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Lecture 22
•Triangulation Examples

•Running Intersection Property

•Building a Junction Tree

•The Junction Tree Algorithm
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Triangulation Examples
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•Cycle: A closed (simple) path, with no repeated vertices 
other than the starting and ending vertices
•Chordless Cycle: a cycle where no two non-adjacent 
vertices on the cycle are joined by an edge.
•Triangulated Graph: a graph that contains no chordless 
cycle of four or more vertices (aka a Chordal Graph).
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Running Intersection Property
•Junction Tree must satisfy Running Intersection Property
•RIP: On unique path connecting clique    to clique   , all

other cliques share nodes in   V ∩W
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Running Intersection Property
•Junction Tree must satisfy Running Intersection Property
•RIP: On unique path connecting clique    to clique   , all

other cliques share nodes in

HINT: Junction
Tree has largest
total separator
cardinality

  V ∩W

 V  W
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Missing B
on path!

   

Φ = φ B,D( )+ φ C,D( )
= 2 + 2    

Φ = φ C,D( )+ φ D( )
= 2 +1 12
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Forming the Junction Tree
•Goal: connect k cliques into a tree… kk-2 possibilities!
•For each, check Running Intersection Property, too slow…
•Theorem: a valid (RIP) Junction Tree connection is one
that maximizes the cardinality of the separators

•Use very fast Kruskal algorithm:
1) Init Tree with all cliques unconnected (no edges)
2) Compute size of separators between all pairs
3) Connect the two cliques with the biggest separator

cardinality which doesn’t create a loop
in current Tree (maintains Tree structure)

4) Stop when all nodes are connected, else goto 3 

   

JT
*

= argmax
TREE STRUCTURES

Φ

= argmax
TREE STRUCTURES

φ X
S

( )
S∑
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Kruskal Example
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•Start with unconnected cliques (after triangulation)
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Junction Tree Probabilities
•We now have a valid Junction Tree!
•What does that mean?
•Recall probability for undirected graphs:

•Can write junction tree as potentials of its cliques:

•Alternatively: clique potentials over separator potentials:

•This doesn’t change/do anything! Just less compact…
•Like de-absorbing smaller cliques from maximal cliques:

    
p X( )= p x

1
,…,x

M
( )= 1

Z
ψ X

C
( )

C∏

    
p X( )= 1

Z

ɶψ X
C

( )
C∏

   

p X( )=
1

Z

ψ X
C

( )
C∏

φ X
S

( )
S∏

    

ɶψ A,B,D( )=
ψ A,B,D( )

φ B,D( )

…gives back
original

formula if
    
φ B,D( )≜ 1
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Junction Tree Probabilities
•Can quickly converted directed graph into this form:

•Example:   
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By inspection, can
just cut & paste
CPTs as cliques and
add separator
potential functions
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Junction Tree Algorithm
•Running the JTA converts clique

potentials & separator potentials
into marginals over their variables
… and does not change p(X)

•Don’t want just normalization!

•These marginals should all agree & be consistent

•Consistency: all distributions agree on submarginals
•JTA sends messages between cliques & separators dividing
each by the others marginals until consistency…

   

ψ A,B,D( )→ p A,B,D( )
φ B,D( )→ p B,D( )

ψ B,C,D( )→ p B,C,D( )

   

ψ A,B,D( )→ p A,B,D( )
φ B,D( )→ p B,D( )

ψ B,C,D( )→ p B,C,D( )
    

→ p A,B,D( )
A∑ = ɶp B,D( )

→ p B,D( )
→ p B,C,D( )

C∑ = ɶɶp B,D( )

   

ψ A,B,D( )
ψ A,B,D( )

A,B,D∑
≠ p A,B,D( )

ALL
EQUAL
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Junction Tree Algorithm
•Send message from each clique to its separators of
what it thinks the submarginal on the separator is.

•Normalize each clique by incoming message
from its separators so it agrees with them

BAB BC
   
V = A,B{ } S = B{ } W = B,C{ }

If agree:
   

ψ
VV \S∑ = φ

S
= p S( )= φ

S
= ψ

WW \S∑

Else:

   

φ
S

* = ψ
VV \S∑

ψ
W

* =
φ
S

*

φ
S

ψ
W

ψ
V

* = ψ
V

Send message
From V to W…

Send message
From W to V…

   

φ
S

** = ψ
W

*

W \S∑

ψ
V

** =
φ
S

**

φ
S

*
ψ
V

*

ψ
W

** = ψ
W

*

…Done!

Now they
Agree…Done!

   

ψ
V

**

V \S∑ =
φ
S

**

φ
S

*
ψ
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*

V \S∑

=
φ
S

**

φ
S

*
ψ
V

*

V \S∑

= φ
S

** = ψ
W

**

W \S∑
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Junction Tree Algorithm
•When “Done”, all clique potentials are marginals and

all separator potentials are submarginals!
•Note that p(X) is unchanged by message passing step:

•Potentials set to conditionals (or slices) become marginals!
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SV W

BAB BC

   

ψ
AB

= p B | A( )p A( )
= p A,B( )

ψ
BC

= p C | B( )
φ

B
= 1

 →

   

φ
B

*
= ψ

ABA∑ = p A,B( )= p B( )
A∑

ψ
BC

* =
φ
S

*

φ
S

ψ
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=
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1
p C | B( )= p B,C( )

 →
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