COMS4771, Columbia University

Machine Learning

4771

Instructors: Adrian Weller and Ilia Vovsha

Lecture 19

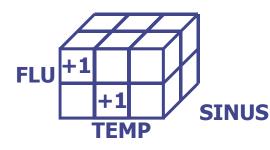
- •Graphical Models
- •Maximum Likelihood for Graphical Models
- •Testing for Conditional Independence & D-Separation
- •Bayes Ball

Learning Fully Observed Models

- Easiest scenario: we have observed all the nodesWant to learn the probability tables from data...
- •Have N iid patients:

PATIENT	FLU	FEVER	SINUS	TEMP	SWELL	HEAD
1	Y	Υ	Ν	L	Υ	Υ
2	Ν	Ν	Ν	М	Ν	Υ
3	Y	Ν	Υ	н	Υ	Ν
4	Y	N	Y	М	N	Ν

- •2nd Simplest case: most general, count each entry in pdf
 - Assume everything connected, one big distribution

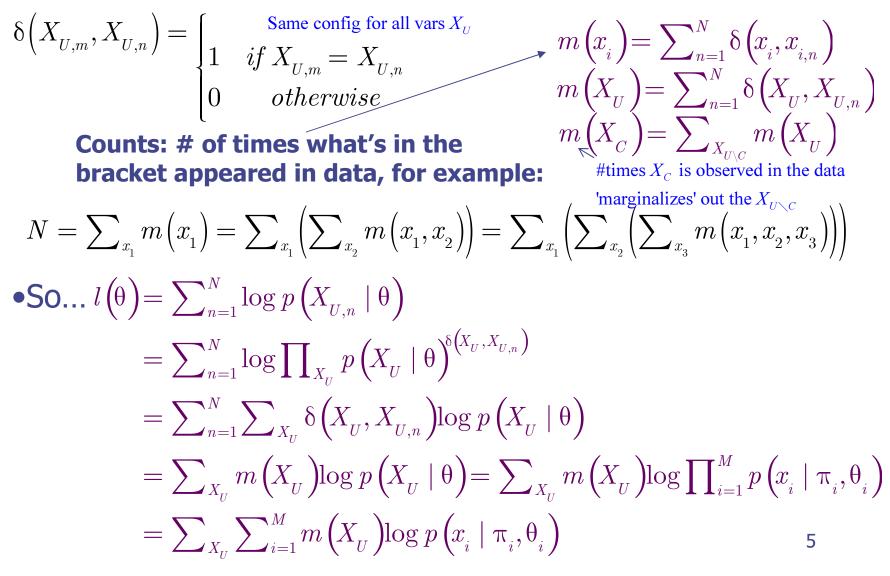


Divide by total count Since $\sum_{x_1} \dots \sum_{x_6} p(x) = 1$

•What about learning graphs in between?

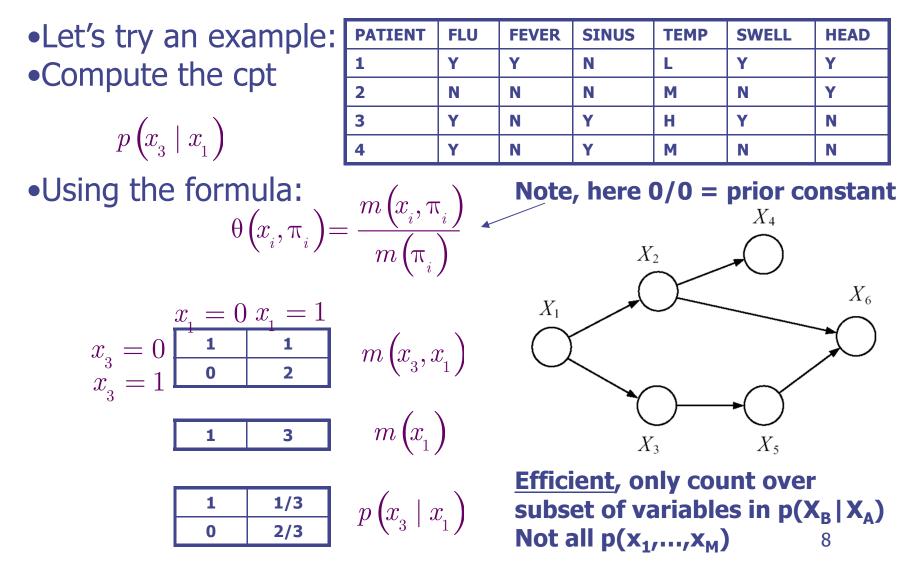
- •Each Conditional Probability Table θ_i part of our parameters •Given table, have pdf θ_2) θ X_4 $p\left(X_{U} \mid \theta\right) = \prod_{i=1}^{M} p\left(x_{i} \mid \pi_{i}, \theta_{i}\right)$ X_2 X_6 θ_6 •Have M variables: θ_1 X_1 $X_{U} = \left\{ x_{1}, \dots, x_{M} \right\}$ •Have N x M dataset: $\left|\theta_{3}\right|$ θ. $\mathcal{D} = \left\{ X_{U,1}, \dots, X_{U,N} \right\}$ 1..N X_5 X_3 Maximum likelihood: *i*'th variable from $\{1, \ldots, M\}$ $\theta^* = \arg \max_{\theta} \log p(\mathcal{D} \mid \theta)$ *n*'th observation from $\{1, \ldots, N\}$ each θ_i appears
 - $= \arg \max_{\theta} \sum_{n=1}^{N} \log p\left(X_{U,n} \mid \theta\right)$ $= \arg \max_{\theta} \sum_{n=1}^{N} \log \prod_{i=1}^{M} p\left(x_{i,n} \mid \pi_{i,n}, \theta_{i}\right)$ $= \arg \max_{\theta} \sum_{n=1}^{N} \sum_{i=1}^{M} \log p\left(x_{i,n} \mid \pi_{i,n}, \theta_{i}\right)$

each θ_i appears independently, can do ML for each CPT alone! efficient storage & efficient learning 4



•Continuing: $l(\theta) = \sum_{X_{u}} \sum_{i=1}^{M} m(X_{u}) \log p(x_{i} \mid \pi_{i}, \theta_{i})$ $= \sum\nolimits_{i=1}^{M} \sum\nolimits_{x_{i}, \pi_{i}} \sum\nolimits_{X_{U \setminus x_{i} \setminus \pi_{i}}} m\left(\!X_{_{U}}\right)\! \log p\left(\!x_{_{i}} \mid \pi_{_{i}}, \theta_{_{i}}\right)$ • Define: $\theta(x_i, \pi_i) = p(x_i | \pi_i, \theta_i)^m$ $m(x_i, \pi_i) \log p(x_i | \pi_i, \theta_i)$ $\psi(x_i, \pi_i) = p(x_i | \pi_i, \theta_i)^m$ Constraint: $\sum_{x_i} \theta(x_i, \pi_i) = 1$ •Now have above with Lagrange multipliers: $l\left(\theta\right) = \sum_{i=1}^{M} \sum_{x_i} \sum_{\pi_i} m\left(x_i, \pi_i\right) \log \theta\left(x_i, \pi_i\right) - \sum_{i=1}^{M} \sum_{\pi_i} \lambda_{\pi_i} \left(\sum_{x_i} \theta\left(x_i, \pi_i\right) - 1\right)$ $\frac{\partial l\left(\theta\right)}{\partial \theta\left(x_{i},\pi_{i}\right)} = \frac{m\left(x_{i},\pi_{i}\right)}{\theta\left(x_{i},\pi_{i}\right)} - \lambda_{\pi_{i}} = 0 \rightarrow \theta\left(x_{i},\pi_{i}\right) = \frac{m\left(x_{i},\pi_{i}\right)}{\lambda_{\pi_{i}}}$ •Plug constraint: $\sum_{x_{i}} \frac{m\left(x_{i},\pi_{i}\right)}{\lambda_{\pi_{i}}} = 1 \rightarrow \lambda_{\pi_{i}} = \sum_{x_{i}} m\left(x_{i},\pi_{i}\right) = m\left(\pi_{i}\right)$ $\left| \theta \left(x_i, \pi_i \right) = \frac{m \left(x_i, \pi_i \right)}{m \left(\pi \right)} \right|$ •Final solution (trivial!): 6

•Continuing: $l(\theta) = \sum_{X_{u}} \sum_{i=1}^{M} m(X_{u}) \log p(x_{i} \mid \pi_{i}, \theta_{i})$ $= \sum\nolimits_{i=1}^{M} \sum\nolimits_{x_{i}, \pi_{i}} \sum\nolimits_{X_{U \setminus x_{i} \setminus \pi_{i}}} m\left(\!X_{_{U}}\right)\! \log p\left(\!x_{_{i}} \mid \pi_{_{i}}, \theta_{_{i}}\right)$ $= \sum_{i=1}^{M} \sum_{x_{i},\pi_{i}} m\left(x_{i},\pi_{i}\right) \log p\left(x_{i} \mid \pi_{i},\theta_{i}\right)$ • Define: $\theta\left(x_{i},\pi_{i}\right) = p\left(x_{i} \mid \pi_{i},\theta_{i}\right)$ Constraint: $\sum_{x_{i}} \theta\left(x_{i},\pi_{i}\right) = 1$ • Now have above with Lagrange multipliers: $l\left(\theta\right) = \sum_{i=1}^{M} \sum_{x_i} \sum_{\pi_i} m\left(x_i, \pi_i\right) \log \theta\left(x_i, \pi_i\right) - \sum_{i=1}^{M} \sum_{\pi_i} \lambda_{\pi_i} \left(\sum_{x_i} \theta\left(x_i, \pi_i\right) - 1\right)$ $l(\theta) = \sum_{i=1}^{n} \sum_{x_i} \sum_{\pi_i} m(x_i, \pi_i) \log (\omega_i, \pi_i) = \sum_{i=1}^{n} \sum_{x_i \to \infty} \frac{m(x_i, \pi_i)}{\theta(x_i, \pi_i)} = \frac{m(x_i, \pi_i)}{\lambda_{\pi_i}}$ $\frac{\partial l(\theta)}{\partial \theta(x_i, \pi_i)} = \frac{m(x_i, \pi_i)}{\theta(x_i, \pi_i)} - \lambda_{\pi_i} = 0 \rightarrow \theta(x_i, \pi_i) = \frac{m(x_i, \pi_i)}{\lambda_{\pi_i}} = \frac{m(x_i, \pi_i)}{\lambda_{\pi_i}} = 1 \rightarrow \lambda_{\pi_i} = \sum_{x_i} m(x_i, \pi_i) = m(\pi_i)$ $\bullet \text{Final solution (trivial!):} \qquad \theta(x_i, \pi_i) = \frac{m(x_i, \pi_i) + \varepsilon}{m(\pi_i) + \varepsilon |x_i|} \qquad \text{Which prior?}$ $\bullet \text{Final solution (trivial!):} \qquad \theta(x_i, \pi_i) = \frac{m(x_i, \pi_i) + \varepsilon}{m(\pi_i) + \varepsilon |x_i|} \qquad \text{Which prior?}$



Conditional Dependence Tests

- Another thing we would like to do with a graphical model: Check conditional independencies...
 - "Is Temperature Indep. of Flu Given Fever?"
 - "Is Temperature Indep. of Sinus Infection Given Fever?"
- •Try computing & simplify marginals of p(x)

$$p(X) = p(x_{1})p(x_{2} | x_{1})p(x_{3} | x_{1})p(x_{4} | x_{2})p(x_{5} | x_{3})p(x_{6} | x_{2}, x_{5})$$

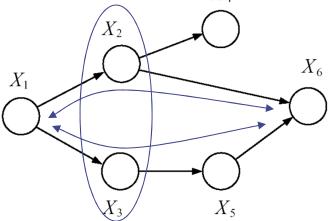
$$p(x_{4} | x_{1}, x_{2}, x_{3}) = \frac{p(x_{1}, x_{2}, x_{3}, x_{4})}{p(x_{1}, x_{2}, x_{3})} = \frac{\sum_{x_{5}} \sum_{x_{6}} p(X)}{\sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} p(X)}$$

$$= \frac{p(x_{1})p(x_{2} | x_{1})p(x_{3} | x_{1})p(x_{4} | x_{2})}{p(x_{1})p(x_{2} | x_{1})p(x_{3} | x_{1})} \xrightarrow{x_{4} \parallel x_{1}, x_{3} \mid x_{2}}$$

•In this case it was easy, what if checking: $x_1 \parallel x_6 \mid x_2, x_3$ •Hard to compute $p(x_1 \mid x_2, x_3, x_6)$ want <u>efficient</u> algorithm...

D-Separation & Bayes Ball

- There is a graph algorithm for checking independence
 Intuition: separation or blocking of some nodes by others
- •Example:
 - if nodes x_2, x_3 "block" path from x_1 to x_6 we might say that $x_1 \parallel x_6 \parallel x_2, x_3$



This is not exact for directed graphs (true for Undirected)
We need more than just simple Separation
Need D-Separation (directed separation)
D-Separation is computed via the Bayes Ball algorithm
Use to prove general statements over subsets of vars: X_A || X_B | X_C

Bayes Ball Algorithm

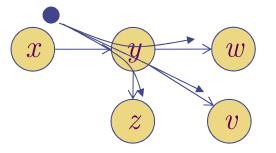
•The algorithm:

$$X_{_{A}} \; \underline{\parallel} \; X_{_{B}} \mid X_{_{C}}$$

- 1) Shade nodes X_C
- 2) Place a ball at each node in X_A
- 3) Bounce balls around graph according to some *rules*
- 4) If no balls reach X_{B} , then $X_{A} \parallel X_{B} \mid X_{C}$ is true (else false)

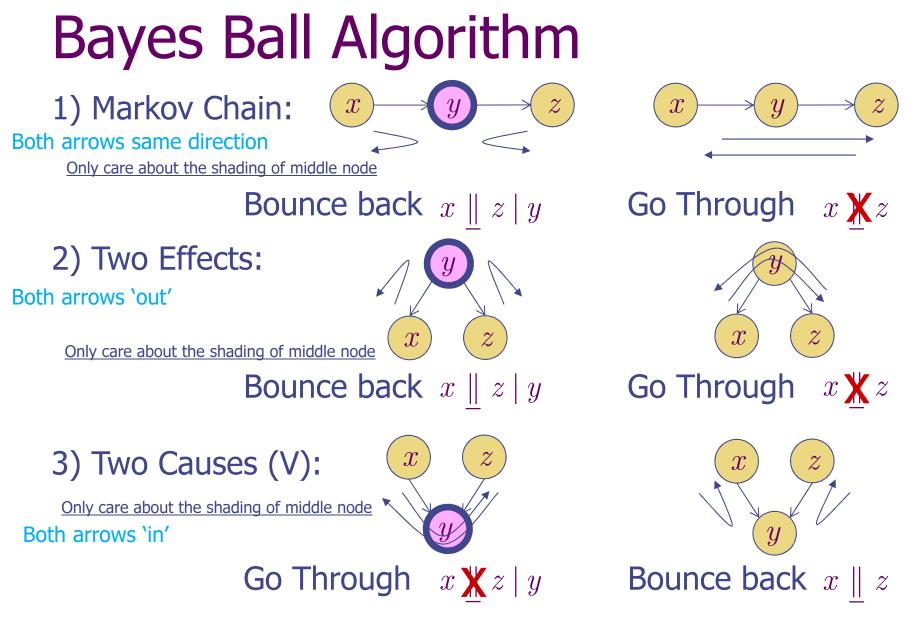
Balls can travel along/against arrows

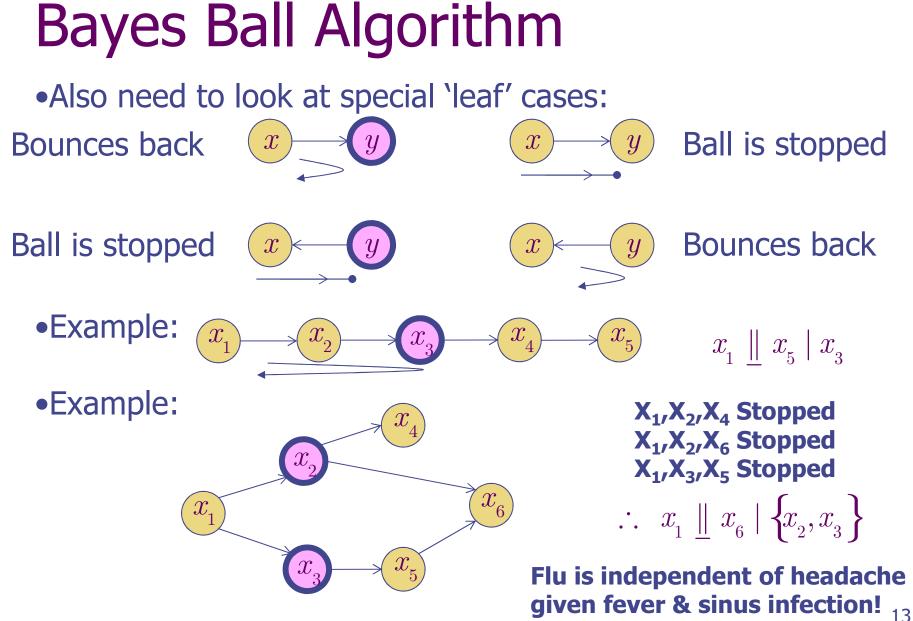
- Pick any incoming & outgoing path
- Test each to see if ball goes through or bounces back

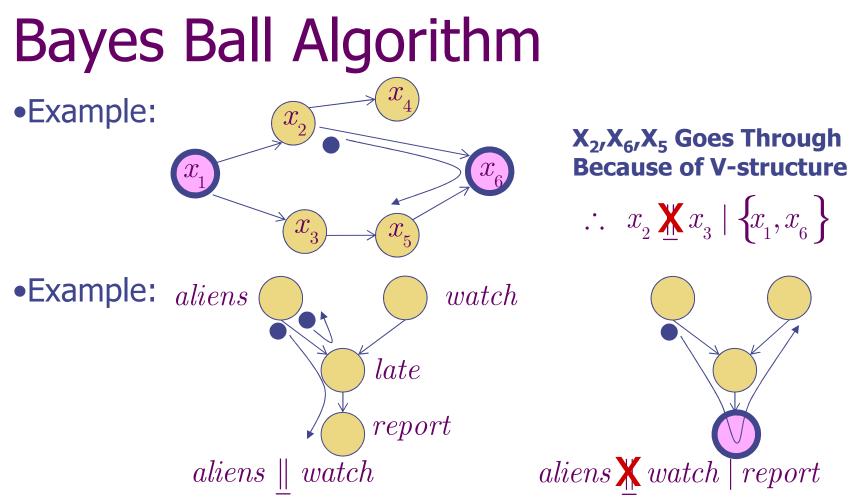


Look at canonical sub-graphs & leaf cases for rules...

3 cases for how two arrows can meet at a node:







Ball bounces back from report leaf and goes to right if report is shaded. Bob is waiting for Alice but can't know if she is late. Instead a security guard says if she is. She can be late if aliens abduct her or Bob's watch is ahead (daylight savings time). Guard reports she is late. If watch is ahead, p(alien=true) goes down, they are dependent.