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Lecture 19
•Graphical Models

•Maximum Likelihood for Graphical Models

•Testing for Conditional Independence & D-Separation

•Bayes Ball
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Learning Fully Observed Models
•Easiest scenario: we have observed all the nodes
•Want to learn the probability tables from data…
•Have N iid patients:

•Simplest case: least general graph
handle each dim individually as Bernoulli/Multinomial

•2nd Simplest case: most general, count each entry in pdf

•What about learning graphs in between?

PATIENT FLU FEVER SINUS TEMP SWELL HEAD

1 Y Y N L Y Y

2 N N N M N Y

3 Y N Y H Y N

4 Y N Y M N N

Divide by total count
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Maximum Likelihood CPTs
•Each Conditional Probability Table θi part of our parameters
•Given table, have pdf

•Have M variables:

•Have N x M dataset:

•Maximum likelihood:
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Maximum Likelihood CPTs
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•Continuing:

•Define: Constraint:
•Now have above with Lagrange multipliers:

•Plug constraint:

•Final solution (trivial!):

Maximum Likelihood CPTs
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•Continuing:

•Define: Constraint:
•Now have above with Lagrange multipliers:

•Plug constraint:

•Final solution (trivial!): ONE MAP

VERSION

Maximum Likelihood CPTs
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Maximum Likelihood CPTs
•Let’s try an example:
•Compute the cpt

•Using the formula:

   

θ x
i
,π

i
( )=

m x
i
,π

i
( )

m π
i

( )

PATIENT FLU FEVER SINUS TEMP SWELL HEAD

1 Y Y N L Y Y

2 N N N M N Y

3 Y N Y H Y N

4 Y N Y M N N   
p x

3
| x

1
( )

1 1

0 2

Note, here 0/0 = prior constant

1 3

1 1/3

0 2/3

   
m x

3
,x

1
( )

   
m x

1
( )

   
p x

3
| x

1
( )

   
x
1

= 0
   
x
1

= 1

   
x
3

= 0

   
x
3

= 1

Efficient, only count over
subset of variables in p(XB|XA)
Not all p(x1,…,xM) 8



COMS4771, Columbia University

Conditional Dependence Tests
•Another thing we would like to do with a graphical model:
Check conditional independencies…
“Is Temperature Indep. of Flu Given Fever?”
“Is Temperature Indep. of Sinus Infection Given Fever?”
•Try computing & simplify marginals of p(x)

•In this case it was easy, what if checking:
•Hard to compute                     want efficient algorithm…
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D-Separation & Bayes Ball
•There is a graph algorithm for checking independence
•Intuition: separation or blocking of some nodes by others

•Example:

if nodes            “block”
path from      to
we might say that

•This is not exact for directed graphs (true for Undirected)
•We need more than just simple Separation
•Need D-Separation (directed separation)
•D-Separation is computed via the Bayes Ball algorithm
•Use to prove general statements over subsets of vars:
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Bayes Ball Algorithm
•The algorithm:
1) Shade nodes XC

2) Place a ball at each node in XA

3) Bounce balls around graph according to some rules
4) If no balls reach XB, then                  is true (else false) 

Balls can travel along/against arrows
Pick any incoming & outgoing path
Test each to see if ball goes through or bounces back

Look at canonical sub-graphs & leaf cases for rules…
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Bayes Ball Algorithm
1) Markov Chain:

Only care about the shading of middle node

Bounce back Go Through

2) Two Effects:

Only care about the shading of middle node

Bounce back Go Through

3) Two Causes (V):
Only care about the shading of middle node

Go Through Bounce back
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3 cases for how two arrows can meet at a node:

Both arrows same direction

Both arrows ‘out’

Both arrows ‘in’
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Bayes Ball Algorithm
•Also need to look at special ‘leaf’ cases:

•Example:

•Example:
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given fever & sinus infection!
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Bayes Ball Algorithm
•Example:

•Example:
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Ball bounces back from report leaf and goes to right if report is shaded.
Bob is waiting for Alice but can’t know if she is late. Instead a security
guard says if she is. She can be late if aliens abduct her or Bob’s
watch is ahead (daylight savings time). Guard reports she is late.
If watch is ahead, p(alien=true) goes down, they are dependent.
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