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Lecture 15: PCA & K-Means Clustering

e Principal Component Analysis (PCA) (Duda 3.8, Bishop 12.1)

e K-Means Clustering (Bishop 9.1)



Dimensionality Reduction

e Problem: data might have excessive dimensionality

e Not just a computational issue! May worsen even very effective algorithms (e.g.
similarity measure between examples can be adversely affected)

e Solution: reduce data dimensionality by removing (redundant) features or combining
them

e |dea: project high-dimensional data onto a lower dimensional space
e How to project data? What should the projection be?
a. Best representation of the data in some sense (Principal Component Analysis)

b. Best separation of the data (Multiple Discriminant Analysis)



Principal Component Analysis (PCA)

e Given a set of vectors, each with dimensionality = d, we wish to project the data onto
a subspace of dimensionality M <D

e Goal: maximize the variance of the projected data
e TWO cases:
1. Mis given a priori

2. We choose M based on some criteria
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PCA (M = 1)

* Suppose M = 1: w.l.o.g choose a unit vector v, which defines the direction of the
projected space

T
e Each data point {x} is then projected onto a scalar value (since M=1): D. =V, X.

e The mean and variance of the projected data is given by:
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PCA (M = 1)

¢ Let S denote the covariance matrix:
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PCA (M = 1)

» Goal: maximize projected variance with respect to v, :

¢ Solution: constrained maximization (normalization condition on vector v)
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var{ p....py = S,
Goal : max{vlT Sv, + )\1(1 -V, V1)}

e Setting derivative w.r.t to v; equal to zero, we obtain:
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15t Principal Component

e We have observed (1) that the vector v, must be an eigenvector of the covariance
matrix S

e The variance is given by the corresponding eigenvalue (2)

e The variance is maximum when we choose the eigenvector corresponding to the
largest eigenvalue

e This eigenvector is called the

1) Sv,=Ay,
(2) vlT Sv, =4



PCA (M < D)

e We can define additional principal components in an incremental fashion:
1. Compute the covariance matrix S (requires evaluating the data mean)
2. Find M eigenvectors which correspond to the M largest eigenvalues
3. Project the data onto the M principal components (eigenvectors)

e We proved the idea for M = 1. For M > 1, shown by induction.

e How do we choose M?



Principal Components Analysis

eIdea: instead of writing data in all its dimensions,
only write it as mean + steps along one direction
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eMore generally, keep a subset
of dimensions C from D (i.e. 2 of 3) P
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*Compression method: z > ¢ T

eOptimal directions: along eugenvectors of covariance
eWhich directions to keep: highest eigenvalues (variances)




Principal Components Analysis

oIf we have eigenvectors, mean and coefficients:
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*Get eigenvectors (use eig() in Matlab): s =vaAv”
1) 2(12) £(13) B
2(1,2) 2(2,2) 2(2,3) = [171

2(1,3) =(2,3) =(33)

eEigenvectors are orthonormal 9T =9,

eIn coordinates of v, Gaussian is dlagonal cov = A

*All eigenvalues are non-negative X\ >0

eHigher eigenvalues are higher variance, use the top C ones
DD D V- .

*To compute the coefficients: ¢, = (:Ei - ﬁ,’) v,
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Clustering

e Problem: identify groups, or clusters, of data points in a multidimensional space

e Data is not labeled ( setting)
e Data is cheaper to obtain (no needed)

e Goal: partition the data set into some number K of clusters
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e |dea: a cluster is a group of data points whose inter-point distance are small

compared with the distances to points outside of the cluster
o |f K (# clusters) is not given a-priori, how do we choose K?

e What should be the approach/criteria to partition the data?
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K-Means (idea)

e Given a set of vectors, each with dimensionality = d, we wish to partition the data
into K clusters (where we assume K is given)

e |[dea: introduce a prototype vector y, which represents the center of each cluster,
and find

a. An assignment of data points to clusters

b. The set of vectors {u,}

e Objective: minimize sum of squared distances of each data point to its closest center
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K-Means (formal definition)

e For each data point, introduce binary indicator variables which denote whether the
point belongs to a cluster:

x,—r, {01} k=L.. K

e Define an objective function (sum of squared distances of each data point to its

assigned cluster):
N K 0)
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* Goal: find {r; .} and {,} which minimize J

e Solution: iterative procedure



Iterative Procedure

Initialize {, } to some (random) values
: Minimize J with respect to {r, }, keeping the {u,} fixed
: Minimize J with respect to {u}, keeping the {r, .} fixed

Repeat steps (2),(3) until convergence

Steps (2-3) correspond to the Expectation and Maximization steps in the EM
algorithm



K-Means (E Step)

* Since Jislinearin {r; .}, and the terms are independent, we simply assign each data
point to the closest cluster center:
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K-Means (M Step)

e Since Jis quadratic in {u,}, it can be minimized by setting the derivative to zero and

solving for {u,}:
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* Observe: y, is set to the mean of all points assigned to cluster k
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K-Means Algorithm

r

1. Initialize {y,} to some (random) values Y . H H2
I if k=argmin |lx;, - u,

: assign each data point to a cluster ., = )

\O otherwise

N
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: update means for all clusters Mk =

4. Repeat steps (2-3) until convergence



K-Means Convergence

* How do we know that the algorithm converges?

e Each iteration reduces the value of the objective function J

e May converge to local rather than global minimum

e When do we stop iterating?
a. No further changes in assighment of points to clusters
b. Limit on # of iterations exceeded

e Optimization procedure known as (fix one variable, optimize the
other). Other terms in the literature:
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Lossy Data Compression

e Clustering can be used to perform data compression

e |If we cannot reconstruct the original data exactly from the compressed
representation, we have

e K-Means to compress data (sometimes known as ):
1. Specify K<< N and run the K-means algorithm on your data

2. For each data point, store only the identity k of the cluster to which it was
assigned

3. Store the K cluster centers {p,}
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Side Note: Sampling from a Gaussian

eSampling! Generating discrete data easy: |0.73| 0.1 | 0.17

eAssume we can do uniform sampling:
i.e. rand between (0,1)
if 0.00 <=rand < 0.73 get A
if 0.73 <=rand < 0.83 get B
if 0.83 <=rand < 1.00 get C

What are we doing?
Sum up the Probability Density Function (PDF)
to get Cumulative Density Function (CDF)

oFor 1d Gaussian, Integrate Probability Density
Function get Cumulative Density Function
Integral is like summing many discrete bars

0.73 | 0.83 | 1.00
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Sampling from a Gaussian

eIntegrate 1d Gaussian to get CDF:

ple) = 4 op(-42" T
F{9)= [ o= et
oIf samplé from uniform, get: u ~ umform(O ) e
«Compute mapping: z=F"(u)= V2 2erfiny(2u —1)
oThis is a Gaussian sample: z ~ N( z|0 1)

oFor D-dlmensmnal Gaussian N(z|0,I) concatenate samples:
D

TR i i T
oFor N(z| u,):), add mean & multiply by root cov -

2=+~ p(7]0L5) #
eExample code: gendata.m (A



