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Lecture 16

eUpdate on course so far: instructors, TAs, midterm, HW3
eReview Clustering, K-Means (15:13-21)

eMixture Models and Hidden Variables

eExpectation Maximization for Gaussian Mixtures

eEntropy, KL Divergence, Jensen’s Inequality
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Example: Vector Quantization

eUse K-means for lossy data compression

K =2 K=3 K =10

eEach pixel is a point in 3D (R,G,B) space. Instead need
only store ?
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Mixtures for Flexibility

o\With mixtures (e.g. mixtures of
Gaussians) we can handle
complicated distributions
(e.g. multi-bump, nonlinear).
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eIn fact, if we have enough Gaussians
(maybe infinite) we can approximate
any distribution...
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Mixtures as Hidden Variables

eConsider a dataset with K subpopulations but don‘t know
which subpopulation each point belongs to -

e.g. consider height of adult people, we
see K=2 subpopulations: males & females

e.g. looking at weight and height of people ?
we see K=2 subpopulations: males & females | "+"

eBecause of the ‘hidden’ variable (z can be 1 or 2), these
distributions are not Gaussians but Mixture of Gaussians

P(7)= X 909 = X ple)p(3 1) = X N F 1.3

Yl m e (—g(z i) e ak)]

k‘
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Hidden / Unlabeled = Clustering

eRecall classification problem: P
maximize the log-likelihood: P

N

(mp,2) =Y logp(Z,,z, | mp2)
= Z:;l logm, N (:E’n | ﬁk,zk)
oIf we don’t know the class,
marginalize over hidden variable _
maximize the log-likelihood with | A
unlabeled data: | B st
=" logp(Z, |muX) =" logd " p(i,.z|mp3)
— Ziv:llog<ﬂlN(§;’n | ﬁl,zl) +...+ WKN(E’H | ﬁK,ZK))

eInstead of classification, we now have a clustering problem

6
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Mixture of Gaussians

eRepresent each hidden z integer (1 to K) coded 7
as a hidden binary indicator vector z (;I..' 5

0

—

Z € BK)Zszlz(k) —lorze {61,...,SK} where Sk (k) = 1_5_.:” :

5

eEach likelihood requires summing over all possible z

p(210)=>" p(210)p(F12,0) =D p(z =3,
|

—

mixing proportions (prior) = T, = p|Zz Sk

mixture components (likelihood) = p(Z | Z Sk,e)
posteriors (responsibilities) = 7, = p|(Z =9, |
- - N N
log likelihood =5~ logp(Z |mp,2)=> "
eCan't easily take derivatives of log-likelihood and set to 0.

eNot nice, seems to need gradient ascent...
*Or, can we do something else? 7
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7

K-Means Clustering

eAn old “heuristic” clustering algorithm 5
eGobble up data with a divide & conquer scheme
eAssume each point x has a discrete multinomial vector z
eChicken and Egg problem:

If know classes, we can get model (max likelihood!)

If know the model, we can predict the classes (classifier!)

.
At
b
°,
{‘. . b
.

%
.
0

eK-means Algorithm: TIP: In practice, for EM approaches,
sometimes easier to initialize z then
start with an update to means.

0) Input dataset ...z,
1)Randomly initialize means i,....ii, -
2)Find closest mean for each point ' ifk=mgmin |7 5,
3)Update means @, =Y iz (}/3" % (k) :
4) If any z has changed go to 2

2

otherwise
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. (@Y
K-Means Clustering e

eGeometric, each point goes to closest Gaussian =
eRecompute the means by their assigned points
eEssentially minimizing the following cost function:

N K 9
min, min, J(ul,...,uK,zl,...,zN) = E z (k) T —p,kH
k=1

2=, " DNEAAD

ifk =aremin | —u. _ n=1_n n
f gmin . (T — . i,

4 o
0 otherwise an1 Zn (k)
eGuaranteed to improve per iteration and converge

oL ike Coordinate Descent (lock one var, maximize the other)

oA.k.a. Axis-Parallel Optimization or Alternating Minimization

= Lol
=)

y 4
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Example: K-means using Old
Faithful data set

()

X marks show £, locations
(a) Initialization

(b) First E step

(c) First M step

... to convergence

10
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Expectation-Maximization (EM)

*EM allows a soft/fuzzy version of K-Means (winner-takes-

all( )closest Gaussian Mean completely wins datapoint)
7 (k)=

/1 2 :argmaxjN(:?n |ﬁj,])=argmaxjp(fn |ﬁj)

if k = arg min HE —
0 J n J
otherwise

eInstead, consider soft percentage
assignment of datapoint
1

R o 12
= K _“kH]

*EM is ‘less greedy’ than K-Means

USGSTM = p(z — 6k | fyﬂe) as For each data point x , how much g
’ e R 'responsibility’ is claimed by each class. 06
shared responsibility for 7z, T T = ' I '
n, n, 0.2

N N 0 o1 2
eUpdate for the means are then = D Tk

‘weighted’ by responsibilities > T

assign o< T,

1
D/2 exp [_ 9

5

11
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Example: EM Mixture of Gaussians

using Old Faithful data set
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Initialization with same 4,
Showing 1 stdev contours
(b) First E step

(c) First M step, after L=1
complete cycle

... Subsequent cycles

Note:

Typically longer
convergence time, and
more overhead per cycle
than K-means.

How might we initialize?

12
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Expectation-Maximization

*EM uses expected value of E’n (k)rather than max

v =B (1)1} =p(2, =8, 17,.0)
*EM updates covariances, mixing proportions AND means...
eThe algorithm for Gaussian mixtures:

Oar(z |7 @ 3 @)
EXPECTATION: o _ ™ N (%, 112

Tk

ko Oar(= 1= @) s ©)
T N(:En [} )
(t) =
T’ (1)
MAXIMIZATION: i () = 2 b e _ 2T
> ’“ N

T
) (2 o @)\ (72 = ()
E (t+1) Zn Tn,k (gjn Mk )(gjn p’k )
" —

>
eNeat demo... http://www.cs.cmu.edu/NaIad]em/
eMakes intuitive sense, but what can we prove? 13
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Expectation-Maximization

*EM uses expected value of Z’n (k)rather than max
v =Bz (k)3 }=p(z =5, 17,.0)
*EM updates covariances, mixing proportions AND means...

eThe algorithm for Gaussian mixtures:
T((t)N(f e Z(”)
EXPECTATION: _«» _ _ n 1Tk

Tk

n.k Oar(= |~ @ <t>)
T N(xnmj 2

We'd like the true probability p(z | x,6)
Instead we use an approximation ¢,(z) = p(z|x,0,)

Need a way to think about the difference between p and ¢,

eNeat demo... http://www.cs.cmu.edu/~alad/em/
eMakes intuitive sense, but what can we prove? 14
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Entropy & KL Divergence

e Step back, reconsider Entropy, introduced in 9:16
o We'll extend the idea to Relative Entropy of 2 variables
o We'll also need Jensen’s Inequality, see 11:7

e Let h(x) be the information content of an event x
o We'd like: if x and y unrelated, then h(x,y)=h(x)+h(y)
e Two unrelated events ~ independent, so p(x,y)=p(x)p(y)

e L eads to 1
h(x)=log

units?
— —lOg p(x) >0 base 2 bits
P\X base e nats

e For a discrete random variable X, its entropy is the average

information content
H(X)=E . [h(x)] ZP(X) log p (x =—> p(x)log p(X)
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Entropy Properties

e Loosely speaking, H(X) is an e-achievable lower bound on
the average code rate (Shannon noiseless coding theorem)

e Example:
e Variable X has 8 states, all equally likely
e What's H(X) in bits?

« Example: (Cover & Thomas, 1991)

« Variable Y has 8 states, probabilities

H(X):%log22+ilog24+...

1111 1 111
2748716 64 64 64 64

:l.1+l.2 +1.3 +i.4+i.6 =2
2 4 8 16 64

Possible code 0 10 110 1110 {111100,111101,111110,111111}
16
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Example: letters in English

The entropy of a randomly selected
letter in an English document is about
4.11 bits (Mackay 2.4)

Compare log, 27 =4.75

COMS4771, Columbia University

i a; Pi hip;)
1 a 0575 4.1
2 b .0128 6.3
3 ¢ .0263 5.2
4 d .0285 5.1
5 e 0913 3.5
6 f .0173 5.9
7 g 0133 6.2
5 h 0313 5.0
9 i .0599 1.1
10 § 0006 107
11 k  .0084 6.9
12 1 .0335 1.9
13 m  .0235 0.4
14 n .059 1.1
15 o .06RY 3.9
16 p .0192 5.7
17 q 0008 103
I8 r L0508 1.3
19 s 0567 1.1
20 t 0706 3.8
21 u 0334 4.9
22 v 0069 7.2
23 w0119 6.4
24 x 0073 7.1
25 y 0164 5.9
26 z 0007 10.4
27 - 1928 2.4

1.1

Z pi log, J%

17
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Entropy Properties

For discrete X

« HX) =0

« H(X) = 0 iff exists some value y s.t. X=y a.s

 If X takes finite n possible values, then H(X) < log n with
equality iff X is uniformly distributed (maximum entropy)

For continuous X, define differential entropy

H(X) =~ p(x)log p(x)dx

« Note now H(X) need not be positive (e.g. consider U[0,a])
« For given mean and variance, distribution with maximum
entropy is a Gaussian

18
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KL Divergence

« Suppose have a probability distribution p(x)

« We'll approximate it with some distribution q(x)

« Consider coding scheme using g(x): information content
based on g(x) but average over the true distribution p(x)

« Hence minimum average additional information required
to specify x is

_Ip(x) log g(x)dx — (- f p(x)log p(x)dx) = j p(x)log ];((;))

= KL(pllq)

« Kullback-Leibler divergence or relative entropy between
distributions p(x) and q(x), continuous or discrete
« Not symmetric but provides a notion of distance

COMS4771, Columbia University

dx

19
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Key result: KL Divergence = 0

 Recall Jensen’s Inequality  convexf

= For convex f, E[f(x)]= f(E[x]) %f()
o {

I
b

= Apply to KL divergence:

KL(p|l q):= J. p(x).—log 9(x) dx  -log is strictly convex
p(x)

> —logjp(x) 9(x) dx =0

| px)
» Holds for discrete or continuous variables

= Equality iff g(x) = p(x) almost everywhere 20




