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Lecture 20
•Undirected Graphs

•Undirected Separation

•Inference: Marginals/Conditionals and MAP

•Moralization

•Junction Trees

•Triangulation
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Undirected Graphs
•Separation is much easier for undirected graphs
•But, what are undirected graphs and why use them?
•Might be hard to call vars parent/child or cause/effect

•Example: Image pixels
•Each pixel is Bernoulli = {0,1}
•Where 0=dark, 1=bright

•Have probability over all pixels
•We know Bright pixels tend to have Bright neighbors
•Suggests adjacent pixels dependent, so connect with links
•Obtain a graphical model that looks like a grid
•But who is parent? No parents, just linked probabilities
•Undirected models are called Markov Random Fields
•Used in vision, physics (lattice, spin, or Ising models), etc.
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Undirected Graphs
•Undirected & directed not subsets,
•Chain Graphs are a superset…
•Some distributions behave
as undirected graphs, some
as directed, some as both
•Undirected graphs use the standard definition of separation:

an undirected graph says that
satisfies any statement 
if no paths can go from XA to XB
unless they go through XC

•Thus, undirected graphs obey the general Markov property
•Recall the simple Markov property

Directed
Graphs

Undirected
Graphs

Chain Graphs
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Hammersley Clifford Theorem
Theorem[HC]: any distribution that obeys the Markov property

can be written as a product of terms over each maximal clique 

Cliques: subsets of variables that all connect to each other
Maximal: cannot add any more variables and still be a clique

Each c is a maximal clique of variables     in the graph 
C is the set of all maximal cliques
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•Probability for undirected factorizes as a product of mini 
non-negative Potential Functions over cliques in the graph

•Normalizing term    makes p(X) sum to 1
•Potentials ψ are non-negative un-normalized functions
over cliques (subgroups of fully inter-connected variables)

•Only maximal cliques since smaller ψ absorb into larger ψ

Undirected Graph Functions
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Undirected Separation Examples
•Example:

•Example:
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x � y | w,z{ }

    
w � z | x,y{ }

Directed can’t do it!
Must be acyclic
Will have at least one
V structure and ball
goes through
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•Classic logic network: nodes are binary
•Arrows represent AND, OR, XOR, NAND, NOR, NOT etc.
•Inference: given observed binary variables, predict others

•Problems: uncertainty, conflicts and inconsistency
•Could get x3=T and x3=F following two different paths
•We need a way to enforce consistency and combine
conflicting statements via probabilities and Bayes rule!

Logical Inference

1
x

2
x

5
x

6
x

3
x

OR

NOT

XOR

1
x

2
x

5
x

6
x

3
x

OR

NOT

XOR
T

T

??

?

8



COMS4771, Columbia University

•Replace logic network with Bayesian network
•Tables represent AND, OR, XOR, NAND, NOR, NOT etc.
•Probabilistic Inference: given observed binary variables,

predict marginals over others

•Can also have soft versions
of the functions

Probabilistic Inference
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•Two types of inference with a probability distribution:

•Marginal Inference:

or…

•Maximum a posteriori (MAP) inference:

~ Energy minimization
…which is harder?

Probabilistic Inference
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MAP Example: Image De-Noising 

Original Image Noisy Image
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MAP Example: Image De-Noising 

Observe { }

Original(unobserved) { }
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MAP Example: Image De-Noising 

Restored Image (Graph cuts)Restored Image (ICM)

Early approximate MAP algorithm More recent, exact MAP algorithm
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Denoising Results

Original Pairwise strengths increasing

Pairwise strengths increasing
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•Marginal inference problem: given graph and probability
function                          for any subsets of variables
find

•So, we basically compute both marginals and divide
•But finding marginals can take exponential work!
•A problem for both directed & undirected graphs:

•Graphs gave efficient storage, learning, Bayes Ball…
•Graphs can also be used to perform efficient inference!
•Junction Tree Algorithm: method to efficiently find marginals

Traditional Marginal Inference
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Initially we’ll focus on one approach to marginal inference,
Then later show how we can use the same technique for MAP…
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Traditional Marginal Inference
•Example: brute force inference on a directed graph…
•Given a directed graph structure & filled-in CPTs
•We would like to efficiently compute arbitrary marginals
•Or we would like to compute arbitrary conditionals

•For example, we may have some evidence, i.e. x6=TRUE

•This is tedious & does not exploit the graph’s efficiency
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Efficient Marginals & Inference
•Another idea is to use some efficient graph algorithm
•Try sending messages (small tables) around the graph

•Hopefully these somehow settle down and equal marginals

•AND marginals are self-consistent
•Note: can’t just return conditionals
since they can be inconsistent

•Junction Tree Algorithm must find consistent marginals
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•An algorithm that achieves fast inference, by
passing messages on undirected graphs.
•We first convert a directed graph to an undirected one

•Then apply the efficient Junction Tree Algorithm:
1) Moralization
2) Introduce Evidence
3) Triangulate
4) Construct Junction Tree
5) Propagate Probabilities (Junction Tree Algorithm)

Junction Tree Algorithm
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Moralization
•Converts directed graph into undirected graph
•By moralization, marrying the parents:
1) Connect nodes that have common children
2) Drop the arrow heads to get undirected

•Note: moralization resolves coupling due to marginalizing
•moral graph is more general (loses some independencies)
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Moralization
•More examples:

•More general graph less efficient but can -> same inference
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Introducing Evidence
•Given moral graph, note what is observed

•If we know this is always observed at              , simplify…
•Reduce the probability function since those XE fixed
•Only keep probability function over remaining nodes XF
•Only get marginals and conditionals with subsets of XF
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Introducing Evidence
•Recall undirected separation, observing XE separates others

•But, need to recompute new normalization …

•Just avoid Z & normalize at the end when we are querying
individual marginals and conditionals as subsets of XF
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Junction Trees
•Given moral graph want to build Junction Tree:

each node is a clique (ψ) of variables in moral graph
edges connect cliques of the potential functions 
unique path between nodes & root node (tree)
between connected clique nodes, have separators (φ)
separator nodes contain intersection of variables
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•Problem: imagine the following undirected graph

•Not a Tree!
•To ensure Junction Tree is a tree (no cycles) / R.I.P.
before forming it must first Triangulate moral graph
before finding the cliques…

•Triangulating gives more general graph (like moralization)
•Adds links to get rid of cycles or loops
•Triangulation: Connect nodes in moral graph until
no chordless cycle of 4 or more nodes remains in the graph

Triangulation
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Triangulation
•Triangulation: Connect nodes in moral graph such that
no cycle of 4 or more nodes remains in graph

•So, add edges, but many possible choices…
•HINT: Try to keep largest clique size small
(makes junction tree algorithm more efficient)

•Sub-optimal triangulations of moral graph are Polynomial
•Triangulation that minimizes largest clique size is NP-hard
•But, OK to use a suboptimal triangulation (slower JTA…)
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Triangulation
•Triangulation: Connect nodes in moral graph such that
no cycle of 4 or more nodes remains in graph

•So, add edges, but many possible choices…
•HINT: Try to keep largest clique size small
(makes junction tree algorithm more efficient)

•Sub-optimal triangulations of moral graph are Polynomial
•Triangulation that minimizes largest clique size is NP-hard
•But, OK to use a suboptimal triangulation (slower JTA…)
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