \vec{\mu}(d)\right)^2}{2\vec{\sigma}(d)^2}\right) \begin{bmatrix} \vec{\sigma}\left(1\right)^2 & 0 & 0 & 0 \\ 0 & \vec{\sigma}\left(2\right)^2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \vec{\sigma}\left(D\right)^2 \end{bmatrix}$$

- The surface is an ellipsoid.
 - Eigenvectors of covariance = principle axes
 - Eigenvalues of covariance = length

MLE for Gaussian

- •Have IID samples as vectors i=1..N: $\mathfrak{D} = \left\{ \vec{x}_1, \vec{x}_2, ..., \vec{x}_N \right\}$
- •How do we recover the mean and covariance parameters?
- Standard approach: Maximum Likelihood (IID)
- Maximize probability of data given model (likelihood)

$$\begin{split} p\left(\mathcal{D} \mid \theta\right) &= p\left(\vec{x}_{\!_{1}}, \vec{x}_{\!_{2}}, \ldots, \vec{x}_{\!_{N}} \mid \theta\right) \\ &= \prod\nolimits_{i=1}^{N} p\!\left(\vec{x}_{\!_{i}} \mid \vec{\mu}_{\!_{i}}, \Sigma_{\!_{i}}\right) \quad independent \, Gaussian \, samples \\ &= \prod\nolimits_{i=1}^{N} p\!\left(\vec{x}_{\!_{i}} \mid \vec{\mu}, \Sigma\right) \quad identically \, distributed \end{split}$$

Instead, work with maximum of log-likelihood

$$\sum_{i=1}^{N} \log p \Big(\vec{x}_i \mid \vec{\mu}, \Sigma \Big) = \sum_{i=1}^{N} \log \tfrac{1}{\left(2\pi\right)^{D/2} \sqrt{|\Sigma|}} \exp \left(-\tfrac{1}{2} \Big(\vec{x}_i - \vec{\mu} \Big)^T \, \Sigma^{-1} \Big(\vec{x}_i - \vec{\mu} \Big) \right)$$

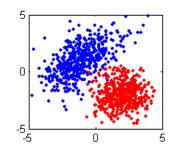
Classification with Gaussians

- Have two classes, each with its own Gaussian:
- The goal is to assign each example to one of the classes, while minimizing misclassification rate.

$$P(C_1|x) = p(x|C_1)P(C_1)$$

$$P(C_2|x) = p(x|C_2)P(C_2)$$

$$P(x|C_i) \sim N(\mu_i, \Sigma_i)$$



• We could use a discriminant function:

$$g_i(x) = \ln[p(x|C_i)P(C_i)] = \ln[p(x|C_i)] + \ln[P(C_i)]$$

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) - \frac{1}{2}\ln|\Sigma_i| + \ln[P(C_i)]$$

Spherical Case

• Recall:
$$\Sigma=\sigma^2I=\left[\begin{array}{cccc}\sigma^2&0&0\\0&\sigma^2&0\\0&0&\sigma^2\end{array}\right]$$

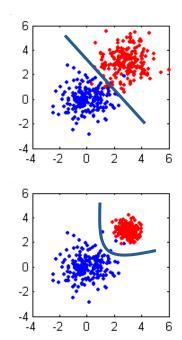
• We can simplify the discriminant:

$$\begin{split} |\Sigma_{i}| &= \sigma^{2d} \\ \Sigma_{i}^{-1} &= (\frac{1}{\sigma^{2}})I \\ g_{i}(x) &= -\frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i}) - \frac{1}{2} \ln|\Sigma_{i}| + \ln[P(C_{i})] \\ g_{i}(x) &= \frac{-\|x - \mu_{i}\|^{2}}{2\sigma^{2}} + \ln[P(C_{i})] \end{split}$$

- Simple interpretation: if priors are equal, we have a *minimum distance classifier*
 - > Euclidean distance to each mean

Arbitrary case

- Covariance matrices are different for each class
- Discriminant functions are quadratics
- See illustrations in Duda 2.6.3



Why so popular?

- Analytical tractability:
 - > Gaussian family is *self-conjugate* (w.r.t Gaussian likelihood function)
 - > Easy to manipulate
- Central Limit Theorem (CLT):
 - ➤ Given a sequence of iid random variables {X1,...,Xn}, their mean (assuming they have 'reasonable' properties, and there is enough of them) will be ≈ normally distributed
 - Convergence of mean to normal distribution
 - ➤ Model for many empirical processes
- Profound relation to Entropy:
 - \triangleright For a given $\{\mu, \sigma^2\}$, Gaussian has the maximum entropy among all cont. pdfs
 - > Entropy is a measure of randomness/unpredictability

What is MATLAB?

- MATLAB is a high-level language and interactive environment that allows one to solve science & engineering problems quickly using built-in functionality.
- High-level language:
 - User-friendly, easy to use, built-in functions (+)
 - ➤ Slower, less control (-)
- Interactive environment:
 - > Graphical User Interface (GUI).
 - > Visualization.
- Scripting language designed for "gluing together" computations.
- Object Oriented Programming (OOP) takes a backseat.
- Documentation is sufficient:
 - http://www.mathworks.com/help/techdoc/index.html
- Ideal for developing a prototype or a model, suitable for quick and dirty computation.
- Poor choice for a major commercial package.

MATLAB Overview

- See www.cs.columbia.edu->computing->Software->Matlab
- Online info to get started is available at:

http://www.cs.columbia.edu/~coms4771/tutorials.html

- Basic functionality:
 - ➤ General: help, who, clear, %
 - Math: size, zeros, max, min, mean, norm, inv, sort
 - > Control: if, for, while, end, return
 - > Display: disp, figure, plot, hold on, fprintf
 - ➤ Input/Output: load, save, print
- Example code: for homework #1 we will use polyreg.m
- Discuss implementation details with TAs.