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Lecture 19
eGraphical Models

eMaximum Likelihood for Graphical Models
eTesting for Conditional Independence & D-Separation

eBayes Ball
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Learning Fully Observed Models

eFasiest scenario: we have observed all the nodes
e\Want to learn the probability tables from data...

eHave N iid patients:

PATIENT | FLU FEVER | SINUS | TEMP | SWELL HEAD
1 Y Y N L Y Y
2 N N N M N Y
3 Y N Y H Y N
4 Y N

eSimplest case: least general grap

h OO0O0C0O0O

handle each dim individually as Bernoulli/Multinomial

»2"d Simplest case: most general, count each entry in pdf

Assume

everything 1
connected, one FtY 3
big distribution SEMP

o\What about learning graphs in between?

SINUS

Divide by total count
Since Sy p(r)=1

3
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Maximum Likelihood CPTs

eEach Conditional Probability Table 6, part of our parameters

oGiven table, have pdf 0,
M
p(XU | e): Hizlp(ajz_ | ’RZ,,OZ_)
eHave M variables: ’
XU:{Sle,...,IEM} 1
eHave N x M dataset:
o—Ix ..x 0 ©,)
{ UNEA U,J_v}
-MaX|mum likelihood:
. i'th variable from {1,...,M}
0 = arg maxe 10gp<@ | 0 n'th observation from {1,..., N}
N each 0, appears
— argmax Z Jogpl X, | |9) independently,
_ arg maXe Zn_ logr'M p(mzn | WM,@Z.) can dO ML fOI'

/each CPT alone!
= arg max, Z ZZ log p( =0, ) efficient storage &

efficient learning 4
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Maximum Likelihood CPTs

_ Same config for all vars X, N
6(XU’m7XU’n) B 1 ZfX — X m(xz): Zn:16(xi’xz’,n)
1 Um U,n N
0 otherwise m (XU): Zn216 (XU, XU,n)
Counts: # of times what'’s in the mR(Xc ) — Z X, 0 m (Xu)
bracket appeared in data, for example: #times X is observed in the data

! 3 3 '
marginalizes' out the X, .

V=3, m(a) =, (S, mlen) = 32, (8. (8, mlsrn)
eS0...1(0)=_" logp (X, |0)
-y 10gHXU ) (XU | e)6(XU,XU,,I)
=302 8(X,. X, Jlogp (X, 10)
5 (¥, Yosp (X, 18)= 30, m(x, Joe[T" e, 1 7.0
5 S m (X, Jogn (5 %.0.) :
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Maximum Likelihood CPTs

*Continuing: 1(6)=>", " m(X, Jogp (s, | ,.9,)
- y:j: y:xi,ﬂi y:)g'[]\%\ﬂi m (XU )logp (xi | 1TZ”ei)
— S:j;:x.,ﬂi m (xi,ﬁi)logp (xi | wi,ei)

eDefine: 0(z,x )=p(z|=,.0,) Constraint: 3~ 6(z,m )=1
eNow have above with Lagrange multipliers: |

1(0) =320 30, 30, mwam Jlogb(am ) = 300 30 N (XD, 0w, - 1)
81(@) B m(ximi)—kﬁ 0 O(xi,ﬂz.)z m(xi,ﬁi)

89(332,,112,)_ G(ZEZ,,T(Z,) >\ﬁz_

*Plug constraint: 5 m(f’ﬁz): 1= X, =3 m(e,m )=m(x)

eFinal solution (trivial!): e(xz_,ﬂz_): m(""”w“z-)

m (. ) 6
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Maximum Likelihood CPTs

*Continuing: 1(6)=>", " m(X, Jogp (s, | ,.9,)
- y:j: y:xi,ﬂi y:XU\‘,%W m(XU )logp (xi | 1TZ”ei)
— S:j;:x.,ﬂi m(xi,ﬁi)logp (xi | T(Z,,OZ,)

eDefine: 0(z,x )=p(z|=,.0,) Constraint: 3~ 6(z,m )=1
eNow have above with Lagrange multipliers: |

Z(O) = S:ji;:x ;:m m(xi,ﬁi)loge(xi,ﬁi) — Zj\ilzﬂi >\“i (Zx 9(:1:2.,112.) — 1)
81(@) B m(ximi)—kﬁ 0 O(xi,ﬂz.)z m(xi,ﬁi)

86(332,,112,)_ G(ZEZ,,T(Z,) >\ﬁz_

*Plug constraint: 5 m(f’ﬁz): 1= X, =3 m(e,m )=m(x)

eFinal solution (trivial!): e(:vzmz-)I mgxz’)z)Jrg " ONE Map
m\m, e, VERSION .
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Maximum Likelihood CPTs

oL et’s try an example:

eCompute the cpt

P ls,)

eUsing the formula:

r, =0z =1
x, =01 1
3

- 0 2
:133—1

1 3

1/3

0 2/3

PATIENT | FLU FEVER | SINUS TEMP SWELL HEAD

1 Y Y N L Y Y

2 N N N M N Y

3 Y N Y H Y N

4 Y N Y M N N
Note, here 0/0 = prior constant

m\xT ,Wi)

/ X4

X; Xs

Efficient, only count over
subset of variables in p(Xg | X,)
Not all p(x4,...,Xy) 8




COMS4771, Columbia University

Conditional Dependence Tests

eAnother thing we would like to do with a graphical model:
Check conditional independencies...
'Is Temperature Indep. of Flu Given Fever?”
'Is Temperature Indep. of Sinus Infection Given Fever?”
oTry computln & S|mpI|fy marglnals of péx) )
2,£U5

TSR,

e '“”1%“"3) p(xlxzmg T p( )
IO TAES LS
I 1CY ICAEY ICAEY
=p(z,|z,) - s oo el
eIn this case it was easy, what if checking: z, | z,
eHard to compute p(:cl |z, 2,7 )want eff|C|e  alg |tF|m
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D-Separation & Bayes Ball

eThere is a graph algorithm for checking independence
eIntuition: separation or blocking of some nodes )l?y others

eExample:

if nodes 7,7 “block”

path from r, to 7

we might say that

z ||z, |z,
eThis is not exact for directed graphs (true for Undlrected)
o\We need more than just simple Separation
eNeed D-Separation (directed separation)
eD-Separation is computed via the Bayes Ball algorithm
eUse to prove general statements over subsets of vars:
XA ﬂ XB | XC o
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Bayes Ball Algorithm

eThe algorithm: X | X
1) Shade nodes X
2) Place a ball at each node in X,
3) Bounce balls around graph according to some ru/es
4) If no balls reach Xg, then X, X, XCiS true (else false)

Balls can travel along/against arrows
Pick any incoming & outgoing path
Test each to see if ball goes through or bounces back

Look at canonical sub-graphs & leaf cases for rules... "



3 cases for how two arrows can meet at a node:

Bayes Ball Algorithm
1) Markov Chain: W@

Both arrows same direction - Sl

Only care about the shading of middle node

Bounce back z || 2|y

2) Two Effects: ’4 k

Both arrows ‘out’

Only care about the shading of middle node

Bounce back z || 2|y

3) Two Causes (V):

Only care about the shading of middle node

Both arrows ‘in’

Go Through z Xz |y

COMS4771, Columbia University

&2

»
»

d
<

Go Through ¢« X~

Go Through z X2

NNt/

Bounce back z || 2

12
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Bayes Ball Algorithm

eAlso need to look at special ‘leaf’ cases:

Bounces back M M Ball is stopped

— —

Ball is stopped (@) (@) (z)—(y) Bounces back
- ., —
eExample: @ ‘ @ @ @ v, || 7 |,

eExample: @ X,,X,,X, Stopped
X;,X5,X¢ Stopped

@ X;,X5,X; Stopped
@'@ e )
@ e Flu is independent of headache
given fever & sinus infection!

13
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Bayes Ball Algorithm

eExample: @
@ X,,Xe, X5 Goes Through

o — 5
@ >@ Because of V-structure
A & |{$1, z,

eExample: gliens watch
N

late

report

aliens || watch aliens X watch | report

Ball bounces back from report leaf and goes to right if report is shaded.
Bob is waiting for Alice but can’t know if she is late. Instead a security
guard says if she is. She can be late if aliens abduct her or Bob's

watch is ahead (daylight savings time). Guard reports she is late.

If watch is ahead, p(alien=true) goes down, they are dependent. 14



