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Lecture 24

eHidden Markov Models

*HMMs as State Machines & Applications
eHMMs Basic Operations

*HMMs via the Junction Tree Algorithm
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Hidden Markov Models

oA great application of Junction Tree Algorithm with EM
eSo far, we have dealt with mixture models with IID'

“ 00000k

eRecall mixture of Gaussians and EM...

e\/ariable g was a multinomial

eRoll a die to determine sub-population:
g={compact,midsize,luxury} m%

eThen sample appropriate Gaussian COMPACT N0 o

mean and covariance to get .

y=(speed,size) CAR SIZE

eCan consider other mixtures too, multinomials, Poisson...  ;

MIDSIZE

TOP SPEED
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Hidden Markov Models

eConsider mixture of multinomials (dice) y={1,2,3,4,5 6}

“. 008884,

ﬂl!mmm
esExample: a crooked casino croupier using mixture of dice.
eYou win if he rolls 1,2,3. You lose if he rolls 4,5,6.
eCroupier has three dice (one fair & two weighted):

555555

1=helpful 2=fair 3=adversarial 2
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Hidden Markov Models

eConsider mixture of multinomials (dice) y={1,2,3,4,5 6}

“. 00888 % .

q={1=helpful,2=fair,3=adversarial} 'l ' “ﬂllll” ' I I

555555555555555555

o\What if the dealer has a memory or mood? Not IID!
5646166166 4321534161414341634 1113114121

eDealer might start to like you and roll the helpful die...

eDealer has a memory of his mood and last type of die q,_,

o\Will often use same die for gtas was rolled before...

eNow, order of y,,...,y; matters (if IID order doesn’t matter) i
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Hidden Markov Models

eSince next choice of the die depends on previous one...

(0.
9y 9 9 @ @ Order of y,,...,y; matters
i % T ] del!
% @ @ @ emporal or sequence mode

oAdd left-right arrows. This is a hidden Markov model
eMarkov: future || past | present

p(g,la, ., ,a00,)=0(0lg,,)

eFrom graph, have the following general pdf:

(% )=p @)L oo Mo (ol)

¢SO p(qt) depends on previous state O-q --
|q751_1 |qt1_2 |qt1_

™ 1
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HMMs as State Machines

eHMMs have two variable types: state g and emission y
eTypically, we don’t know q (hidden variable, e.g. 1,2,37?)
*HMMs are like stochastic
automata or finite state
machines...
next state depends
on previous one...
(helpful, fair, adversarial)

eCan’t observe state g
directly, just a random
related emission y outcome
(dice roll) so...
doubly-stochastic
automaton




HMM Applications

oSpeech Rec (Rabiner):

phonemes from

audio cepstral vectors
eLanguage (Jelinek):

parts of speech
from words
*Biology (Baldi):
splice site from
gene sequence
eGesture (Starner):
word from hand
coordinates
eEmotion (Picard):
emotion from EEG
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Ba-ra-kk-00-00-dd-ah

Noun Verb Noun
John Ate Pizza

-Intron- | -Exon- | -Promoter-
GATTACATTATACCACCATACG

Pass The Salt

M e R T T
= Fo e

Happy Neutral Sad
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Hidden Markov Models
«Graph gave: p(X,)=p(g )] 7l I1 2@ !q)

eHaven't yet specified the types of variables or cpts...
1) g can be discrete, example finite state machlne

pa 10 )=T1" T o]

2) y can be vectors, example: time series JL

p(y,14,)= N(yt | uqt,eq)

3) y can be discrete, example: strings

p(oa)=TILTL 0] i
4) g and y can be vectors, example: Kalman filter
2% | qt_l) ( | Ag, 1,@) and N(y | Cq,, R JL

Kalman Filters, Linear dynamical systems D
Used in tracking, control (see ch. 14)
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HMMs: Parameters

o\We focus on HMMs with: discrete state q (of size M)
discrete emission y (of size N)

eInput will be arbitrary length string: yy,...,y+
eThe pdf or (complete) likelihood is:

p(ev)=p(g)[1 r@le I 2@l1q)

o\We don’t know hidden states, the incomplete likelihood is:

p(y)zzqo”’qup(Qay) same for all t

eAssume HMM is stationary, tables are repeated: 6 = {xn,o!}

P (qt | qt—l): Hj\; Hjil azjrzlqg Zj’\ilazj =1 M x M
p@1a)=TLTT 0" "t =1 M x N
)=117,

p(qo = :ﬂiré Zj;ﬂj =1 oom M

10
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HMMs: Basic Operations

e\Would like to do 3 basic things with our HMMs:
1) Evaluate: given vy,,...,.yr & 6 compute p(yy,...,Y71)
2) Decode/inference: given y,...,.yr & 6 find MAP q,...,0t

or marginals p(qy),..-,P(dt)
3) Max Likelihood Learn: given yy,...,y1 learn parameters 6

e Typically use Baum-Welch (o—p algo)... JTA is more
general

ql

qo yo Vv qo q1 (q1 q2) tb(T y qT)
> o - O
® (qo O (q1
HMMs easily get ° (ql \ > (q2 > (qT
Junction Tree lb(qpyl) 1b(qy%) 1b(quyT) "
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HMMs: JTA Init & Verify

oInit: v (5,9, )= )p(,19,) ©(@a.,)=r.,lq) (qﬁ?/t)z p(y,

vig,,Y, vig ,ql) vig,,q, g (qﬁZ):
) @&S“Qé} b -
\b(ql,ysbw (q2 y2) w(qT yT)

*Collect up from leaves: don’t change zeta separators

5(%)22 (2,9, )= ., p,1g)=1 v (1 pq)=" w(th) (g, ,9,)
eCollect /eft—r/ghtwa phi’'s: change backbone to marginals
o (0,)=2, van)=r) O a00)= S0 a00)=r(aa)
¢ (1,)= >, v (2, .9,)=r(g) V' (g, 00,)= @p(qt lq,,)=r(1, 9,
eDistribute: <" (4, )= K (2, ,.9,)= >, 0, .4,)=1,)
b (g9, )= (g9, )= )y, 0,)=r(v,9,) ...done! |,




