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Topic 2: Basic concepts of 
Bayesians and Frequentists

•Properties of PDFs

•Bayesians & Frequentists

•ML, MAP and Full Bayes

•Example: Coin Toss

•Bernoulli Priors

•Conjugate Priors

•Bayesian decision theory
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Properties of PDFs
•Review some basics of probability theory

•First, pdf is a function, multiple inputs, one output:

•Function’s output is always non-negative:

•Can have discrete or continuous inputs or both:

•Summing over the domain of all inputs gives unity:
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Properties of PDFs
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(Bishop PRML 1.2.1)
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Properties of PDFs
•Marginalizing: integrate/sum out a variable leaves a

marginal distribution over the remaining ones…

•Conditioning: if a variable ‘y’ is ‘given’ we get a
conditional distribution over the remaining ones…

•Bayes Rule: mathematically just redo conditioning
but has a deeper meaning (1764)… if we
have x being data and θ being a model
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Properties of PDFs
•Expectation: can use pdf p(x) to compute averages and
expected values for quantities, denoted by:

•Properties:

•Mean: expected value for x

•Variance: expected value of (x-mean)2, how much x varies 
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The IID Assumption
•Most of the time, we will assume that a dataset is

independent and identically distributed (IID)

•In many real situations, data is generated by some
black box phenomenon in an arbitrary order.

•Assume we are given a dataset:

“Independent” means that (given the model θ) the
probability of our data multiplies:

“Identically distributed” means that each marginal
probability is the same for each data point
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Ex: Is a coin fair?
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A stranger tells you his coin is fair.

Let’s assume tosses are iid with P(H)=µ.

He tosses it 4 times, gets H H T H.

What can you say about µ?
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Bayesians & Frequentists
•Frequentists (Neymann/Pearson/Wald). An orthodox view 
that sampling is infinite and decision rules can be sharp.

•Bayesians (Bayes/Laplace/de Finetti). Unknown quantities 
are treated probabilistically and the state of the world can 
always be updated.

de Finetti: p( event ) = price I would pay for a
contract that pays $1
when event happens

•Likelihoodists (Fisher). Single sample inference based on 
maximizing the likelihood function.

actuarial fair
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Bayesians & Frequentists
•Frequentists: 

•Data are a repeatable random sample - there is a 
frequency 
•Underlying parameters remain constant during this 
repeatable process
•Parameters are fixed

•Bayesians:
•Data are observed from the realized sample.
•Parameters are unknown and described probabilistically
•Data are fixed
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Frequentists

•Frequentists: classical / objective view / no priors
every statistician should compute same p(x) so no priors
can’t have a p(event) if it never happened
avoid p(θ), there is 1 true model, not distribution of them
permitted: p

θ
(x,y) forbidden: p(x,y|θ)

Frequentist inference: estimate one best model θ
use the Maximum Likelihood Estimator (ML)
(unbiased & minimum variance)
do not depend on Bayes rule for learning
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Bayesians 

•Bayesians: subjective view / priors are ok
put a distribution or pdf on all variables in the problem
even models & deterministic quantities (speed of light)
use a prior p(θ) on the model θ before seeing any data

Bayesian inference: use Bayes rule for learning, integrate
over all model (θ) unknown variables
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Bayesian Inference
•Bayes rule can lead us to maximum likelihood
•Assume we have a prior over models p(θ)

•How to pick p(θ)?
Pick simpler θ is better
Pick form for mathematical convenience

•We have data (can assume IID):

•Want to get a model to compute:

•Want p(x) given our data… How to proceed?
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Bayesian Inference
•Want p(x) given our data… ( ) ( )D
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Bayesian Inference to MAP & ML
•The full Bayesian Inference integral can be mathematically
tricky. MAP and ML are approximations of it…

•Maximum A Posteriori (MAP) is like Maximum
Likelihood (ML) with a prior p(θ) which lets
us prefer some models over others
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Ex: Is a coin fair?
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A stranger tells you his coin is fair.

Let’s assume tosses are iid with P(H)=µ.

He tosses it 4 times, gets H H T H.

What can you say about µ?

( ), , ,H H T H=D
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Bernoulli Probability ML
•Bernoulli:

•Log-Likelihood (IID):

•Gradient=0:

( ) ( ) { }
1

1 0,1 0,1
x

x

p x x
−

 = − ∈ ∈ µ


µ µ


( ) ( )
1

1 1
log | log 1

i
i

xN N x

ii i
p x

−

= =

= −µ µ µ∑ ∑

( )
( ) ( )

( )

( )

1

1

1

1 0

1 1

11 0

1 1

1

log 1 0

log 1 log 1 0

log log 1 0

0

( ) 0

1 ( ) 0

0

i
i

xN x

i

N

i ii

i class i class

i class i class

m

N

x x

m N m

m N m

m N

−
∂

∂ =

∂

∂ =

∂

∂ ∈ ∈

µ

µ

µ

µ µ

µ

−∈ ∈

µ−

− =

+ − − =

+ − =

− =

− − =

− − − =

µ µ

µ µ

µ µ

µ µ

µ

− =

=

µ

∑

∑

∑ ∑
∑ ∑

x=0        x=1

m

N

N m

N

−

0 ~ Tail
1 ~ Headµ=P(H)

N      trials/tosses
m     heads/1s
N-m  tails/0s



Bernoulli Bayes, Prior 1

• Assume prior µ=1/2, point mass 
distribution

• Posterior

• If the prior is 0 for some value, the 
posterior will also be 0 at that value   
no matter what data we see
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Bernoulli Bayes, Prior 2

• Allow some chance of bias

• Prior P(µ=1/2) = 1-b

P(µ=3/4) = b

• Posterior
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Bernoulli Bayes, Prior 2

• Prior P(µ=1/2) = 1-b

P(µ=3/4) = b

• Posterior
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Bernoulli Bayes, Prior 3

• Uniform prior
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Beta Distribution

• Distribution over              
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(Bishop PRML 2.1, especially 2.1.1)

Here switch to typical ‘sloppy’ notation, using          
µ for variable name and its value.



Bernoulli Bayes, Beta Prior

The Beta distribution provides the conjugate prior for 
the Bernoulli distribution, i.e. the posterior 
distribution has the same form as the prior.

effective number of observations +1

All distributions in the Exponential Family (includes 
multinomial, Gaussian, Poisson) have convenient 
conjugate priors (Bishop PRML 2.4).
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(Bishop PRML 2.1, especially 2.1.1)



Beta Distribution
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(Bishop PRML 2.1, especially 2.1.1)

Which distribution is this?



Prior · Likelihood = Posterior
normalized

COMS4771, Columbia University
(Bishop PRML 2.1, especially 2.1.1)

Example:

a=2, b=2 a=3, b=2Single observation
H or x=1

Recall our earlier example of a Uniform prior, check        
this works…

)(p µ ( | )p µD |( )p µ D



Properties of the Posterior

As the size of the data set, N, grows
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(Bishop PRML 2.1, especially 2.1.1)
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Prediction under the Posterior
What is the probability that the next coin toss will 
land heads up? 

COMS4771, Columbia University
(Bishop PRML 2.1, especially 2.1.1)
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Bayesian Decision Theory

• Initially assume just 2 classes

• Given input data     we want to determine which 
class is optimal

• Various possible criteria

• Need              either directly (discriminative)

• Or by Bayes,

(generative)

• Divide input space into decision regions                     
separated by decision boundaries                       
such that 

• How might we choose boundaries?
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(Bishop PRML 1.5)
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Criterion 1: Minimize 
Misclassification Rate
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(Bishop PRML 1.5)

decision boundary,
in general could
be more complex

optimal
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Criterion 2: Minimize  
Expected Loss
Example loss matrix: 

classify medical images as ‘cancer’ or ‘normal’

Decision
T
ru
th
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(Bishop PRML 1.5)

Now

Choose regions         to minimize Expected Lossj
R



Reject Option
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(Bishop PRML 1.5)

1 2
| ) ( | ) then less confident about assigning claI s( s.f x p xp ≈C C

One possibility is to reject or refuse to assign.


