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Lecture 16
•Update on course so far: instructors, TAs, midterm, HW3

•Review Clustering, K-Means (15:13-21)

•Mixture Models and Hidden Variables

•Expectation Maximization for Gaussian Mixtures

•Entropy, KL Divergence, Jensen’s Inequality
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Example: Vector Quantization
•Use K-means for lossy data compression

•Each pixel is a point in 3D (R,G,B) space. Instead need 
only store ?
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Mixtures for Flexibility
•With mixtures (e.g. mixtures of
Gaussians) we can handle
complicated distributions 
(e.g. multi-bump, nonlinear). 

subpopulations:  G1=compact car
G2=mid-size car
G3=cadillac

•In fact, if we have enough Gaussians
(maybe infinite) we can approximate
any distribution...
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•Consider a dataset with K subpopulations but don’t know
which subpopulation each point belongs to

e.g. consider height of adult people, we
see K=2 subpopulations: males & females

e.g. looking at weight and height of people
we see K=2 subpopulations: males & females

•Because of the ‘hidden’ variable (z can be 1 or 2), these
distributions are not Gaussians but Mixture of Gaussians

Mixtures as Hidden Variables
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Hidden / Unlabeled = Clustering
•Recall classification problem:

maximize the log-likelihood:

•If we don’t know the class,
marginalize over hidden variable

maximize the log-likelihood with
unlabeled data:

•Instead of classification, we now have a clustering problem
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•Can’t easily take derivatives of log-likelihood and set to 0.
•Not nice, seems to need gradient ascent…
•Or, can we do something else?

Mixture of Gaussians
•Represent each hidden z integer (1 to K) coded
as a hidden binary indicator vector z

•Each likelihood requires summing over all possible z 
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K-Means Clustering
•An old “heuristic” clustering algorithm
•Gobble up data with a divide & conquer scheme
•Assume each point x has a discrete multinomial vector z
•Chicken and Egg problem:
If know classes, we can get model (max likelihood!)
If know the model, we can predict the classes (classifier!)

•K-means Algorithm:

0) Input dataset
1)Randomly initialize means
2)Find closest mean for each point
3)Update means
4) If any z has changed go to 2
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TIP: In practice, for EM approaches, 
sometimes easier to initialize z then 
start with an update to means.
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K-Means Clustering
•Geometric, each point goes to closest Gaussian
•Recompute the means by their assigned points
•Essentially minimizing the following cost function:

•Guaranteed to improve per iteration and converge
•Like Coordinate Descent (lock one var, maximize the other)
•A.k.a. Axis-Parallel Optimization or Alternating Minimization
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Example: K-means using Old 
Faithful data set
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Bishop 9.1

X marks show      locations
(a) Initialization
(b) First E step
(c) First M step
… to convergence

k
µ
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Expectation-Maximization (EM)
•EM allows a soft/fuzzy version of K-Means (winner-takes-
all, closest Gaussian Mean completely wins datapoint)

•Instead, consider soft percentage
assignment of datapoint

•EM is ‘less greedy’ than K-Means
uses                           as
shared responsibility for

•Update for the means are then
‘weighted’ by responsibilities
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For each data point , how much

'responsibility' is claimed by each class.

n
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Example: EM Mixture of Gaussians 
using Old Faithful data set
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Bishop 9.2

Initialization with same
Showing 1 stdev contours
(b) First E step
(c) First M step, after L=1 
complete cycle
… subsequent cycles

Note:
Typically longer 
convergence time, and 
more overhead per cycle 
than K-means.

How might we initialize?
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Expectation-Maximization
•EM uses expected value of         rather than max

•EM updates covariances, mixing proportions AND means…
•The algorithm for Gaussian mixtures:

EXPECTATION:

MAXIMIZATION:

•Neat demo… http://www.cs.cmu.edu/~alad/em/
•Makes intuitive sense, but what can we prove?
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Expectation-Maximization
•EM uses expected value of         rather than max

•EM updates covariances, mixing proportions AND means…
•The algorithm for Gaussian mixtures:

EXPECTATION:

•Neat demo… http://www.cs.cmu.edu/~alad/em/
•Makes intuitive sense, but what can we prove?
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We'd like the true probability ( | , )

Instead we use an approximation ( ) ( | , )

Need a way to think about the difference between  and 
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Entropy & KL Divergence
• Step back, reconsider Entropy, introduced in 9:16
• We’ll extend the idea to Relative Entropy of 2 variables
• We’ll also need Jensen’s Inequality, see 11:7

• Let h(x) be the information content of an event x
• We’d like:  if x and y unrelated, then h(x,y)=h(x)+h(y)
• Two unrelated events ~ independent, so p(x,y)=p(x)p(y)
• Leads to

• For a discrete random variable X, its entropy is the average 
information content
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Bishop 1.6, Mackay 2.4-2.7
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Entropy Properties
• Loosely speaking, H(X) is an ε-achievable lower bound on 
the average code rate (Shannon noiseless coding theorem)

• Example: 
• Variable X has 8 states, all equally likely
• What’s H(X) in bits?

• Example: (Cover & Thomas, 1991)
• Variable Y has 8 states, probabilities

Possible code 0         10       110      1110     {111100,111101,111110,111111}
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Bishop 1.6, Mackay 2.4-2.7
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Example: letters in English

The entropy of a randomly selected 
letter in an English document is about 
4.11 bits (Mackay 2.4)
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Bishop 1.6, Mackay 2.4-2.7

2
Compare log 27 4.75≈



Entropy Properties
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For discrete X
• H(X) ≥ 0
• H(X) = 0 iff exists some value y s.t. X=y a.s
• If X takes finite n possible values, then H(X) ≤ log n with 

equality iff X is uniformly distributed (maximum entropy)

For continuous X, define differential entropy

• Note now H(X) need not be positive (e.g. consider U[0,a])
• For given mean and variance, distribution with maximum 

entropy is a Gaussian

( ) ( ) log ( )H X p x p x dx= −∫
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KL Divergence
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• Suppose have a probability distribution p(x)
• We’ll approximate it with some distribution q(x)
• Consider coding scheme using q(x): information content 

based on q(x) but average over the true distribution p(x)
• Hence minimum average additional information required 

to specify x is

• Kullback-Leibler divergence or relative entropy between 
distributions p(x) and q(x), continuous or discrete

• Not symmetric but provides a notion of distance
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Key result: KL Divergence ≥ 0
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• Recall Jensen’s Inequality
� For convex f,

� Apply to KL divergence:

� Holds for discrete or continuous variables
� Equality iff q(x) = p(x) almost everywhere

[ ( )] ( [ ])f x f x≥E E

Bishop 1.6.1
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