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Lecture 20

eUndirected Graphs

eUndirected Separation

eInference: Marginals/Conditionals and MAP
eMoralization

eJunction Trees

eTriangulation
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Undirected Graphs

~ conditional independence ] _
eSeparation is much easier for undirected graphs

eBut, what are undirected graphs and why use them?
eMight be hard to call vars parent/child or cause/effect

eExample: Image pixels E
eEach pixel is Bernoulli = {0,1} T
eWhere 0=dark, 1=bright T

O-0-0-0

eHave probability over all pixels p(asn,...,le,...,le,...,xMM)
e\We know Bright pixels tend to have Bright neighbors
eSuggests adjacent pixels dependent, so connect with links
eObtain a graphical model that looks like a grid

eBut who is parent? No parents, just linked probabilities
eUndirected models are called Markov Random Fields

eUsed in vision, physics (lattice, spin, or Ising models), etc.
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Undirected Graphs

eUndirected & directed not subsets,

eChain Graphs ar rset...

Cha G_ ap_ a € a superset Directed Undirected
eSome distributions behave Graphs Graphs

as undirected graphs, some Chain Graphs

as directed, some as both
eUndirected graphs use the standard definition of separation:

an undirected graph says thatp (z,...,z,, )
satisfies any statement X || X, | X,
if no paths can go from X, to Xj e

unless they go through X 1 X b

B
eThus, undirected graphs obey the general Markov property
eRecall the simple Markov property

:clﬂzz:?)\a:z :>p(x1\az2,x3):p(azl\az2) ,
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Hammersley Clifford Theorem

Theorem[HC]: any distribution that obeys the Markov property

p(:z:z_ | XU\Z,): p(asz_ | XNe(Z.)) VielU
can be written as a product of terms over each maximal clique
_ 1
p(XU)— p(xl,...,xM)— EHcecwc (XC)
Physics analogy ~Boltzmann distn: if all probs>0

V(X) =, p) = where E(X) = 3 E (X))
ceC

Cligues: subsets of variables that all connect to each other
Maximal: cannot add any more variables and still be a clique
Each c is a maximal clique of variables X_in the graph
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Undirected Graph Functions

eProbability for undirected factorizes as a product of mini
non-negative Potential Functions over cliques in the graph

p(X): p(xl,...,xM): éHcqu\L’C (XC)

eNormalizing term z =" T] . (X) makes p(X) sum to 1
ePotentials y are non-negative un-normalized functions
over cliques (subgroups of fully inter-connected variables)

eOnly maximal cliques since smaller \ absorb into larger v
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Undirected Separation Examples

@ Directed can’t do it!
Must be acyclic
@t@ et@ Will have at least one
a V structure and ball

goes through
o | ] oz} o]yl o}
Z

wll z| {r.v} D VIRUE)

oExampIe: Undirected can’t do it!
T ﬂ z |y

vl @ &

T || 2

:z:)_(z|y @ Il 7
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Logical Inference

¢Classic logic network: nodes are binary
eArrows represent AND, OR, XOR, NAND, NOR, NOT etc.
eInference: given observed binary variables, predict others

NOT

& - &

eProblems: uncertainty, conflicts and inconsistency

eCould get x;=T and x;=F following two different paths

o\We need a way to enforce consistency and combine
conflicting statements via probabilities and Bayes rule!
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Probabilistic Inference

eReplace logic network with Bayesian network

eTables represent AND, OR, XOR, NAND, NOR, NOT etc.

eProbabilistic Inference:  given observed binary variables,
predict marginals over others

X;=f x5=t
x,=f [0 1
NOT =t [110
XOR  x=f | HOU]
x=t [0[1])/ =5f
eCan also have soft versions X;=f X=t
of the functions -
Soft x,=f[.I[.9

NOT x,=t[.9].1 9
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Probabilistic Inference

oTwo types of inference with a probability distribution:
p(X): p(xl,...,a:M) with queries X C X given evidence X, C X

eMarginal Inference:

%) V()
p(XF‘XE)_ F %p(XE)_ X\ X, UX AX\XE]?(X)
Prw;,ws|x,.X2)

or... (a: X )Vx c X
P i B ¢ F Example
3 : from
S 3 Simon
z Prince,
UCL

eMaximum a posteriori (MAP) inference:

N
~—

arg max p(XF ‘XE)

Pr'(u‘llxl.xz}

~ Energy minimization
...which is harder? Other examples?
10
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MAP Example: Image De-Noising

Original Image Noisy Image

11
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MAP Example: Image De-Noising

Observey =1{y,}
. Original(unobserved) x = {x,}
X,V €{—-1L+1}

Signs?—__—n Z TiYi

S /) ( p(x,y) = %eXp{—E(x, y)}

12
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MAP Example: Image De-Noising

Restored Image (ICM) Restored Image (Graph cuts)

Early approximate MAP algorithm More recent, exact MAP algorithm

13



Denoising Results

Original Pairwise strengths increasing

3 d)r

N h)r

\ J

Pairwise strengths increasing
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Initially we’ll focus on one approach to marginal inference,
Then later show how we can use the same technique for MAP...

Traditional Marginal Inference

eMarginal inference problem: given graph and probability
function p (X )= p(a,,...,,, )for any subsets of variables

" p(x,[x,)=" (XFjX%XE)

¢S50, we basically compute both marginals and divide
eBut finding marginals can take exponential work!
oA problem for both directed & undirected graphs:

P )=32 50, 02, TT p ()

i)

Pz )=>0 > > L. ()

Sum over all vars ‘other than x , X,

T

eGraphs gave efficient storage learning, Bayes Ball...
eGraphs can also be used to perform efficient inference!
eJunction Tree Algorithm: method to efficiently find marginals,
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Traditional Marginal Inference

eExample: brute force inference on a directed graph...
eGiven a directed graph structure & filled-in CPTs

o\We would like to efficiently compute arbitrary marginals
oOr we would like to compute arbitrary conditionals

5 ((X):) Z(Zl ()p )(ZZ(:L : )p )( e Yo e, 2 o (o, Yo (e, |0,
peon)= X ool lo (e lo e 1) 15, )o 12,

> ()
p(X
p(x1|x6): 2773774775

eFor example, we may have some evidence, i.e. X,=TRUE

> p(Xy 05, =TRUE)
p(x1|a:6:TRUE)= 2% >
17 5T T3 5Ty 5

eThis is tedious & does not exploit the graph’s efficiency

Ty T T3,y Ty

p(Xy 4.7, =TRUE)
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Efficient Marginals & Inference

eAnother idea is to use some efficient graph algorithm
oTry sending messages (small tables) around the graph

oot e el

eHopefully these somehow settle down and equal marginals

plaoa)= 2 »(¥)

Ly sTgs Ty 5Ty

*AND marginals are self-consistent z.ox )= bz,
eNote: can't just return conditionals Z ( 6) Z (2 6)
since they can be inconsistent ), ACRERE Z%f)(ﬂfg z,)

eJunction Tree Algorithm must find consistent marginals ;
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Junction Tree Algorithm

eAn algorithm that achieves fast inference, by

passing messages on undirected graphs.
o\We first convert a directed graph to an undirected one

eThen apply the efficient Junction Tree Algorithm:
1) Moralization
2) Introduce Evidence
3) Triangulate

4) Construct Junction Tree
5) Propagate Probabilities (Junction Tree Algorithm) y
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Moralization

eConverts directed graph into undirected graph
eBy moralization, marrying the parents:
1) Connect nodes that have common children
2) Drop the arrow heads to get undlrected

@
(%)
— (%
o B @¢
pa )@= )p (e 12 )p (e, 12 (e, )( ,2,)
— Lap(a, 2)«b(:cl,scg)«b(xQ,x4)«|)(x3,x5)«|)(x2,x5,x)

Why?

P ) 3

— /Lb (’CEl? 5172

r(z, |x22
- lb 5132,:134)

/ — 1

eNote: moralization resolves coupling due to marginalizing
emoral graph |s more general ( Ioses some independencies)

most
specific -

most
general

19
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Moralization
v
(@) (@) (%) @‘@'@

eMore examples:

or
=) &) =)

eMore general graph less efficient but can -> same inference

p(xl):;;p(xl,%,%) P )= 25 ()

@ More general graph/function

- Z p (331 |z, )p (xz )p (xg) allows a strict superset of

Same ossibilities

:;p(xl\%)p(%) .
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Introducing Evidence

«Given moral graph, note what is observed x, — X,
p(XF | X, = )_(E)E p(XF | )_(E)
oIf we know this is a/ways observed at x, — x_ , simplify...
eReduce the probability function since those X fixed
eOnly keep probability function over remaining nodes X
eOnly get marginals and conditionals with subsets of X
@W p(X): él\)(xl,$2,$3,$4)1])($4,$5)1b(x4,$6)1b(x4,$7)
@ say XEz{xg,x4}—> )_(E:{fg,@}

@ @ @ Replace potential functions with slices

0.3 0.13
0.12 0.1

p(XF | )_(E)oc %mp(xl,%,a:g =T, = 54)11)(:1:4 — 54,:1:5)11)(:1:4 — :1_:4,:1:6)mp(:1:4 — :1_:4,:1:7)

o< G (o, Jo o o e, ) ()

But, need to recompute different normalization Z... 51
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Introducing Evidence

eRecall undirected separation, observing X¢ separates others

8O 08 a6
@ r(x.x) @ (1%, p(X;)
@ @ & @ @& & @ @ ®

eBut, need to recompute new normalization ...
PG X, )ox s )0 )0 ) )
()= 2 0 )0 )i )
oJust avoid Z & normalize at the end when we are querying
individual marginals and conditionals as subsets of X.

D (:1; ): Z%%,%% fb (xl’ s ){b (x5 ){b (xﬁ ){L’ (x7)
2 Z% le,xs,%,x? b (271, Yy ){L’ (x5 ){b (:z:6 ){L’ (x7) 22
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Junction Trees

eGiven moral graph want to build Junction Tree:
each node is a clique () of variables in moral graph
edges connect cliques of the potential functions
unique path between nodes & root node (tree)
between connected clique nodes, have separators (¢)
separator nodes contain intersection of variables

A \ ABD ABDD> U (f(l B,l)?)
S o BD o(B.D
@'@ i B> BCD b (B, C,D)
& ® o)
CepE>  CCpED v (C.D.E)
undirected cliques clique tree junction tree

p(X): éw(A, B,D)w (B,C,D)w (C, D,E) 23
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Triangulation

eProblem: |mag|ne the following undirected graph

O

1 ~

~- -7
' 1
\ 1
! - ~ !
Wz e !
Vv v (‘1 P'
3 0 I / Vi
R 4 v 11

N\ ) A y

\\‘\__,’ AN =7

Not a Tree!

eTo ensure Junction Tree is a tree (no cycles) / R.I.P.
before forming it must first Triangulate moral graph
before finding the cliques...

eTriangulating gives more general graph (like moralization)

eAdds links to get rid of cycles or loops

eTriangulation: Connect nodes in moral graph until

no chordless cycle of 4 or more nodes remains in the graph24
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Triangulation

eTriangulation: Connect nodes in moral graph such that

no cycIe of 4 or more nodes remains in graph @
’ @ (&

-cycle 2- cycle 3- cycle 4-cycle 5-cycle
BAD BAD

¢S0, add edges, but many possible choices...
oHINT: Try to keep largest clique size small

(makes junction tree algorithm more efficient)
eSub-optimal triangulations of moral graph are Polynomial
eTriangulation that minimizes largest clique size is NP-hard
eBut, OK to use a suboptimal triangulation (slower JTA...)

25
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Triangulation

eTriangulation: Connect nodes in moral graph such that

no cycIe of 4 or more nodes remains in graph
’ @ (&

-cycle 2- cycle 3- cycle 3- cycle 3- cycle

¢S0, add edges, but many possible choices...
oHINT: Try to keep largest clique size small

(makes junction tree algorithm more efficient)
eSub-optimal triangulations of moral graph are Polynomial
eTriangulation that minimizes largest clique size is NP-hard
eBut, OK to use a suboptimal triangulation (slower JTA...)



