Machine Learning

4771

Instructors:

Adrian Weller and Ilia Vovsha

Lecture 15: PCA & K-Means Clustering

- Principal Component Analysis (PCA) (Duda 3.8, Bishop 12.1)
- K-Means Clustering (Bishop 9.1)

Dimensionality Reduction

- Problem: data might have excessive dimensionality
- Not just a computational issue! May worsen even very effective algorithms (e.g. similarity measure between examples can be adversely affected)
- Solution: reduce data dimensionality by removing (redundant) features or combining them
- Idea: project high-dimensional data onto a lower dimensional space
- How to project data? What should the projection be?
 - a. Best representation of the data in some sense (Principal Component Analysis)
 - b. Best separation of the data (Multiple Discriminant Analysis)

Principal Component Analysis (PCA)

- Given a set of vectors, each with dimensionality = d, we wish to project the data onto a subspace of dimensionality M < D
- Goal: maximize the variance of the projected data
- Two cases:
 - 1. M is given a priori
 - 2. We choose M based on some criteria

PCA (M = 1)

- Suppose M = 1: w.l.o.g choose a unit vector v₁ which defines the direction of the projected space
- Each data point {x} is then projected onto a scalar value (since M=1): $p_i = v_1^T x_i$
- The mean and variance of the projected data is given by:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_{N}$$

$$mean\{p_{1},...,p_{N}\} = v_{1}^{T} \bar{x}$$

$$var\{p_{1},...,p_{N}\} = \frac{1}{N} \sum_{i=1}^{N} (v_{1}^{T} x_{i} - v_{1}^{T} \bar{x})^{2}$$

$$= v_{1}^{T} \left[\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})(x_{i} - \bar{x})^{T} \right] v_{1}$$

$$PCA (M = 1)$$

• Let S denote the covariance matrix:

$$S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T, \quad \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$mean\{p_1, \dots, p_N\} = v_1^T \bar{x}$$

$$var\{p_1, \dots, p_N\} = \frac{1}{N} \sum_{i=1}^{N} (v_1^T x_i - v_1^T \bar{x})^2$$

$$= v_1^T \left[\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T \right] v_1$$

$$= v_1^T S v_1$$

PCA (M = 1)

- Goal: maximize projected variance with respect to v₁:
- Solution: constrained maximization (normalization condition on vector v)

$$S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T, \quad \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad v_1^T v_1 = 1$$

$$\text{var}\{p_1, \dots, p_N\} = v_1^T S v_1$$

$$Goal: \quad \max\{v_1^T S v_1 + \lambda_1 (1 - v_1^T v_1)\}$$

Setting derivative w.r.t to v₁ equal to zero, we obtain:

$$Sv_1 - \lambda_1 v_1 = 0 \Rightarrow Sv_1 = \lambda_1 v_1$$

1st Principal Component

- We have observed (1) that the vector v_1 must be an eigenvector of the covariance matrix S
- The variance is given by the corresponding eigenvalue (2)
- The variance is maximum when we choose the eigenvector corresponding to the largest eigenvalue
- This eigenvector is called the first principal component

$$(1) \quad Sv_1 = \lambda_1 v_1$$

(1)
$$Sv_1 = \lambda_1 v_1$$

(2) $v_1^T Sv_1 = \lambda_1$

PCA (M < D)

- We can define additional principal components in an incremental fashion:
 - 1. Compute the covariance matrix S (requires evaluating the data mean)
 - 2. Find M eigenvectors which correspond to the M largest eigenvalues
 - 3. Project the data onto the M principal components (eigenvectors)
- We proved the idea for M = 1. For M > 1, shown by induction.
- How do we choose M?

Principal Components Analysis

 Idea: instead of writing data in all its dimensions, only write it as mean + steps along one direction

 More generally, keep a subset of dimensions C from D (i.e. 2 of 3)

$$ec{x}_{_{i}}pproxec{\mu}+\sum
olimits_{_{j=1}}^{^{C}}c_{_{ij}}ec{v}_{_{j}}$$

- •Compression method: $\vec{x}_i \gg \vec{c}_i$
- Optimal directions: along eigenvectors of covariance
- Which directions to keep: highest eigenvalues (variances)

Principal Components Analysis

•If we have eigenvectors, mean and coefficients:

$$ec{x}_{_{i}}pproxec{\mu}+\sum
olimits_{_{j=1}}^{^{C}}c_{_{ij}}ec{v}_{_{j}}$$

•Get eigenvectors (use eig() in Matlab): $\Sigma = V \Lambda V^T$

$$\left[\begin{array}{ccc} \Sigma \left(1,1 \right) & \Sigma \left(1,2 \right) & \Sigma \left(1,3 \right) \\ \Sigma \left(1,2 \right) & \Sigma \left(2,2 \right) & \Sigma \left(2,3 \right) \\ \Sigma \left(1,3 \right) & \Sigma \left(2,3 \right) & \Sigma \left(3,3 \right) \end{array} \right] = \left[\begin{array}{ccc} \left[\vec{v}_{_{1}} \right] & \left[\vec{v}_{_{2}} \right] & \left[\vec{v}_{_{3}} \right] \end{array} \right] \left[\begin{array}{ccc} \lambda_{_{1}} & 0 & 0 \\ 0 & \lambda_{_{2}} & 0 \\ 0 & 0 & \lambda_{_{3}} \end{array} \right] \left[\begin{array}{ccc} \left[\vec{v}_{_{1}} \right] & \left[\vec{v}_{_{2}} \right] & \left[\vec{v}_{_{3}} \right] \end{array} \right]^{T}$$

- Eigenvectors are orthonormal: $\vec{v}_i^T \vec{v}_j = \delta_{ij}$
- •In coordinates of v, Gaussian is diagonal, $cov = \Lambda$
- •All eigenvalues are non-negative $\lambda_i \geq 0$
- Higher eigenvalues are higher variance, use the top C ones

$$\begin{array}{ll} \lambda_{_1} \geq \lambda_{_2} \geq \lambda_{_3} \geq \lambda_{_4} \geq \dots \\ \bullet \text{To compute the coefficients:} \quad c_{_{ij}} = \left(\vec{x}_{_i} - \vec{\mu}\right)^{\! \! T} \vec{v}_{_j} \end{array}$$

Eigenfaces $\left\{x_{_{1}},\ldots,x_{_{N}} ight\}$ **ENCODE** $\left\{\left(\hat{x}_{1} = \underline{\mu + \sum_{j=1}^{C} c_{1j} \vec{v}_{j}\right), \dots, \left(\hat{x}_{N} = \underline{\mu + \sum_{j=1}^{C} c_{Nj} \vec{v}_{j}\right)\right\}$

Clustering

- Problem: identify groups, or clusters, of data points in a multidimensional space
- Data is not labeled (unsupervised setting)
- Data is cheaper to obtain (no *annotation* needed)
- Goal: partition the data set into some number K of clusters

- If K (# clusters) is not given a-priori, how do we choose K?
- What should be the approach/criteria to partition the data?

K-Means (idea)

- Given a set of vectors, each with dimensionality = d, we wish to partition the data into K clusters (where we assume K is given)
- ullet Idea: introduce a prototype vector μ_k which represents the center of each cluster, and find
 - a. An assignment of data points to clusters
 - b. The set of vectors $\{\mu_k\}$
- Objective: minimize sum of squared distances of each data point to its closest center

$$\{x_1, \dots, x_N\}, \quad x_i \in \Re^D$$
$$\{\mu_1, \dots, \mu_K\}, \quad \mu_i \in \Re^D$$

K-Means (formal definition)

• For each data point, introduce binary indicator variables which denote whether the point belongs to a cluster:

$$x_i \to r_{i,k} \in \{0,1\}$$
 $k = 1,...,K$

• Define an objective function (sum of squared distances of each data point to its assigned cluster):

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{i,k} ||x_i - \mu_k||^2$$

- Goal: find $\{r_{i,k}\}$ and $\{\mu_k\}$ which minimize ${\it J}$
- Solution: iterative procedure

Iterative Procedure

- 1. Initialize $\{\mu_k\}$ to some (random) values
- 2. E-Step: Minimize J with respect to $\{r_{i,k}\}$, keeping the $\{\mu_k\}$ fixed
- 3. M-Step: Minimize J with respect to $\{\mu_k\}$, keeping the $\{r_{i,k}\}$ fixed
- 4. Repeat steps (2),(3) until convergence
- Steps (2-3) correspond to the Expectation and Maximization steps in the EM algorithm

K-Means (E Step)

• Since J is linear in $\{r_{i,k}\}$, and the terms are independent, we simply assign each data point to the closest cluster center:

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{i,k} \|x_i - \mu_k\|^2$$

$$r_{i,k} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||x_{i} - \mu_{j}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

K-Means (M Step)

• Since J is quadratic in $\{\mu_k\}$, it can be minimized by setting the derivative to zero and solving for $\{\mu_k\}$:

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{i,k} ||x_i - \mu_k||^2$$

$$\frac{\partial J}{\partial \mu_k} = 2\sum_{i=1}^N r_{i,k} (x_i - \mu_k) = 0$$

$$\mu_{k} = \frac{\sum_{i=1}^{N} r_{i,k} x_{i}}{\sum_{i=1}^{N} r_{i,k}}$$

 \bullet Observe: μ_k is set to the mean of all points assigned to cluster k

K-Means Algorithm

1. Initialize
$$\{\mu_k\}$$
 to some (random) values
2. E-Step: assign each data point to a cluster $r_{i,k} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_j \|x_i - \mu_j\|^2 \\ 0 & \text{otherwise} \end{cases}$

3. M-Step: update means for all clusters

$$\mu_{k} = \frac{\sum_{i=1}^{N} r_{i,k} x_{i}}{\sum_{i=1}^{N} r_{i,k}}$$

4. Repeat steps (2-3) until convergence

K-Means Convergence

- How do we know that the algorithm converges?
- Each iteration reduces the value of the objective function J
- May converge to local rather than global minimum
- When do we stop iterating?
 - a. No further changes in assignment of points to clusters
 - b. Limit on # of iterations exceeded
- Optimization procedure known as *Coordinate Descent* (fix one variable, optimize the other). Other terms in the literature: *Axis Parallel Optimization, Alternating*

Optimization

Lossy Data Compression

- Clustering can be used to perform data compression
- If we cannot reconstruct the original data exactly from the compressed representation, we have *lossy data compression*
- K-Means to compress data (sometimes known as vector quantization):
 - 1. Specify K << N and run the K-means algorithm on your data
 - For each data point, store only the identity k of the cluster to which it was assigned
 - 3. Store the K cluster centers $\{\mu_k\}$

Side Note: Sampling from a Gaussian

Sampling! Generating discrete data easy:

0.73 0.1 0.17

Assume we can do uniform sampling:

i.e. rand between (0,1)

if 0.00 <= rand < 0.73 get A

if 0.73 <= rand < 0.83 get B

if 0.83 <= rand < 1.00 get C

- What are we doing?
 Sum up the Probability Density Function (PDF) to get Cumulative Density Function (CDF)
- For 1d Gaussian, Integrate Probability Density Function get Cumulative Density Function Integral is like summing many discrete bars

Sampling from a Gaussian

Integrate 1d Gaussian to get CDF:

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$$

$$F(x) = \int_{-\infty}^{x} p(t)dt = \frac{1}{2}erf(\frac{1}{\sqrt{2}}x) + \frac{1}{2}$$

•If sample from uniform, $\gcd^2 u \sim uniform(0,1)$

•Compute mapping:

$$x=F^{-1}ig(uig)=\sqrt{2}er\!finvig(2u-1ig)$$

- •This is a Gaussian sample: $x \sim N(x \mid 0,1)$
- •For D-dimensional Gaussian N(z|0,I) concatenate samples:

•For $N(z|\mu,\Sigma)$, add mean & multiply by root cov

$$ec{z} = \Sigma^{1/2} ec{x} + ec{\mu} \sim p ig(ec{z} \mid ec{\mu}, \Sigma ig)$$

Example code: gendata.m

