Machine Learning 4771

Instructors:
Adrian Weller and Ilia Vovsha

Lecture 24

- Hidden Markov Models
- •HMMs as State Machines & Applications
- HMMs Basic Operations
- •HMMs via the Junction Tree Algorithm

- A great application of Junction Tree Algorithm with EM
- •So far, we have dealt with mixture models with IID:

- Recall mixture of Gaussians and EM...
- Variable q was a multinomial
- Roll a die to determine sub-population: q={compact,midsize,luxury}
- Then sample appropriate Gaussian mean and covariance to get y=(speed,size)

•Can consider other mixtures too, multinomials, Poisson...

•Consider mixture of multinomials (dice) $y=\{1,2,3,4,5,6\}$

- •Example: a crooked casino croupier using mixture of dice.
- •You win if he rolls 1,2,3. You lose if he rolls 4,5,6.
- Croupier has three dice (one fair & two weighted):

•Consider mixture of multinomials (dice) $y=\{1,2,3,4,5,6\}$

 $q=\{1=helpful,2=fair,3=adversarial\}$

- •What if the dealer has a memory or mood? Not IID! 5646166166 4321534161414341634 1113114121
- Dealer might start to like you and roll the helpful die...
- •Dealer has a memory of his mood and last type of die q_{t-1}
- •Will often use same die for q^t as was rolled before...
- •Now, order of $y_0,...,y_T$ matters (if IID order doesn't matter)

Since next choice of the die depends on previous one...

Order of $y_0, ..., y_T$ matters **Temporal or sequence model!**

- Add left-right arrows. This is a hidden Markov model
- •Markov: future || past | present $p\left(q_{t} \mid q_{t-1}^{-}, q_{t-2}, ..., q_{1}, q_{0}^{-}\right) = p\left(q_{t} \mid q_{t-1}^{-}\right)$
- •From graph, have the following general pdf:

$$p\left(X_{U}\right) = p\left(q_{0}\right) \prod_{t=1}^{T} p\left(q_{t} \mid q_{t-1}\right) \prod_{t=0}^{T} p\left(y_{t} \mid q_{t}\right)$$

•So p(q_t) depends on previous state q_{t-1} ...

$$p\left(q_{t} \mid q_{t-1} = 1\right)$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0.3$$

$$p\left(q_{t} \mid q_{t-1} = 2\right)$$

HMMs as State Machines

- •HMMs have two variable types: state q and emission y
- •Typically, we don't know q (hidden variable, e.g. 1,2,3?)
- HMMs are like stochastic automata or finite state machines... next state depends on previous one... (helpful, fair, adversarial)
- Can't observe state q directly, just a random related emission y outcome (dice roll) so... doubly-stochastic automaton

HMM Applications

- Speech Rec (Rabiner): phonemes from audio cepstral vectors
- Language (Jelinek): parts of speech from words
- Biology (Baldi): splice site from gene sequence
- Gesture (Starner): word from hand coordinates
- Emotion (Picard): emotion from EEG

- •Graph gave: $p(X_U) = p(q_0) \prod_{t=1}^T p(q_t \mid q_{t-1}) \prod_{t=0}^T p(y_t \mid q_t)$
- Haven't yet specified the types of variables or cpts...
- 1) q can be discrete, example: finite state machine

$$p\left(q_{t} \mid q_{t-1}\right) = \prod\nolimits_{i=1}^{M} \prod\nolimits_{j=1}^{M} \left[a_{ij}\right]^{q_{t-1}^{i}q_{t}^{j}}$$

2) y can be vectors, example: time series

$$p\left(\boldsymbol{y}_{t} \mid \boldsymbol{q}_{t}\right) = N\left(\boldsymbol{y}_{t} \mid \boldsymbol{\mu}_{\boldsymbol{q}_{t}}, \boldsymbol{\Sigma}_{\boldsymbol{q}_{t}}\right)$$

3) y can be discrete, example: strings

$$p\left(\boldsymbol{y}_{t} \mid \boldsymbol{q}_{t}\right) = \prod_{i=1}^{M} \prod_{j=1}^{N} \left[\boldsymbol{\eta}_{ij}\right]^{q_{t}^{i} y_{t}^{j}}$$

4) q and y can be vectors, example: Kalman filter $p\left(q_{t}\mid q_{t-1}\right)=N\left(q_{t}\mid Aq_{t-1},Q\right)$ and $N\left(y_{t}\mid Cq_{t},R\right)$

$$p\left(\boldsymbol{q}_{t} \mid \boldsymbol{q}_{t-1}\right) = N\left(\boldsymbol{q}_{t} \mid A\boldsymbol{q}_{t-1}, \boldsymbol{Q}\right) \quad and \quad N\left(\boldsymbol{y}_{t} \mid C\boldsymbol{q}_{t}, \boldsymbol{R}\right)$$

Kalman Filters, Linear dynamical systems Used in tracking, control (see ch. 14)

HMMs: Parameters

- •We focus on HMMs with: discrete state q (of size M) discrete emission y (of size N)
- •Input will be arbitrary length string: y₁,...,y_T
- •The pdf or (complete) likelihood is:

$$p\left(q,y\right) = p\left(q_{0}\right) \prod_{t=1}^{T} p\left(q_{t} \mid q_{t-1}\right) \prod_{t=0}^{T} p\left(y_{t} \mid q_{t}\right)$$

•We don't know hidden states, the incomplete likelihood is:

$$p(y) = \sum_{q_0} \cdots \sum_{q_T} p(q, y)$$

$$p\left(q_{t} \mid q_{t-1}\right) = \prod_{i=1}^{M} \prod_{j=1}^{M} \left[\alpha_{ij}\right]^{q_{t-1}^{i}q_{t}^{j}} \qquad \sum_{j=1}^{M} \alpha_{ij} = 1 \qquad M \times M$$

$$p\left(y_{t} \mid q_{t}\right) = \prod_{i=1}^{M} \prod_{j=1}^{N} \left[\eta_{ij}\right]^{q_{t}^{i}y_{t}^{j}} \qquad \sum_{j=1}^{N} \eta_{ij} = 1 \qquad M \times N$$

$$p\left(q_{0}\right) = \prod_{i=1}^{M} \left[\pi_{i}\right]^{q_{0}^{i}} \qquad \sum_{j=1}^{M} \pi_{j} = 1 \qquad M$$

HMMs: Basic Operations

- Would like to do 3 basic things with our HMMs:
 - 1) Evaluate: given $y_0,...,y_T \& \theta$ compute $p(y_1,...,y_T)$
- 2) Decode/inference: given $y_0,...,y_T \& \theta$ find MAP $q_0,...,q_T$ or marginals $p(q_0),...,p(q_T)$
 - 3) Max Likelihood Learn: given $y_0,...,y_T$ learn parameters θ
- •Typically use Baum-Welch (α – β algo)... JTA is more general:

HMMs: JTA Init & Verify

 $\bullet \textbf{Init:} \ \psi \left(q_{\scriptscriptstyle 0}, y_{\scriptscriptstyle 0}\right) = p\left(q_{\scriptscriptstyle 0}\right) p\left(y_{\scriptscriptstyle 0} \mid q_{\scriptscriptstyle 0}\right) \quad \psi \left(q_{\scriptscriptstyle t}, q_{\scriptscriptstyle t+1}\right) = p\left(q_{\scriptscriptstyle t+1} \mid q_{\scriptscriptstyle t}\right) = \alpha_{q_{\scriptscriptstyle t}, q_{\scriptscriptstyle t+1}} \ \psi \left(q_{\scriptscriptstyle t}, y_{\scriptscriptstyle t}\right) = p\left(y_{\scriptscriptstyle t} \mid q_{\scriptscriptstyle t}\right)$

•Collect up from leaves: don't change zeta separators

$$\boldsymbol{\varsigma}^*\left(\boldsymbol{q}_{t}\right) = \sum_{\boldsymbol{y}_{t}} \boldsymbol{\psi}\left(\boldsymbol{q}_{t}, \boldsymbol{y}_{t}\right) = \sum_{\boldsymbol{y}_{t}} \boldsymbol{p}\left(\boldsymbol{y}_{t} \mid \boldsymbol{q}_{t}\right) = 1 \qquad \boldsymbol{\psi}^*\left(\boldsymbol{q}_{t-1}, \boldsymbol{q}_{t}\right) = \frac{\boldsymbol{\varsigma}}{\boldsymbol{\varsigma}} \, \boldsymbol{\psi}\left(\boldsymbol{q}_{t-1}, \boldsymbol{q}_{t}\right) = \boldsymbol{\psi}\left(\boldsymbol{q}_{t-1}, \boldsymbol{q}_{t}\right)$$

•Collect left-right via phi's: change backbone to marginals

• Distribute: $\varsigma^{**}\left(q_{t}\right) = \sum_{q_{t-1}} \psi^{*}\left(q_{t-1}, q_{t}\right) = \sum_{q_{t-1}} p\left(q_{t-1}, q_{t}\right) = p\left(q_{t}\right)$ $\psi^{**}\left(q_{t}, y_{t}\right) = \frac{\varsigma^{**}}{\varsigma^{*}} \psi\left(q_{t}, y_{t}\right) = \frac{p\left(q_{t}\right)}{1} p\left(y_{t} \mid q_{t}\right) = p\left(y_{t}, q_{t}\right)$...done! 12