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Lectures 17-18
•Decompose Maximum Likelihood with hidden variables

•Expectation Maximization as Bound Maximization

•EM for Maximum A Posteriori (MAP)

•Intro to Graphical Models

COMS4771, Columbia University

2



Expectation Maximization
•Recall the problem…

•We have observed variables X

•Hidden variables Z (e.g. the class or Gaussian distribution 
from which we draw)

•Joint distribution                 depends on parameters     
(e.g. for Gaussian mixture have               )

•Goal is to find     to maximize likelihood

COMS4771, Columbia University

3

( , | )p X Z θ θ

, ,

k k k
µ πΣ

θ̂

(( )| ) , |
Z

ZX p Xp θ θ=∑

We'd like the true probability ( | , )

Instead we use an approximation ( ) ( | , )
t t

p Z X

q Z p Z X

θ

θ=

complete likelihood



Decompose Log Likelihood
•Let          be any probability distribution over the latent 
variables Z

•Define 
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Decompose Log Likelihood
•Let          be any probability distribution over the latent 
variables Z

•Define 
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Decompose Log Likelihood
•Hence, the log likelihood

•E step: Lock         , maximize lower bound     wrt

• Recall                   , best can do is

•M step: Lock         , maximize lower bound     wrt

• Observe can write  
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EM as Bound Maximization
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•Bound Maximization: optimize a lower bound on l(θ)

•Since log-likelihood l(θ) not concave, can’t max it directly
•Consider an auxiliary function Q(θ) which is concave
•Q(θ) kisses l(θ) at a point and is less than it elsewhere

•Monotonically increases log-likelihood (at least can’t 
decrease)
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matches gradient there – why?
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M step
•Find     to maximize the expected complete likelihood

•If                 is in the exponential family (recall includes 
Gaussian, Binomial, Multinomial, Poisson… Bishop 2.4) then 
the log cancels the exp and M step is simple, just weighted 
maximum likelihood! For example, for Gaussian mixture:

… similarly get πk and Σk
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EM for Max A Posteriori
•We can also do MAP instead of ML with EM (stabilizes sol’n)

•The E-step remains the same: lock θ, optimize q

•The M-step becomes slightly different for each model

•For example, mixture of Gaussians with prior on covariance

•Updates on π and µ stay the same, only Σ is:

•Typically, we use the identity matrix I for S and a small eta.
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Intro to Graphical Models
•Structuring Probability Functions for Storage

•Structuring Probability Functions for Inference

•Basic Graphical Models

•Graphical Models

•Parameters as Nodes
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Structuring PDFs for Storage
•Probability tables quickly grow if p has many variables

•For D true/false “medical” variables

•Exponential blow-up of storage size for the probability

•If variables are independent (Naïve Bayes assumption) then  
much more efficient

•For D true/false “medical” variables
(really even less than that…)

   
p(x) = p flu ?,headache ?,...,temperature ?( )

2  ?
D

table size =

0.73 0.27

   
p(x) = p flu ?( )p headache ?( )...p temperature ?( )

2  ?table size D= ×

0.2 0.8 0.54 0.46
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Structuring PDFs for Inference
•Inference: goal is to predict some variables given others
x1: flu
x2: fever
x3: sinus infection Patient claims headache
x4: temperature and high temperature.
x5: sinus swelling Does he have a flu?
x6: headache

Given known/found variables Xf and unknown variables Xu

predict queried variables Xq

•Classical approach: truth tables (slow) or logic networks

•Modern approach: probability tables (slow) or Bayesian 
networks (fast belief propagation, junction tree algorithm) 

12



COMS4771, Columbia University

From Logic Nets to Bayes Nets
•1980’s expert systems & logic networks became popular

•Problem: inconsistency, 2 paths can give different answers

•Problem: rules are hard, instead use soft probability tables

x3 = x1 ^ x2 p(x3|x1,x2)

•These directed graphs are called Bayesian Networks
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Graphical Models & Bayes Nets
•Independence assumptions make probability tables smaller
•But real events in the world not completely independent!
•Complete independence is unrealistic…

•Graphical models use a
graph to describe more
subtle dependencies
and independencies:
…namely: conditional

independencies
(like causality but not exactly…)

•Directed Graphical Model, also called Bayesian Network
use a directed acylic graph (DAG).

•Neural Network = Graphical Function Representation
•Bayesian Network = Graphical Probability Representation 14
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Graphical Models & Bayes Nets
•Node: a random variable (discrete or continuous)

•Independent: no link

•Dependent: link

•Arrow: from parent to child (like causality, not exactly)
•Child: destination of arrow, response
•Parent: root of arrow, trigger

•Graph: dependence/independence
•Graph: shows factorization of joint distribution

as the products of conditionals

•DAG: directed acyclic graph
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Basic Graphical Models
•Independence: all nodes are unlinked

•Shading: variable is ‘observed’, condition on it
moves to the right of the bar in the pdf

•Examples of simplest conditional independence situations…

1) Markov chain:
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1
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Example binary events:
x = president says war
y = general orders attack
z = soldier shoots gun

x z

   

p x | y,z( )=

p x,y,z( )
p y,z( )

= p x | y( )
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Basic Graphical Models
2) 1 Cause, 2 effects:

3) 2 Causes, 1 effect:

•For discrete variables, each conditional is a mini-table
(Multinomial or Bernoulli conditioned on parents)

x

y

z

y

x z

y = flu
x = sore throat
z = temperature

x = aliens invade
y = mankind wiped out
z = giant asteroid hits

Explaining away…

   
p x,y,z( )= p y( )p x | y( )p z | y( )

   
p x,y,z( )= p x( )p z( )p y | x,z( )

x z

x z

   
x � z | y

   
x � z | y

  
x � z x

y

y
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Basic Graphical Models
2) 1 Cause, 2 effects:

3) 2 Causes, 1 effect:

•For discrete variables, each conditional is a mini-table
(Multinomial or Bernoulli conditioned on parents)

x

y

z

y

x z

y = flu
x = sore throat
z = temperature

   
p x,y,z( )= p y( )p x | y( )p z | y( )

   
p x,y,z( )= p x( )p z( )p y | x,z( )

x z

x z

   
x � z | y

   
x � z | y

  
x � z x

x = dad is diabetic
y = child is diabetic
z = mom is diabetic

Explaining away…

y

y
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•Example: factorization of the following system of variables

Graphical Models
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•Example: factorization of the following system of variables

•How big are these tables (if binary variables)?

Graphical Models
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Graphical Models
•Example: factorization of the following system of variables

•How big are these tables (if binary variables)?
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Graphical Models
•Example: factorization of the following system of variables

•Interpretation???
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Graphical Models
•Example: factorization of the following system of variables

•Interpretation:
1: flu
2: fever
3: sinus infection
4: temperature
5: sinus swelling
6: headache
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Graphical Models
•Normalizing probability tables. Joint distributions sum to 1. 
•BUT, conditionals sum to 1 for each setting of parents.

p(x)  2-1

p(x,y) 4-1 p(x|y) 4-2

p(x,y,z) 8-1 p(x|y,z) 8-4

   
p x( )= 1

x=0

1

∑

   
p x,y( )= 1

x,y
∑
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Graphical Models
•Example: factorization of the following system of variables

•Interpretation
1: flu
2: fever
3: sinus infection
4: temperature
5: sinus swelling
6: headache

vs.          degrees of freedom
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Parameters as Nodes
•Consider the model variable θ ALSO as a random variable

•But would need a prior distribution P(θ)… ignore for now

•Recall: Naïve Bayes, probabilities are independent

•Text: Multivariate Bernoulli

•Text: Multinomial
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p(x,z)=p(z)p(x|z)
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Continuous Conditional Models
•In previous slide, θ and α were a random variable in graph
•But, θ and α are continuous
•Network can have both discrete & continuous nodes

•Joint factorizes into conditionals that are either:
1) discrete conditional probability tables
2) continuous conditional probability distributions

•Most popular continuous distribution = Gaussian

3
x

1
x

2
x

α
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Graphical Models
•In EM, we saw how to handle nodes that are: observed 
(shaded), hidden variables (E), parameters (M)
•But, only considered simple iid, single parent, structures
•More generally, have arbitrary DAG without loops
•Notation:

•Want to do 4 things with these graphical models:
1) Learn Parameters (to fit to data)
2) Query independence/dependence
3) Perform Inference (get marginals/max a posteriori)
4) Compute Likelihood (e.g. for classification)

    
G = X,E{ }= nodes/randomvars,edges{ }

    
X = x

1
,…,x

M
{ }

   
E = x

i
,x

j( ): i ≠ j{ }

   
X
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1
,x

3
,x

4
{ }= subset

28



COMS4771, Columbia University

Graphical Models
•Graph factorizes probability:

•Topological graph:
nodes are in order so
that parents π come
before children

•Question? Which is the more general graph?
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Graphical Models
•Graph factorizes probability:

•Topological graph:
nodes are in order so
that parents π come
before children

•Question? Which is the more general graph?

•Conditional probability tables can be chosen to make
‘busier’ graph look like simpler graph
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